Некоторые взаимоотношения квантовой теории управления с обратными связями с квантовой фильтрацией и квантовыми информационными процессами. Ч. 1

Основное содержимое статьи

С.В. Ульянов
В.В. Кореньков
А.Д. Коваленко
А.Г. Решетников
Г.П. Решетников
Д.Д. Ризотто
Т. Танака
Т. Фукуда

Аннотация

Рассмотрена эволюция квантовой системы управления с точки зрения квантовой теории информации. Комплексный вектор состояния квантовой системы, описывающий квантовую эволюцию, рассматривается как источник информации, как на классическом, так и на квантовом уровне. Рассмотрены модели квантового управления и квантовой фильтрации.

Скачивания

Данные скачивания пока недоступны.

Информация о статье

Как цитировать
[1]
S., Korenkov, V., Kovalenko, A., Reshetnikov, A., G., Rizzotto, G., Tanaka, T. и Fukuda , T. 2021. Некоторые взаимоотношения квантовой теории управления с обратными связями с квантовой фильтрацией и квантовыми информационными процессами. Ч. 1. Системный анализ в науке и образовании. 1 (сен. 2021), 1–6.
Раздел
Статьи

Библиографические ссылки

Zhang J., Liu Yu-xi, Wu Re-Bing, Jacobs K. and Nori F. Quantum feedback: Theory, experiments, and applications // Physics Reports. – 2017. - Vol. 679. - No 1. - Pp. 1-60.

D'Alessandro D. Introduction to quantum control and dynamics. - Chapman and Hall/CRC Applied Mathematics & Nonlinear Science. – 2007.

Shapiro M., Brumer P. Quantum control of molecular processes. - John Wiley & Sons. - 2012.

Wiseman H.M., Milburn G.J. Quantum measurement and control. – Cambridge University Press – 2014.

Schumacher B., Westmoreland M. Quantum processes systems, and information. – Cambridge University Press – 2014.

Mirrahimi M., Rouchon P. Modeling and control of quantum systems. - INRIA and MINES ParisTech. – 2010.

Mabuchi H., Khaneja N. Principles and applications of control in quantum systems // Int. J. Robust Nonlinear Control. – 2005. – Vol. 15. – Pp. 647-667.

Borzi A.,Ciaramella G., Sprengel M. Formulation and numerical solution of quantum control problems. - SIAM. – 2017.

Brion E., Diamanti E., Ourjoumtsev A., Rouchon P. Measurement and control of quantum systems: Theory and experiments. // https://sites.google.com/view/mcqs2018/home.

Hofer S.G., Hammere K. Quantum control of optomechanical systems // Advances in Atomic, Molecular, and Optical Physics. – 2017. – Pp 263-374.

Quantum stochastics and information - Statistics, filtering and control (Eds V.P. Belavkin and M. Guta). – University of Nottingham, UK. – 2006.

Werschnik J., Gross E K U. Quantum optimal control theory // J. of Physics B. – 2007. – Vol. 40. – No 18. – Pp. R175-276.

Blencowe M. Quantum electromechanical systems // Physics Reports. – 2004. – Vol. 395. – №. 2. – Pp. 159-222.

Butkovskii A.G., and Samoilenko Yu.I. Control of quantum-mechanical processes. - Nauka, Moscow, 1984 (English translation: Kluwer Academic Publishers, Dordrecht, 1990).

Petrov B.N., Goldenblat I.I., Ulanov G.M. and Ulyanov S.V. Problems of relativistic and quantum control dynamic systems - Science, Moscow, 1982.

Wiseman H.M. Quantum trajectories and feedback. - PhD Thesis, University of Queensland, Department of Physics, 1994.

Chakrabarti R. and Rabitz H. Quantum control for scientists and engineers. – Princeton University Press. – 2010.

Dong D., Petersen I.R. Quantum control theory and applications: A survey // arXiv:0910.2350v3 [quant-ph] 10 Jan 2011.

Serafini A. Feedback control in quantum optics: An overview of experimental breakthroughs and areas of application // Intern. Scholarly Research Network. - Volume 2012. - Article ID 275016. - 15 pages.

Frank S., Bonneau M., Schmiedmayer1 J., et all. Optimal control of complex atomic quantum systems // Scientific Reports. - 2016. – Vol. 6. – No 34187 (srep34187).

Clark L.A. Quantum feedback for quantum technology. – PhD Theses. - University of Leeds. – 2017.

Naumann N.L. Quantum control of light and matter fields in the nonlinear regime - PhD Thesis, Berlin Technical University. – 2017.

Gough J.E., Ostler C.K. Quantum filtering in coherent states // Communications on Stochastic Analysis. – 2010. - Vol. 4. - No. 4. – Pp. 505-521.

Sasaki T, Hara S. and Tsumura K. Local state transition of feedback controlled quantum systems with imperfect detector efficiency: Part II: Accessibility analysis for quantum systems // SICE Journal of Control, Measurement, and System Integration. – 2010. - Vol. 3. - No. 6. - Pp. 417-423.

Gough J.E., Belavkin V.P. Quantum control and information processing // Quantum Inf. Process. – 2012. (Springer Science+Business Media New York 2012).

Gough J.E., Guta M.I., James M.R., Nurdin H.I. Quantum filtering for systems driven by fermion fields // Communications in Information and Systems. – 2011. - Vol. 11. - No. 3. - Pp. 237-268.

Gough J.E. A quantum Kalman filter-based PID controller // arXiv:1701.06578v1 [quant-ph] 23 Jan 2017.

Kobryn A.E., Hayashi T. and Arimitsu T. Quantum stochastic differential equations for boson and fermion systems — Method of Non-Equilibrium Thermo Field Dynamics // arXiv:math-ph/0304023v1 14 Apr 2003.

Parthasarathy K. R. Quantum Stochastic Calculus and Quantum Gaussian Processes //

arXiv:1408.5686v1 [math-ph] 25 Aug 2014.

Gough J.E. Principles and applications of quantum control engineering // Phil. Trans. R. Soc. A. – 2012. - Vol. 370. – Pp. 5241-5258.

Benoist T. Open quantum systems and quantum stochastic processes. Physics [physics]. Ecole normale supérieure - ENS PARIS, 2014. English. . .

Combes J., Kerckhoff J., Sarovar M. The SLH framework for modeling quantum input output networks // Advances in Physics. - X, 2017. - Vol. 2. - No. 3. – Pp. 784-888.

Lindsay J.M., Skalski A.G. On quantum stochastic differential equations // J. Math. Anal. Appl. – 2007. – Vol. 330 – Pp. 1093-1114.

Petrov B.N., Dobrushin R.L., Pinsker M.S. and Ulyanov S.V On some interrelations between the theories of information and control // Problems of Control and Information Theory. – 1976. - Vol. 5. - No 1. - Pp. 31 - 38.

Touchettea H. and Lloyd S. Information-theoretic approach to the study of control systems // Physica. – 2004. - Vol. A331. - Pp. 140 - 172.

Touchettea H. and Lloyd S. Information-theoretic limits of control // Physical Review Letters. – 2000. - Vol. 84. - No 6. – Pp.1156 - 1159.

Kawabata S. Information-theoretical approach to control of quantum-mechanical systems // Physical Review. – 2003. - Vol. A68. - No 6. - Pp. 064302.

Kawabata S. Information theoretical limits on quantum control // J. Phys. Soc. Jpn. – 2003. - Vol. 72. - Suppl. C. - Pp. 189 - 192.

Nielsen M. A., Chuang L. Quantum computation and quantum information. – UK: Cambridge Univ. Press. – 2000.

Ulyanov S., Albu V., Barchatova I. Quantum Algorithmic Gates: Information Analysis & Design System in MatLab. – Saarbrücken: LAP Lambert Academic Publishing, 2014.

Ulyanov S., Albu V., Barchatova I. Design IT of Quantum Algorithmic Gates: Quantum search algorithm simulation in MatLab. – Saarbrücken: LAP Lambert Academic Publishing, 2014.

Vitagliano G., Klock C., Huber M. and Friis N. Trade-off between work and correlations in quantum thermodynamics // arXiv:1803.06884v1 [quant-ph] 19 Mar 2018.

Hall M.J.W. Entropic Heisenberg limits and uncertainty relations from the Holevo information bound // arXiv:1804.01343v1 [quant-ph] 4 Apr 2018.

Наиболее читаемые статьи этого автора (авторов)

<< < 1 2 3 4 5