Проектирование алгоритмической ячейки квантового нечеткого вывода для робастного интеллектуального управления в робототехнике и мехатронике

Основное содержимое статьи

И. А. Бархатова
T. А. Керимов
А. В. Николаева
А. Г. Решетников
С. В. Ульянов

Аннотация

Рассматривается проектирование интеллектуальных систем управления, основанное на квантовых и мягких вычислениях. Описываются синергетические эффекты квантовой самоорганизации, извлекаемые из баз знаний интеллектуального нечеткого регулятора. Приводится анализ робастности проектируемой интеллектуальной системы управления в непредвиденных ситуациях на основе математического и физического моделирования объектом управления. Демонстрируются примеры использования алгоритмической ячейки квантового нечеткого вывода как разработанного программного алгоритмического решения для встраиваемых бортовых систем управления.

Скачивания

Данные скачивания пока недоступны.

Информация о статье

Как цитировать
[1]
Barchatova , I.A., Kerimov , T., Nikolaeva А., Reshetnikov , A.G. и Ulyanov , S.V. 2021. Проектирование алгоритмической ячейки квантового нечеткого вывода для робастного интеллектуального управления в робототехнике и мехатронике . Системный анализ в науке и образовании. 3 (сен. 2021), 1–15.
Раздел
Статьи

Библиографические ссылки

Litvintseva L. V. , Takahashi K. , Ulyanov S. V. Intelligent robust control design based on new types of computation // Note del Polo Ricerca, Università degli Studi di Milano (Polo Didattico e di Ricerca di Crema) Publ. – 2004. – Vol. 60.

Litvintseva L. V. , Ulyanov S. V. , Ulyanov S. S. Design of robust knowledge bases of fuzzy controllers for intelligent control of substantially nonlinear dynamic systems: II A soft computing optimizer and robustness of intelligent control systems // J. of Computer and Systems Sciences Intern. – 2006. – Vol. 45. – № 5. – Pp. 744-771.

Ulyanov S. V. , Reshetnikov A. G., Kerimov T. A. Intelligent Robust Robotic Controllers: SW & HW Toolkit of Applied Quantum Soft Computing // Computer Science Journal of Moldova. – 2013. – Vol. 21. – № 3(63).

System and method for control using quantum soft computing: US Patent No 6,578,018B1 (Inventor: S. V. Ulyanov), US Patent No 7,383,235 B1, 2003; EP PCT 1 083 520 A2, 2001.

Litvintseva L. V., Ulyanov S. V. Quantum fuzzy inference for knowledge base design in robust intelligent controllers // J. of Computer and Systems Sciences Intern. – 2007. – Vol. 46. – № 6. – Pp. 908-961.

Ulyanov S. V. Information Design Technology of Robust Integrated Fuzzy Intelligent Control Systems based on Unconventional Computational Intelligence: Quantum Control Algorithm of Robust KB SelfOrganization. – 17 February, 2012. – URL: http://qcoptimizer.com/technology/Technology.pdf.

Ulyanov S. V. Self-Organization of Robust Intelligent Controller using Quantum Fuzzy Inference. – 28 February, 2012. –URL: http://qcoptimizer.com/publications/conference/15_ISKE2008_0902.pdf.

Litvintseva L. V., Ulyanov S. V. Quantum information and quantum computational intelligence: Quantum optimal control and filtering – stability, robustness, and self-organization models in nanotechnologies // Note del Polo Ricerca, Università degli Studi di Milano (Polo Didattico e di Ricerca di Crema) Publ. – 2005–2007. – Vol. 81-82.

Nielsen M. A., Chuang L. Quantum computation and quantum information. – UK: Cambridge Univ. Press, 2000.

Ulyanov S., Albu V., Barchatova I.A. Quantum Algorithmic Gates: Information Analysis & Design System in MatLab. – Saarbrücken: LAP Lambert Academic Publishing, 2014.

Ulyanov S., Albu V., Barchatova I.A. Design IT of Quantum Algorithmic Gates: Quantum search algorithm simulation in MatLab. – Saarbrücken: LAP Lambert Academic Publishing, 2014.

Ulyanov S. V. Self-organization of robust intelligent controller using quantum fuzzy inference // Proc.

of IEEE Intern. Conference ISKE’2008 (3rd Intern. Conf. on Intelligent System and Knowledge Engineering). – Xiamen, China, 2008. – Vol. 1. – Pp. 726-732.

DiVincenzo D. P. , Horodecki M. , Leung D. W, , Smolin J.A., Terhal B.M. Locking classical correlation in quantum states // Physical Review Letters. – 2004. – Vol. 92. – № 6.

Ulyanov S. , Albu V. , Reshetnikov A. Quantum Optimizer of knowledge base. Intelligent self-organized robust embedded controllers and control systems (in Russian). – Saarbrücken: LAP Lambert Academic Publishing, 2014.

Ulyanov S. V. , Reshetnikov A. G. , Nikolaeva A. V. Intelligent control system in unforeseen control situation: Soft Computing Optimizer (in Russian). – Saarbrücken: LAP Lambert Academic Publishing, 2013.

Ulyanov S. V. , Takahashi K., Litvintseva L. V., Hagiwara T. Design of self-organized intelligent control systems based on quantum fuzzy inference: Intelligent system of systems engineering approach // Proc. of IEEE Intern. Conf. SMC’. – Hawaii, USA, 2005. – Vol. 4. – Pp. 3835-3840.

Ulyanov S. V. Quantum soft computing in control processes design: Quantum genetic algorithms and quantum neural network approaches // In Proc. WAC (ISSCI’) 2004 (5th Intern. Symp. on Soft Computing for Industry). – Seville Spain, 2004. – Vol. 17. – Pp. 99-104.

Ulyanov S., Albu V., Barchatova I.A. Quantum Self-organization of knowledge base. Technologies of Quantum Computing and Quantum Programming. (in Russian). – Saarbrücken: LAP Lambert Academic Publishing, 2014.

Dong D., Chen Z. L. , Chen Z. H., Zhang C. B. Quantum mechanics helps in learning for more intelligent robots // Chin. Phys. Lett. – 2006. – Vol. 23. – № 7. – Pp. 1691-1694.

Lukac M., Perkowski M. Inductive learning of quantum behavior. – Facta Universitatis, 2007. – Vol. 20. – № 3. – Pp. 561-586.

Kagan E., Ben G. I. Navigation of quantum-controlled mobile robots // Recent Advances in Mobile Robotics. – 2011. – Vol. 15. – Pp. 311-220.

Bannikov A. , Egerton S. , Callaghan V. , Jonson B. D., Shaukat M. Quantum computing: Nondeterministic controllers for artificial intelligent agents // Proc. 5th Intern. Wokshop Artif. Intell. Techniques for Ambient Intelligence (AITAm’10). – Kuala Lumpur, Malasia, 2010.

Chatzis S. P., Korkinof D., Demiris Y. A quantum-statistical approach toward robot learning by demonstration // IEEE Transactions on Robotics, 2012. – Vol. 28. – № 6. – Pp. 1371-1381.