Беспилотные летательные аппараты. Ч. 2: Модели беспилотных авиакомплексов со встроенны-ми манипуляторами

Основное содержимое статьи

О. Ю. Тятюшкина
С. В. Ульянов

Аннотация

В статье описано современное состояние в области беспилотных авиационных комплексов и воздушных манипуляторов, систем подводных роботов-манипуляторов. Дано краткое введение в использование манипуляторов в различных отраслях для различных приложений воздушного и подводного пространства. Представлен исчерпывающий обзор существующих коммерческих и экспериментальных прототипов подводных манипуляторов, охватывающий соответствующие аспекты, такие как конструктивные особенности, их возможности и достоинства, а также подробное сравнение. Проведен анализ преимуществ и недостатков как электрических, так и гидравлических манипуляторов. Кроме того, представлено подробное описание коммерчески доступных систем управления подводными манипуляторами, чтобы дать реалистичную картину существующей технологии и ее ограничений. Кроме того, представлена обширная библиография, охватывающая результаты исследований в области алгоритмов управления, включая низкоуровневое управление движением, высокоуровневое кинематическое управление и схемы планирования движения, а также вопросы реализации.

Скачивания

Данные скачивания пока недоступны.

Информация о статье

Как цитировать
1.
Tyatyushkina OY, Ulyanov SV. Беспилотные летательные аппараты. Ч. 2: Модели беспилотных авиакомплексов со встроенны-ми манипуляторами. Системный анализ в науке и образовании [Интернет]. 30 сентябрь 2022 г. [цитируется по 28 март 2024 г.];(3):53-109. доступно на: https://sanse.ru/index.php/sanse/article/view/544
Раздел
Статьи

Библиографические ссылки

Hamaza S. et al. Design, modeling, and control of an aerial manipulator for placement and re-trieval of sensors in the environment. J Field Robotics. 2020. Vol. 37. Pp. 1224–1245. DOI: 10.1002/rob.21963.

Hassan M. A. H. Design and real time control of a versatile scansorial robot. A thesis submitted to The University of Sheffield for the fulfilment of the degree of Doctor of Philosophy. The University of Sheffield, 2016.

Sherstan M. J. Localization and Control of a Quadcopter Universal Payload System. A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science, De-partment of Mechanical Engineering University of Alberta. 2020.

Bartelds T. et al. Compliant Aerial Manipulators: Toward a New Generation of Aerial Robotic Workers. IEEE Robotics and Automation Letters. 2016. Vol. 1, No. 1. Pp. 477-483. DOI: 10.1109/LRA.2016.2519948.

Mahmood S. K. et. al. Propeller-type Wall-Climbing Robots: A Review. IOP Conf. Ser.: Mater. Sci. Eng. 2021. Vol. 1094. Pp. 1-12. DOI:10.1088/1757-899X/1094/1/012106

Liang P et al. Design and Stability Analysis of a Wall-Climbing Robot Using Propulsive Force of Propeller. Symmetry 2021, 13, 37. DOI: 10.3390/sym13010037.

Myeong W., Myung H. Development of a Wall-Climbing Drone Capable of Vertical Soft Land-ing Using a Tilt-Rotor Mechanism. IEEE Access. 2019. Vol. 7. Pp. 4868 - 4879.

Sherstan M. J. Localization and Control of a Quadcopter Universal Payload System. A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science, De-partment of Mechanical Engineering University of Alberta. 2020.

Myeong M. et al. Development of Wall-climbing Unmanned Aerial Vehicle System for Micro-Inspection of Bridges. ICRA. 23 May 2019.

Staub N., et al. The Tele-MAGMaS: An Aerial-Ground Comanipulator System . IEEE Robotics and Automation Magazine. 2018. Vol. 25, No 4. Pp.66-75.

Trujillo M. A. et al. Novel Aerial Manipulator for Accurate and Robust Industrial NDT Contact Inspection: A New Tool for the Oil and Gas Inspection Industry. Sensors. 2019. Vol. 19. Pp. 1305. DOI:10.3390/s19061305.

Morton K. An Extensible Framework for Nonlinear Aerial Manipulation. School of Electrical Engineering and Robotics Science and Engineering Faculty Queensland University of Technol-ogy. 2020. A dissertation submitted in fulfilment of the requirements for the degree of Doctor of Philosophy.

Ollero A. et al. Past, Present and Future of Aerial Robotic Manipulators. IEEE Trans. on Robot-ics. 2022. Vol. 38, No 1. Pp.626 - 645. DOI:10.1109/TRO.2021.3084395.

Yashin G. Development of Group of Flying Robots with Multifunctional Robotic Limbs aimed at Operations in Cluttered Environments. Doctoral Program in Engineering Systems. Skoltech, Mocow. 2020.

Tyatyushkina O.Yu. et al. Intelligent cognitive robotics.Vol. I: Soft computational intelligence and information — thermodynamic law of intelligent cognitive control. M.: Kurs. 2022.

Agha A. et. al. NeBula: Quest for Robotic Autonomy in Challenging Environments; TEAM CoSTAR at the DARPA Subterranean Challenge (preprint version). arXiv:2103.11470v1 [cs.RO]. 2021.

Hudson N. et al. Heterogeneous Ground and Air Platforms, Homogeneous Sensing: Team CSIRO Data61’s Approach to the DARPA Subterranean Challenge. arXiv:2104.09053v1 [cs.RO]. 2021.

Yang G.-Z. The grand challenges of Science Robotics . Sci. Robotics. 2018. Vol. 3. Pp. 7650.

Chang Y. Development of a Wall Climbing Inspection Robot with High Mobility on Complex Shaped Walls. A thesis submitted in partial fulfilment of the requirements for the Degree of Master of Engineering in Mechanical Engineering in the University of Canterbury. 2015.

Ge D. et al. A Pressing Attachment Approach for a Wall-Climbing Robot Utilizing Passive Suc-tion Cups. Robotics. 2020. Vol. 9, No 26. DOI:10.3390/robotics9020026

Faal S.G. Design and Analysis of a Robotic Duct Cleaning System. Thesis presented to Sharif University of Technology in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering (Mechatronics). Kish Island, Iran, 2011.

Silva M.F., Machado J.A.T. A Survey of Technologies and Applications for Climbing Robots Locomotion and Adhesion // Climbing and Walking Robots, Behnam Miripour (Ed.) InTech, 2010. [Available from: http://www.intechopen.com/books/climbing-and-walking-robots/a-survey-oftechnologies-and-applications-for-climbing-robots-locomotion-and-adhesion].

Horák M. et al. Service Robots for Motion and Special Applications on the Vertical Oriented Walls. In Service Robots (Chapter 5). INТЕCH. 2017. http://dx.doi.org/10.5772/intechopen.70. [Downloaded from: http://www.intechopen.com/books/service-robots].

Bian S. et al. A Novel Type of Wall-Climbing Robot with a Gear Transmission System Arm and Adhere Mechanism Inspired by Cicada and Geckom Appl. Sci. 2021, 11, 4137. https://doi.org/10.3390/ app11094137.

Yanagida T. et al. Design and Implementation of a Shape Shifting Rolling–Crawling–Wall-Climbing Robot. Appl. Sci. 2017. Vol. 7, No 342. DOI:10.3390/app7040342.

Wang, B.; Xiong, X.; Duan, J.; Wang, Z.; Dai, Z. Compliant Detachment of Wall-Climbing Ro-bot Unaffected by Adhesion State. Appl. Sci. 2021. Vol. 11, No 13. P. 5860. https://doi.org/ 10.3390/app11135860.

Spenko M. J. et al. Biologically Inspired Climbing with a Hexapedal Robot. J. of Field Robot-ics. 2008. Vol. 25, No 4-5. Pp. 223-242. [URL: http://dx.doi.org/10.1002/rob.20238].

Nansai S. et al. Design and Implementation of a Lizard-Inspired Robot // Appl. Sci. 2021. Vol. 11, No 7898. https://doi.org/10.3390/app11177898.

Zhang J. et al. Transition Motion Planning for Multi-Limbed Vertical Climbing Robots Using Complementarity Constraints. arXiv:2106.07127v1 [cs.RO] 14 Jun 2021.

Han I.H. et al. A miniaturized wall-climbing segment robot inspired by caterpillar locomotion // Bioinspir. Biomim. 2017. Vol. 12. No. 4. Pp. 046003. https://doi.org/10.1088/1748-3190/aa728c.

Du Q. et al. Design of a micro pole-climbing robot , Intern. J. of Advanced Robotic Systems. 2019. No 3. Pp. 1-11. DOI: 10.1177/1729881419852813.

Du Q. et al. The obstacle-surmounting analysis of a pole-climbing robot. Intern. J. of Ad-vanced Robotic Systems. 2020. No 6. Pp. 1-20. DOI: 10.1177/1729881420979146.

Gao R., Li M., Xu Y., Zhu W. Design and Stability Analysis of a Wall-Climbing Robot Using Propulsive Force of Propeller. Symmetry. 2021. Vol. 13. Pp. 37. https:// doi.org/10.3390/sym1301003.

Wang Y., Du Q., Zhang T., Xue C. The WL_PCR: A Planning for Ground-to-Pole Transition of Wheeled-Legged Pole-Climbing Robots. Robotics. 2021. Vol. 10. Pp. 96. https:// doi.org/10.3390/robotics10030096.

Schmidt D. Safe Navigation of a Wall-Climbing Robot – Risk Assessment and Control Meth-ods. Doktor-Ingenieur (Dr.-Ing.) genehmigte Dissertation. Technischen Universität Kaiserslau-tern, 2013.

Stockton A. J. design, build, and control of a climbing robot for irregular surface geometry. Partial fulfillment of the requirements for the degree of MASTER OF SCIENCE. Texas A&M University. 2015.

Muthugala M. A. V. et al. Design and Control of a Wall Cleaning Robot with Adhesion-Awareness. Symmetry. 2020. Vol.12, No 122. DOI:10.3390/sym12010122.

Agha A. et. al. NeBula: Quest for Robotic Autonomy in Challenging Environments; TEAM CoSTAR at the DARPA Subterranean Challenge (preprint version). arXiv:2103.11470v1 [cs.RO]. 2021.

Hudson N. et al. Heterogeneous Ground and Air Platforms, Homogeneous Sensing: Team CSIRO Data61’s Approach to the DARPA Subterranean Challenge. arXiv:2104.09053v1 [cs.RO]. 2021.

Наиболее читаемые статьи этого автора (авторов)

<< < 1 2 3 4 5 6 > >>