Моделирование сетевого трафика и прогнозирование с помощью модели ARIMA

Основное содержимое статьи

А. В. Гребенников
Ю. А. Крюков
Д. В. Чернягин

Аннотация

Прогнозирование сетевого трафика представляет значимый интерес в таких областях как отслеживание перегрузок в сети, контроль потоков данных и сетевое управление. Тщательно подобранная модель трафика способна выявить и предугадать важнейшие характеристики сетевого трафика, такие как кратковременно и долговременно зависимые процессы, самоподобность на больших временных масштабах. В данной статье подбирается модель ARIMA с минимальным числом параметров, имеющая адекватный прогноз. Также представлена процедура оценки параметров модели ARIMA и выбора модели с минимальным числом параметров. Приведены сравнения оценок качества прогноза для полученных моделей.

Скачивания

Данные скачивания пока недоступны.

Информация о статье

Как цитировать
[1]
Гребенников, А.В., Крюков, Ю.А. и Чернягин, Д.В. 2021. Моделирование сетевого трафика и прогнозирование с помощью модели ARIMA. Системный анализ в науке и образовании. 1 (сен. 2021), 7–17.
Раздел
Статьи

Библиографические ссылки

Дуброва, Т. А. Статистические методы прогнозирования. – М.: ЮНИТИ-ДАНА, 2003. – С. 206.

Канторович Г.Г. Анализ временных рядов // Экономический журнал ВШЭ. – №3. – 2002.

Крюков, Ю. А. Исследование самоподобия трафика высокоскоростного канала передачи пакетных данных // sanse.ru: сайт электронного журнала. [Электронный ресурс]. – Режим доступа: http://sanse.ru/download/33 (дата обращения 09.10.2010).

Rutka G. Network Traffic Prediction using ARIMA and Neural Networks Models // Electronics And Electrical Engineering. – №4. – 2008.

Наиболее читаемые статьи этого автора (авторов)