Алгоритмы компьютерного зрения для распознавания автомобильных номеров
Основное содержимое статьи
Аннотация
В статье рассматривается общая последовательность этапов, выполняемая в процессе распознавания автомобильных номеров на изображениях и видео. Описаны алгоритмы, которые могут быть использованы на различных этапах распознавания. Приведены основные требования, возможности и ограничения этих алгоритмов.
Скачивания
Информация о статье
Библиографические ссылки
Morimoto C., Chellappa R. Evaluation of image stabilization algorithms // Acoustics, Speech and Signal Processing, 1998. Proceedings of the 1998 IEEE International Conference. – 1998. – Vol. 5.
Muhammad Sharif Sajjad Mohsin, Muhammad Jawad Jamal, Mudassar Raza. Illumination Normalization Preprocessing for face recognition // 2nd Conference on Environmental Science and Information Application Technology. – 2010.
Virendra P. Vishwakarma, Sujata Pandey and M. N. Gupta. Adaptive Histogram Equalization and Logarithm Transform with Rescaled Low Frequency DCT Coefficients for Illumination Normalization // International Journal of Recent Trends in Engineering. – 2009. – Vol 1. – № 1.
Andrea Polesel, Giovanni Ramponi, Mathews V. John. Image Enhancement via Adaptive Unsharp Masking // IEEE Trans. Image Processing. – 2000. – Vol. 9. – Issue 3.
Simon Perreault and Patrick Hebert. Median Filtering in Constant Time // IEEE Trans. Image Processing. – 2007. – Vol. 16. – Issue 9.
Tao Gao, Zheng-guang Liu, Wen-chun Gao, Jun Zhang. A Robust Technique for Background Subtraction in Traffic Video // 15th International Conference, ICONIP 2008, Auckland, New Zealand, Revised Selected Papers, Part II. – 2009. – Vol. 5.
Gao Yan, Su Fenzhen. Study on machine learning classifications based on OLI images // Mechatronic Sciences, Electric Engineering and Computer (MEC). – 2013. – Pp. 1472-1476.
Zezhi Chen, Ellis, T., Velastin, S.A. Vehicle type categorization: A comparison of classification schemes // Intelligent Transportation Systems (ITSC), 14th International IEEE Conference. – 2011. – Pp. 74-79.
Huaifeng Zhang, Wenjing Jia, Xiangjian He, Qiang Wu. Learning-Based License Plate Detection Using Global and Local Features // Pattern Recognition. ICPR. 18th International Conference. – 2006 – Vol. 2. – Pp. 1102-1105.
Xiangdong Zhang, Peiyi Shen, Yuli Xiao, Bo Li. License plate-location using AdaBoost Algorithm // Information and Automation (ICIA), IEEE International Conference. – 2010. – Pp. 2456-2461.
Musoromy, Z., Ramalingam, S., Bekooy, N. Edge detection comparison for license plate detection // Control Automation Robotics & Vision (ICARCV), 11th International Conference. – 2010. – Pp. 1133-1138.
Wang Xiao-hua, Yu Juan-juan, Miao Zhong-hua, Song Yang. License plate recognition based on pulse coupled neural networks and template matching // Control Conference (CCC). – 2014. – Pp. 5086-5090.
Zhang Zhi-Yong, Song Yang. The License Plate Image Binarization Based on Otsu Algorithm and MATLAB Realize // Industrial Control and Electronics Engineering (ICICEE). – 2012. – Pp. 1657-1659.
Tran Duc Duan, Tran Le Hong Du, Tran Vinh Phuoc, Nguyen Viet Hoang. Building an Automatic Vehicle License-Plate Recognition System // Intl. Conf. in Computer Science – RIVF’05. – 2005. – Pp. 59-63.
Ms.Sushama H.Bailmare, Prof. A.B.Gadicha. A Review paper on Vehicle Number Plate Recognition (VNPR) Using Improved Character Segmentation Method // International Journal of Scientific and Research Publications. – 2013. – Vol. 3. – Issue 12.
Петров С.П. Сверточная нейронная сеть для распознавания символов номерного знака автомобиля // Системный анализ в науке и образовании: электрон. науч. журнал. – 2013. – №3. – [Электронный ресурс]. URL: http://sanse.ru/download/184.