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Introduction: Information analysis axioms of quantum algorithm dynamic evo-
lution  

The qualitative analysis of quantum information is described in [1 – 5]. Any computation (both classical 

and quantum) is formally identical to a communication in time. By considering quantum computation as a 

communication process, it is possible to relate its efficiency to its classical communication capacity. At time 

0t  , the programmer  M  sets the computer to accomplish any one of several possible tasks. Each of these 

tasks can be regarded as embodying a different message. Another programmer  C  can obtain this message 

by looking at the output of the computer when the computation is finished at time t T . Computation based 

on quantum principles allows for more efficient algorithms for solving certain problems than algorithms 

based on pure classical principles. 

Remark 1. The sender conveys the maximum information when all the message states have equal a pri-

ori probability (which also maximizes the channel capacity). In that case the mutual information (channel 

capacity) at the end of the computation is log N .  

The communication capacity gives an index of efficiency of a quantum computation [6]:  

A necessary target of a quantum computation is to achieve the maximum possible communication capacity 

consistent with given initial states of the quantum computing. 

Let us consider any peculiarities of information axioms and information capability of quantum compu-

ting as the dynamic evolution of quantum algorithms (QAs).  If one breaks down the general unitary trans-

formation iU  of a QA into a number of successive unitary blocks, then the maximum capacity may be 

achieved only after the number of applications of the blocks. In each of the smaller unitary blocks, the mutu-

al information between the M and the C registers (i.e., the communication capacity) increases by a certain 

amount. When its total value reaches the maximum possible value consistent with a given initial state of the 

quantum computing, the computation is regarded as being complete (see, in details [6, 7]). The classical ca-

pacity of a quantum communication channel is connected with the efficiency of quantum computing using 

entropic arguments. This formalism allows us to derive lower bounds on the computational complexity of 

QA’s in the most general context. The following qualitative axiomatic descriptions of dynamic evolution of 

information flow in a QA are provided [8, 9]: 

 

N Axiomatic Rules 

1 The information amount (information content) of a successful result increases while the QA 

is in execution 

 

 

 

2 

The quantity of information becomes the fitness function for the recognition of successful 

results on intelligent states and introduces the measures of accuracy and reliability (robust-

ness) for successful results. 

 In this case the principle of Minimum of Classical / Quantum Entropy (MCQE) corre-

sponds to recognition of successful results on intelligent states of the QA computation 

 

3 

If the classical entropy of the output vector is small, then the degree of order for this output 

state relatively larger, and the output of measurement process on intelligent states of a QA 

gives the necessary information to solve the initial problem with success 

Remark 2. These three information axioms mean that the algorithm can automatically guarantee conver-

gence of information amount to a desired precision with a minimum decision making risk. This is used to 

provide robust and stable results for fault-tolerant quantum computation. Main information measures in clas-

sical and quantum domains are shown in Tables 1 and 2. 
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Table 1. Typical measures of information amount 
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Table 2. Relations between different typical measures of information amounts 

1. Shannon and von Neumann Entropy Relation    vN ShS S  

For Diagonal Density Matrix: ii   and vN ShS S  

2. Tsallis q-Entropy and Shannon Entropy Relation 
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3. Tsallis q-Entropy and Renyi Entropy Relation 
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Remark 3. Five main information-based approaches in optimal design of QA’s computation can be used: 

1) the maximum entropy (ME) principle; 2) minimum Fisher information (MFI) principle; 3) principle of 

extreme physical information (EPI); 4) principle of maximum of mutual information (MMI) between compu-

tational and measurement dynamic evolution (computational and memory registers) of QA’s; and 5) principle 

of maximal intelligence of QA’s based on minimum of difference between classical and quantum entropies in 

intelligent states of successful results. The first three principles (ME, MFI, and EPI) are based on the physi-

cal laws and may be derived through variation on appropriate Lagrangian’s and includes in last two princi-

ples according to relations between the classical and quantum entropies, and mutual information amount.  

The main properties of quantum information and entropy measures, and interrelations between infor-

mation amounts (classical and quantum measures) are described in [8].  

Remark 5. The EPI principle differs significantly from the EM approach or the MFI approach: (1) In its 

aims (establishing on ontology in EPI and eliciting the laws of physics from a consideration of the flow of 

information in the measurement process, vs subjectively estimating the laws in ME or MFI); (2) in its reason 

for extremization (conservation of information in EPI, vs arbitrary, subjective and sometimes inappropriate 

choice of «maximum smoothness» in ME and MFI); (3) how «constraints» are chosen (via the invariance of 

information to a symmetry operation principle in EPI vs arbitrary subjective choice in ME or MFI); and (4) 
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in its solutions (to a differential equation in EPI and MFI, vs a solution, always in the form of an exponential 

of a function, in ME). Only EPI applies broadly to all of physics principles1,2,34,5.  

Information intelligent measure of QA’s (principle 5) 

The information intelligent measure of QA as  TI  of the state  with respect to the qubits in T  

and to the basis  1 nB i i    is [8, 9] 

 

 
   

1

Sh VN
T T

T

S S

T


   (0) 

The measure (0) is minimal (i.e., 0) when  Sh
TS T  and   0VN

TS  , it is maximal (i.e., 1) when 

   Sh VN
T TS S .  

The intelligence of the QA state is maximal if the gap between the Shannon and the von Neumann en-

tropy for the chosen result qubit is minimal. Information QA-intelligent measure (0) and interrelations be-

tween information measures in Table 2 are used together with the step-by-step natural majorization principle 

for solution of QA-stopping problem. Due to the presence of quantum entropy, QA cannot obviate Bellman’s 

«the curse of dimensionality» encountered in solving many complex numerical and optimization problems. 

And finally, the stringent condition that quantum computers have to be interaction-free, leave them with little 

versatility and practical utility. It has been seen that large entanglement of the quantum register is a neces-

sary condition for exponential speed-up in quantum computation. It is one of reasons to why the quantum 

paradigm is not so easy to extend to all the classical computational algorithms and also explain the failure of 

programmability and scalability in quantum speed-up. 

Remark 6. To be concrete, a quantum register such that the maximum Schmidt number (see below) of 

any bipartition is bounded at most by a polynomial in the size of the system can be simulated efficiently by 

classical means. The universality study of scaling of entanglement in Shor’s factoring algorithm and in adia-

batic QAs across a quantum phase transition for both the NP-complete Exact Cover problem (as a particular 

case of the 3-SAT problem) as well as the Grover’s problem shows as following: (i) analytical result for 

Shor’s QA’s is a linear scaling of the entropy in terms of the number of qubits, therefore difficult the possi-

bility of an efficient classical simulation protocol; (ii) a similar result is obtained numerically for the quan-

tum adiabatic evolution Exact Cover algorithm, which also universality of the quantum phase transition the 

system evolves nearby; and (iii) entanglement in Grover’s adiabatic QSA remains a bounded quantity even at 

the critical point. For these cases a classification of scaling of entanglement appears as a natural grading of 

the computational complexity of simulating quantum phase transitions. 

Information analysis and computational intelligence measures of the quantum 
decision making algorithm  

Most of the applications of quantum information theory have been developed in the domain of quantum 

communications systems, in particular in quantum source coding, quantum data compressing and quantum 

error-correcting codes. In parallel, QA’s have been studied as computational processes, concentrating atten-

tion on their dynamics and ignoring the information aspects involved in quantum computation. In the follow-

                                                 
1 Syska J. Frieden wave function representations via an EPR-Bohm experiment // arXiv:1309.6957v1 [quant-

ph] 17 Jul 2013. 
2 Liou Ch.-Y., Peng J.-Y. Physical phenomenon from the viewpoint of information (Introduction to quantum 

information theory) // http://red.csie.ntu.edu.tw/publications/information.pdf March 28, 2004. 
3 Flego S.P., Plastino A., Plastino A.R. Fisher information and quantum mechanics // Intern. Research J. of 

Pure and Appl. Chemistry. – 2012. – Vol. 2. – № 1. – Pp. 25-54. 
4 Востовский Г.В. Элементы информационной физики. – М.: МГИУ. – 2002. – С. 260. 
5 Frieden, B.R. Science from Fisher information measure. – Cambridge: Cambridge University Press. – 

2004.  
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ing section, the application of tools and techniques from quantum information theory in the domain QA’s 

synthesis and simulation is described. For this purpose, the analysis of the classical and quantum information 

flow in Deutsch-Jozsa algorithm is used. It is shown that the quantum algorithmic gate (QAG) G, based on 

superposition of states, quantum entanglement and interference, when acting on the input vector, stores in-

formation into the system state, minimizing the gap between classical Shannon entropy and quantum von 

Neumann entropy.  

This principle is fairly general, resulting in both a methodology to design a QAG and a technique to 

simulate (efficiently) its behavior on a classical computer.  

The following disclosure uses classical and quantum correlations to describe QA computation. Classical 

correlations play a more prominent role than quantum correlations in the speed-up of certain QAs. 

Information analysis of Deutsch algorithm 

The advantage of quantum computing lies in the exploitation of the phenomenon of superposition. The 

great importance of the quantum theory of computation lies in the fact that it reveals the fundamental con-

nections between the laws of physics and the nature of computation [7, 10, 11]. There is a great simplifica-

tion in understanding quantum computation: a quantum computer is formally equivalent to a multi-particle 

Mach-Zender-like interferometer. Deutsch’s QA is a simple example that illustrates the advantages of quan-

tum computation.  

Deutsch’s QA as discussed in Chapter 1is based on the assumption that a binary function of a binary 

variable    : 0,1 0,1f   is given. Thus,  0f can be either 0 or 1, and  1f  likewise can be either 0 or 1, 

giving altogether four possibilities. The problem posed by Deutch’s QA is to determine whether the function 

is constant [i.e.,    0 1f f ], or varying [i.e.,    0 1f f ].  

Deutsch poses the following task: by computing f  only once, determine whether it is constant or balanced. 

This kind of problem is generally referred to as a promise algorithm, because one property out of a certain number of 

properties is initially promised to hold, and the task is to determine computationally which one holds. 

Classically, finding out in one step whether a function is constant or balanced is clearly impossible. One 

would need to compute  0f  and then compute  1f  in order to compare them. There is no way out of this 

double evaluation. Quantum mechanically, however, there is a simple method for performing this task by 

computing f  only once. Two qubits are needed for the computation. In reality only one qubit is really need-

ed, but the second qubit is there to implement the necessary transformation. Imagine that the first qubit is the 

input to the quantum computing whose internal Hardware (HW) part is represented by the second qubit.  

The computational process itself will implement the following transformation on the two qubits (this is 

performed quantum mechanically, i.e., not using «classical» devices such as beam-splitters): 

 x y x y f x  , where x  is the input and y  is the HW. Note that this transformation is reversible 

and thus there is a unitary transformation to implement it (in the basic principle). The function f  has been 

used only once. The trick is to prepare the input in such a state to make use of quantum superposition.  

The solution beings with the input   0 1 0 1x y    , where x  is the actual input and y  is 

part of the computing HW. Thus, before the transformation is implemented, the state of the computing is an 

equal superposition of all four basis states, which are obtained by simply expanding the state x y  as 

00 01 10 11inx y      . 

Note that there are negative phase factors before the second and fourth terms. 

When this state now undergoes the transformation in the abovementioned way  x y x y f x  , 

following output state is produced: 
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where the over-bar indicates the opposite of that value, so that, for example, 0 1 . 

The power of quantum computing is realized in that each of the components in the superposition of 

in  underwent the same evolution «simultaneously» leading to the powerful «quantum parallelism». This 

feature is true for quantum computation in general. The possibilities are: 

 

     

 

     

1

0 1 0 0
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If f is constant then
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f f





   
 

   
 

 

Note that the output qubit (in this case the first qubit) emerges in two different orthogonal states, de-

pending on the type of function f . These two states can be distinguished with probability 1 of efficiency. A 

Hadamard transformation performed on this qubit leads to the state 0  if the function is constant and to the 

state 1  if the state function is balanced. Now a single projective measurement in  0 , 1  basis determines 

the type of the function.  

Therefore, unlike their classical counterparts, quantum computing can solve Deutsch’s problem. The in-

put could also be of the form   0 1 0 1     . A constant function would then lead to the state 

   and a balanced function would lead to   . So the   and   are equally good as input states of 

the first qubit and both lead to quantum speed-up. Their equal mixture, on the other hand, is not. This means 

that the output would be an equal mixture            no matter whether    0 1f f  or 

   0 1f f , i.e., the two possibilities would be indistinguishable.  

Thus for the QA to work well, one needs the first register to be highly correlated to the two different 

types of functions. If the output state of the first qubit is 1  then function is balanced. The efficiency of 

Deutsch’s algorithm depends on distinguishing the two states 1  and 2 . This is given by the Holevo bound, 

     1 2

1

2
accI S S S        , where  1 2

1

2
    . Therefore, if 1 2  , then 0accI   and the QA 

has no speed-up over the classical one. At the other extreme, if 1  and 2  are pure and orthogonal, then 

1accI   and the computation gives the right result in one step. In between these two extremes lie all other 

computations with varying degrees of efficiency as quantified by the Holevo-bound. These are purely classi-

cal correlations and there is no entanglement between the first and the second qubit. In fact, the Holevo-

bound is the same as the formula for classical correlations. The key to understanding the efficiency of 

Deutsch’s algorithm is, therefore, through the mixedness of the first register. If the initial state has the entro-

py of 0S , then the final Holevo-bound is   0S S S   .  

So, the more mixed the first qubit, the less efficient the computation. Note that the quantum mutual in-

formation between the first qubits is zero throughout the entire computation (so there are neither classical nor 

quantum correlations between them). 

Information analysis of QAG dynamics and intelligent output states: Deutsch-
Jozsa algorithm  

Deutsch-Jozsa algorithm’s dynamics of quantum computation states are analyzed from classical and 

quantum information theory standpoint. Shannon entropy is interpreted as the degree of information accessi-
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bility through the measurement, and von Neumann entropy is employed to measure quantum correlation in-

formation of entanglement. A maximally intelligent state is defined as a QA successful computation output 

state with minimum gap between classical and quantum entropy. The Walsh-Hadamard transform creates 

maximally intelligent states for Deutsch-Jozsa’s problem, since it annihilates the qubit gap between classical 

and quantum entropy for every state. 

Computation dynamics of Deutsch-Jozsa QAG. In the Deutsch-Jozsa algorithm, an integer number 

0n  and a truth-function    : 0,1 0,1
n

f   are given such that f  is either constant or balanced (where f  

is constant if it computes the same output for every input, it is balanced if it takes values 0 and 1 on 12n  in-

put strings each.)  

The problem is to decide whether f  is constant or balanced.  

Function f  is encoded into a unitary operator FU  corresponding to a squared matrix of order 12n , 

where        : 0,1 0,1 0,1 0,1
n n

F     is an injective function such that: 

     , ,F x y x y f x   (1) 

(  is the XOR operator) and FU  is such that: 

  
  

   
2

10

, ,1 1
F i j i F j

U 
  
  

  (2) 

(   r b  is the basis b  representation of number ,, i jr   is the Kronecker delta); H  denotes the unitary 

Walsh-Hadamard transform 
1 11

1 12
H

 
  

 
 and nH  the n  power of matrix H  through tensor product. 

Operator FU  is embedded into a more general unitary operator called quantum algorithmic gate (QAG) as G 

   1n n
FG H I U H

     (3) 

(I denotes the identity matrix of order 2), which is applied to the input vector of dimension 12n . In this con-

text, 1n H  plays the role of the superposition operator (Sup), FU  stands for the entanglement operator (Ent) 

and finally nH I  is the interference operator (Int). The corresponding computation is described by the fol-

lowing steps: 
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 

 
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1
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2
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n

j j n
i i

a


   , where    1 1, , , ,n ni i j j  denotes 

   1 1 n ni j i j    , being  1 1, , , , , 0,1n ni i j j  .  

If f  is constant then 0 1a   and ja  is null for all 0j  . If it is balanced function, then 0 0a  . There-

fore, if after performing measurement on vector output  a basis vector is obtained in the form 
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0

0 0 0  Measurement basis     

or 

1

0 0 0  Measurement basis     

the f  is constant. Otherwise, it is balanced.  

For example, let 3n   and 1 2,f f  be defined as in Table 3. 

Table 3. Example of constant and balanced functions 

     
3

1 2
0,1

000 0 1

001 0 0

010 0 1

011 0 1

100 0 0

101 0 0

110 0 0

111 0 1

x f x f x

 

Consider two cases of quantum entanglement operators as  

 
1 4FU I  (Case 1) (5) 

and 
2FU is written as a block matrix with 

0 1

1 0
C

 
  
 

 as follows: 

 
2

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

F

C

I

C

C

I

I

I

C

U 

 
 
 
 
 
 
 
 
 
 
  
 

 (Case 2) (6) 

The computation involved by these two operators is resumed in Table 4. 

Shannon and von Neumann entropy. A vector in a Hilbert space of dimension 2k  acts as a classical in-

formation source if the measurement with respect to a given orthonormal basis is performed. The possible 

outputs are the 2k  basis vectors, each one with probability given by the squared modulus of its probability 

amplitude. More in general, given a vector  

 
 

1

1

, , 1

, , 0,1
n

n

i i n

i i

a i i


    (7) 

in a Hilbert space of dimension 2n . 

Let    1, , 1, ,kT j j n   and    11, , , , n kn T l l   . Define  



Электронный журнал «Системный анализ в науке и образовании» Выпуск №   2014 год 

9 

 

 1

1 11

1

1

, ,

, ,

, ,

, ,

, , , ,
j jk

k kj jk

j jk

j jk

t t

j j j jt tT
t t

i i

b i i t t    , (8) 

where  

 1

1 11

1 1

, ,

, , , ,, ,

j jk

n nj jk

l l l ln k n k

t t

i i t tt t

i t i t

b a a

 



 

   (9) 

Table 4. Deutsch-Jozsa QAG state dynamic 

   1 2

000 1 000 1

0 1 0 1 0 1 0 1 0 1 0 1

2 2 2 2 2 2

1
0 1 0 1

2 2

0 1 0 1 0 1

2 2 2

2

Ancilla qubit Ancilla qubit

Step State Case State Case

Input

Step

Step

 

                
              

           

    
    
   

       
     

     
3

3

000 001 010 011 100 101 110 111

2

0 10 1

22

0 1 010 011 100 101 0 1
3 000

2 22

Ancilla qubitAncilla qubit

Ancilla qubit Ancilla qubit

Step

       


  
   
  

       
    
   

 

Choosing T  means selecting a subspace of the Hilbert space of   in Eq. (7). If  T j , this sub-

space has dimension 2 and it is the subspace of the qubit j. Similarly, if  1, kT j j , the subspace of qubits 

is 1, , kj j . The density operator 
T

   describes the projection of the density matrix corresponding to 

  on this subspace. 

Define the Shannon entropy of T  in   with respect to the basis  1 ni i    as 

  
2

2, ,
1

log

k

Sh
T T Ti i i i

i

E     


          (10) 

The Shannon entropy of T expresses the mean information gained by measureing the projection of   

with respect to the projections of the vectors in  on the subspace of the qubits in T . The Shannon entropy 

can be interpreted as the degree of disorder involved by vector   when the qubits in T  are measured. Vec-

tor   does not act only as a classical information source. On the contrary, it stores also information in a 

non-local correlation that is through entanglement. In order to measure the quantity of entanglement of a set 

 1, , kT j j  of qubits in   the Von Neumann entropy of T  in   as following 

  2logvN
T T T

E Tr      . (11) 

is used.  

The von Neumann entropy of the qubits in T  is interpreted as the measure of the degree of entangle-

ment of these qubits with the rest of the system.  



Электронный журнал «Системный анализ в науке и образовании» Выпуск №   2014 год 

10 

 

Information analysis of Deutsch-Jozsa QAG Before 1n H  is applied, the input vector defined in Eq. (7) 

is such that for every qubit j  as follows: 

 
        0Sh vN

j j
E input E input   (12) 

Eq. (12) is easily proved by observing that  

 
 

0 0
j

input input   (13) 

for the first n  qubits and 

 
 1

1 1
n

input input


   (14) 

Since 2log 1 0  and both 2log 0 0  and 2log 1 1  correspond to the null squared matrix of order 2, 

the values for Shannon and von Neumann entropy are 0 for every qubit from Eq. (10) and Eq. (11).  

When 1n H  is applied [Step 1, Eq. (4 (b))], every qubit undergoes a unitary change of basis through the 

operator H . This means 

 
    1

1 1 j j
H input input H    (15) 

Eq. (15) can be rewritten as 

  
 1 1

1 11
1, , :

1 12j
j n  

 
    

 
 (16) 

and  

 
 1 1 1

1 11

1 12n
 



 
  

 
, (17) 

since it is known that von Neumann entropy is left unchanged by a unitary change of basis, then  

 
       1 11, 0Sh vN

j j
E E    (18) 

for all qubits j .  

The application of the operator FU  [Step 2, Eq. (4 (c))] leaves the situation unchanged for qubit 1n , 

whereas it entangles the first qubits: 

  
 2 2

11
1, , :

12

j

j
j

j n


 


 
    

 
 (19) 

where 

 
 

 1

1 1 1

, ,

1
, , , , ,

1

2

n

i j

j j n

f i i

j n
i i i i



 








 .  (20) 

From the structure of the matrix in Eq. (19) the elements on the main diagonal are the same as in 

Eq. (16). This means the Shannon entropy has not changed. Moreover, 

 
  1

2 2

1 01

0 12

j

j
j

H H


 



 

  
 

. (21) 

Since von Neumann entropy is left unchanged by a unitary change, for the first n  qubits  

 
   2 1Sh

j
E    (22) 

and  
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    2 2 2

1 12 2
log log

2 1 2 1

j jvN

j

j j

E
 


 

 
 

 
. (23) 

Finally, when nH I  is applied [Step 3, Eq. (4d)], qubit 1n  is left unchanged again, whereas all oth-

er qubits undergo a unitary change of basis again through operator H . From Eq. (21), the Shannon and Von 

Neumann entropy are calculated as: 

         2 2

1 12 2
log log .

2 1 2 1

j jSh vN

j j

j j

E output E output
 

 

 
  

 
 (24) 

Since in general 

 
       Sh vN

j j
E output E output . (25) 

the action of nH I  is to preserve the von Neumann entropy and to reduce the Shannon entropy of the first 

n  qubits as much as possible. The two operators represented in Table 4 produce the information flow shown 

in Table 5.  

In Case 2, the von Neumann entropy is maximal for every qubits and, therefore, it is not possible for the 

interference operator to reduce the Shannon entropy. 

Table 5. Deutsch-Jozsa QAG information flow  1 3j   

 

Step 

Case 1 Case 2 

   Sh

j
E   

   vN

j
E   

   Sh

j
E   

   vN

j
E   

Input 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 

Step 1 1, 1, 1 0, 0, 0 1, 1, 1 0, 0, 0 

Step 2 1, 1, 1 0, 0, 0 1, 1, 1 1, 1, 1 

Step 3 0, 0, 0 0, 0, 0 1, 1, 1 1, 1, 1 

From this analysis, the following conclusions can be drawn: 

 

1 When the QA computation starts, the Shannon entropy coincides with the Von Neumann 

entropy, but they are both null. 

2 The superposition operator increases the Shannon entropy of each qubit to its maximum, but 

leaves the von Neumann entropy unchanged. 

 

3 

The entanglement operator increases the von Neumann entropy of each qubit according to 

the property of the function f , but leaves the Shannon entropy unchanged. 

 

4 

The interference operator does not change the value of the von Neumann entropy introduced 

by the entanglement operator, but decreases the value of the Shannon entropy to its mini-

mum, that is, to the value of the von Neumann entropy itself. 

Intelligent output states of Deutsch-Jozsa algorithm. The von Neumann entropy is interpreted as the de-

gree of information in a vector (describing the property of function f ), namely as a measure of the infor-

mation stored in quantum correlation about the function f . The Shannon entropy must be interpreted as the 

measure of the degree of inaccessibility to this information through the measurement. In this context, the 

QAG G  of Eq. (3) transfers information from f  into the output vector minimizing the quantity of unneces-

sary noise producible by the measurement, or, more technically, minimizing according to Eq. (25) and Eq. 

(3) the non-negative quantity:  

           Sh vN

j j j
N output E output E output 
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for the first n  qubits. The measure of intelligence of an output state according to the definition in Eq. (0) is 

    1output N output   (26) 

where 

      
 1, ,

1
j

j n

N output N output
n 

   (27) 

is the mean unnecessary noise. According to this definition, the action of the Walsh-Hadamard transform in 

Deutsch-Jozsa algorithm is to associate to every possible function f a maximally intelligent output state, 

namely a state output  such that 

  1output  . 

Physically, the measure of intelligent QA, described by Eq. (26), characterizes the amount of value in-

formation necessary for decision making regarding successful solution of the QA.  

Figs 1(a) and 1(b) show the measure of intelligent QA for two cases in Eqs (5) and (6) according to 

Eq.(26).  

 

Figure 1. Measure of intelligence for Deutsch-Jozsa’s QA for two cases from Table 3 

In both cases this measure has the maximal value, i.e., equal to 1. It means that Deutsch-Jozsa QA as 

decision-making algorithm is intelligent QA with maximum degree 1. From Eq. (25), although optimality is 

fulfilled for the intelligence of the output states, the von Neumann entropy is still a lower bound for the 

Shannon entropy (see Figs 1 (c, d)). If the von Neumann entropy is too high, even a maximally intelligent 

output state may be «too random» when the measurement is performed.  

Therefore, in Deutsch-Jozsa algorithm the information transfer from f  into the output state is done by 

paying attention that the quantity of entanglement does not exceed. The role of «entanglement controller» is 

played by the pair «superposition-entanglement» operators. In order to illustrate this concept, consider the 

following matrix 
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0 0 0

0 0 0

0 0 0

0 0 0

F

C

I
U

I

C

 
 
 
 
 
 

 (28) 

which encodes a balanced function for 2n  . The von Neumann entropy of the first n  qubits, when FU  is 

applied, is from Eq. (23) 

 
       2 21 2

0vN vNE E    (29) 

If the role of the superposition was played by the operator nH I  instead of 1n H  and the input vector 

of dimension 1n  was  

 0 0 0 0input       (30) 

then the von Neumann entropy for the first n  qubits after the same step would be 

 
       2 21 2

1vN vNE E   . (31) 

And, therefore, the Shannon entropy could not be reduced by the interference operator. The output 

would be completely random and the algorithm would not work. 

Now consider similar examples with 3n   and 1 2,f f  be defined as in Table 1 for different entangle-

ment operators that illustrate additional properties of information flows from the Deutsch-Jozsa QA.  

Let 3n   and 1 2,f f  be defined as in Table 1 and consider two additional cases of quantum entangle-

ment operators as  

 
3

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

F

I

C

I

I
U

I

C

C

C

 
 
 
 
 
 
 
 
 
 
 
 
 

(Case 3) (32) 

and 
2FU is written as a block matrix as follows: 

 
4 2

0

0
F

I
U I

C

 
  

 
 (Case 4) (33) 

Tables 6 and 7 show the dynamics of the Deutsch-Jozsa algorithm for the Cases 3 and 4, corresponding-

ly.  

For comparison of results Table 8 shows the results of calculation for the Case 1.  
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Table 6. Information Analysis of Deutsh-Jozsa’s Algorithm for case 3 

 
 

Table 7. Information Analysis of Deutsch-Jozsa’s Algorithm for case 4 
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Table 8. Information Analysis of Deutsch-Jozsa’s Algorithm for case 1 

 

By applying the above mentioned information analysis to these three tables, one can draw the following 

physical interpretation of results and conclusions about classical and quantum entropy, changing after super-

position, entanglement and interference have taken place: 

 

1 

The input vector is a basis vector, therefore, the classical information of this state is 0; it is the 

tensor product of n  basis vectors of dimension 2, so the von Neumann entropy of every qubits 

composing it is also 0 

2 

The superposition operator 4H  increase the classical Shannon entropy its minimal value 0 to its 

maximal value 4, but leaves the situation unchanged from the quantum von Neumann entropy 

point of view 

3 

The entanglement operator is a classical unitary operator therefore it maps different basis vec-

tors into different basis vectors leaving the classical information on the system unchanged. On 

the contrary it may create correlation among the different binary vectors in the tensor product 

describing the system state; this correlation is described by the von Neumann entropy of the dif-

ferent subparts of the system: 

3.a 

 

The quantum information of the whole system is always 0, even when entanglement oper-

ator creates correlation, since the vector describing it is a pure state, whereas inner values 

for mutual information and conditional entropy may be positive or negative: they encode 

the quantum information necessary to decode the property being investigated for operator 

of entanglement FU  

3.b 

 

The states of the system before and after action of the entanglement operator takes place 

cannot be distinguished from a classical information point of view, since the Shannon en-

tropy did not change. Only with a quantum information approach is the difference be-

tween these two states can be revealed 

4 

The interference operator leaves the quantum information picture unchanged maintaining en-

coded the information necessary to identify FU  as a constant or balanced operator. On the con-

trary, it decreases the classical entropy making quantum information accessible; through the 

action of interference the vector acquires the minimum of classical entropy: such a vector ac-

cording to the definition is an intelligent state because it represents a coherent output of QA 

computation with minimum entropy uncertainty relation (EUR) as successful result 

A comparison of Tables 6 and 7 reveals that:  
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 The entanglement operator in Case 3 effectively creates quantum correlation among different sub-

parts of the system, whereas in Case 4 the general state is written as the tensor product of binary ba-

sis vectors and so no quantum correlation is involved; 

 The interference operator in Case 3 reduces the classical Shannon entropy of 1 bit, whereas in Case 4 

it reduces it of 3 bits. 

 This explains why it is important to choose carefully both the superposition operator and the input 

vector in order to store in quantum correlation the information actually needed to solve the problem.  

 The following general properties are observed for the Deutsch-Jozsa algorithm: 

 

1 The presence of quantum correlation appears as the degree of resistance (immunity) of the sys-

tem to change its classical entropy, as the measure of state chaos and defines the internal de-

gree of intelligent possibility of QA 

2 The action of interference undergoes this property mapping FU  into an intelligent state re-

vealing it 

Now consider from Table 8 the results of simulation for Case 1. In this situation, the entanglement oper-

ator creates no correlation. This is a common characteristic to all linear operators FU  implementing a func-

tion    : 0,1 0,1
n m

f   such that  f x k x   or    f x k x   for some binary constant k , as it showed 

in Table 9.  

These functions among the input set of balanced and constant minimize to 0 the «gap» between the 

highest and lowest information values appearing in the Wenn-diagram of shown in the tables. Other balanced 

functions are mapped into less intelligent states that are higher classical entropy vectors.  

This means that it is a non-success result as it is shown in Table 10.  

Table 9. Information Analyses of Deutsch-Jozsa’s Algorithm (Linear Functions) 
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Table 10. Information Analysis of Deutsch-Jozsa’s Algorithm  

(Non-Linear Balanced Functions) 

 

The Deutsch-Jozsa’s QA undergoes the special structure of its input set of functions from a quantum in-

formation point of view. This structure is pictured in Fig. 2. 

 

Figure 2. Quantum Information Structure of Deutsch-Jozsa’s Input Space 

On the analysis level of the Deutsch-Jozsa algorithm, the next step is to investigate the relationship be-

tween the von Neumann entropy introduced by the entanglement operator and the problem the algorithm 

solves. It is possible to quantify the information about a given function that is sufficient to store in the system 

in order to decide if it is constant or balanced. More in general, the same information analysis carried on for 

Deutsch-Jozsa algorithm should be done for the other QA’s benchmarks in order to have a global picture of 

the known quantum information processing techniques. 

Information analysis of Shor’s quantum search algorithm: The information role 
of entanglement and interference in Shor’s QAG 

The above-mentioned technique from quantum information theory can be used in the domain of QA 

synthesis and simulation. For this purpose, the classical and quantum information flow in the Shor’s QA is 

analyzed. The QAG G , which is based on superposition, quantum supercorrelation (entanglement) and in-

terference, when acting on the input vector, stores information into the system state, and in this case (similar 
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to Deutsch-Jozsa QA case) minimizing the gap between the classical Shannon entropy and the quantum von 

Neumann entropy. This principle provides both a methodology to design a QG and a technique to efficiently 

simulate its behavior on a classical computer. 

In Shor’s algorithm, the dynamics of quantum computation states are analyzed from the classical and 

quantum information points of view. The Shannon entropy is interpreted (as mentioned above) as the degree 

of information accessibility through measurement, while the von Neumann entropy is employed to measure 

the quantum information of entanglement. The intelligence of a state with respect to a subset of qubits in ac-

cordance with Eq. (0) is defined. Similar to abovementioned results with Deutsch-Jozsa QA, the intelligence 

of a state is maximal if the gap between the Shannon and the von Neumann entropy for the chosen result 

qubits is minimal. The quantum Fourier transform (QFT) creates maximally intelligent states with respect to 

the first n  qubits for Shor’s problem, since it annihilates the gap between the classical and quantum entro-

pies for the first n  qubits of every output states.  

Computational dynamics of Shor’s QA-gate (QAG) In the Shor’s algorithm an integer number 0n   

and a function    : 0,1 0,1
n n

f   are given such that f  have period r, namely f  is such that

     0,1 : mod
n

x f x f x r n    , and f  is injective with respect to its period. The problem is to find r.  

The function f  is first encoded into the injective function  

       : 0,1 0,1 0,1 0,1
n n n n

F     

such that: 

     , ,F x y x y f x   (34) 

where   is the bitwise XOR operator. F  is then encoded into a unitary operator FU . This purpose is ful-

filled by mapping every binary input string of length 2n  into a vector in a Hilbert space of dimension 22 n  

according to the following recursive encoding scheme :  

      1 2 1 20 0 0 0 n nz z z z      (35) 

where 1 2nz z  stands for the tensor product 1 2nz z  , being  1 2, , 0,1nz z  .  

Each bit value in a string is mapped into a vector of a Hilbert sub-space of dimension  This subspace is 

called a qubit. Similarly, a sequence f successive bit values of length l  is mapped into a vector of dimension 

2l . This subspace is a quantum register of length l . Using this scheme, the operator FU  is defined as a 

squared matrix of order 22 n  such that: 

    
2

0,1 :
n

Fz U z F z   . (36) 

Practically, the operator FU  is as follows: 

  
    

 
2

10

, ,1 1
F i j i F j

U 
  
  

  (37) 

where   b
q  is the basis b  representation of number q  and ,i j  is the Kronecker delta. 

The idea of encoding a function f  into unitary operator is not a peculiarity of the Shor’s algorithm, but 

it is typical of all known QA’s. In general, FU  contains the information about the function f  needed to 

solve the problem.  

In the Shor’s case, one could calculate the period r  of f  by testing the operator FU  on the input vec-

tors 0 0 0 0

n n

  obtaining  0 0 0 0

n n

f , 0 1 0 0

n n

  obtaining  0 1 0 1

n n

f  and so 

on until a vector 1 n

n

x x  for the first register of length n  is found such that the corresponding vector 
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 1 n

n

f x x  in the second register of length n  coincides with  0 0

n

f . The period r  of f coincides 

with the binary number 1 nx x . The number of FU  tests required by this algorithm is r .  

Since the period r  of the function varies from 1 to 2n , the temporal complexity of this algorithm is ex-

ponential for the worst case. In order to extract the information stored in FU  more effectively, a different 

perspective is used. The operator FU  must in fact be used in order to transfer as much information as possi-

ble from operator to the input vector each time FU  works. To this purpose, it is embedded into a unitary op-

erator G , called the QAG, having the following general form: 

    m F mG IF I U IF I      (38) 

where IF stands for a unitary squared matrix of order 2n  and mI  for identity matrix of order 2n . In the case 

of the Shor’s algorithm, FU  is embedded into the unitary QAG (see Table 3.1) 

    n n F n nG QFT I U QFT I     . (39) 

The symbol nQFT  denotes the unitary quantum Fourier transform of order n : 

  
  

/2

1 11
exp 2

2 2
n n nij

i j
QFT J

     
   

   

, (40) 

where J  is the imaginary unit. Subsequently, the gate does not act on many different basis input vectors. On 

the contrary, it always gets as input the starting vector 0 0 0 0

n n

 . 

The corresponding computation evolves according to the following steps: 

Step Computational algorithm Equation 

Step 0 0 0 0 0

n n

input     

(41) 

 

Step 1 
 

1

1 1/2
, ,

1
0 0

2
n

n n nn
i i

n

QFT I input i i      
 

(42) 

 

Step 2 
 

1

2 1 1 1/2
, ,

1

2
n

F n nn
i i

n

U i i f i i     
 

(43) 

 

Step 3 

 

 1

1

1

1

2

1 1/2
, ,

, ,

1

2

n

n

n

n

n n

j j

n ni in
j j

ni i

output QFT I

a j j f i i

 

   

 

(44) 

where 
 

 
 

1

1

1 110

/2

, ,1
exp 2

2 2

n

n

n nj j

i i n n

i i j j
a J

   
   
    

. 

If 
2n

k
r

  is an integer number, the output state can be written as 

   
 

  

1 1

1 210
0 0 2

1 2
exp 2

r r n
p

n

p s

l s
output Js i i p

r r r


 

 

  
    

   
 , (45) 
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where pl  is an integer positive number and binary representation are obtained using n  bits. Therefore, the 

first quantum register of length n  of the output state generates a periodical probability distribution with peri-

od k  for every possible vector of the second register. By repeating the algorithm a number of times polyno-

mial in n  and by performing a measurement each time, one can reconstruct the value of r . 

Physical interpretation of Shor’s algorithm steps In Step 1 the operator  n
nQFT I  acts on a basis 

vector. It transforms the vector source 0 0 0 0

n n

  into a linear combination of equally weighted basis 

vectors of the form 
1 0 0n

n

i i  . Since every basis vector is interpreted as a possible observable state of 

the system, the nQFT  plays the role of the superposition operator for the first n  qubits. 

In Step 3, the operator  n
nQFT I  acts on every basis vector belonging to the linear combination 2 . 

This means that every vector of such a combination generates a superposition of basis vectors, whose com-

plex weights (i.e., amplitudes of probability) are equal in modulus, but different in phase. Every basis vector 

is now weighted by the summation of the probability amplitudes coming from the different source vectors. 

This summation can increase or decrease the resulting amplitude of probability.  

Since this phenomenon is very similar to classical wave interference, in Step 3, the operator nQFT  plays 

the role of the interference operator. From the mathematical point of view, when the matrix nQFT  acts as a 

superposition operator (Step 1), the first matrix column only is involved in the calculation of the resulting 

vector. On the contrary, when it acts for the second time (Step 3), all matrix columns are involved and the 

interference among the weights coming from the different source vectors takes place.  

The operator FU  (Step 2) acts between the first and the second application of nQFT . Its effect is to map 

every basis vector of 1  into another basis vector injectively. In this way it may create nonlocal correlation 

among qubits. Therefore, FU  plays the role of the entanglement operator. 

The QAGs of the best known algorithms can all be described as the composition of a superposition, an 

entanglement, and interference operators, where the superposition and the interference operators coincide, 

but play different roles, as it is in the case for nQFT  in the above Step 1 and Step 3. From a qualitative point 

of view, the action of the superposition operator is to exploit the potential parallelism of the system by pre-

paring the system itself in a superposition of all its possible states. When the entanglement operator acts on 

this superposed state the whole information about f  contained in FU  is transfered to the resulting vector. 

Finally, the interference operator makes this information accessible by measurement in order to solve the 

problem.  

To illustrate this, consider, for example, Shor’s algorithm with 3n   and 1 2,f f  defined as in Table 11. 

Table 11. Example of periodical functions 

   1 2

000 001 000

001 111 010

010 001 100

011 111 110

100 001 000

101 111 010

110 001 100

111 111 110

x f x f x
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Then 

 
1

2

2

2

0

0
F

I
U I C

C

 
   

 
 (Case 1) (46) 

and 

 
2

2

2

0 0 0

0 0 0

0 0 0

0 0 0

F

I

I C
U I I

C I

C

 
 

   
 
 
 

,
0 1

1 0
C

 
  
 

 (Case2). (47) 

The computation involved with these two cases of operators is shown in Table 12 and Table 13. 

Table 12. Shor’s QG information flow with 1f f  

     

     

   

000 000

0 1 0 1 0 1
1 000

2 2 2

0 1 0 1 000 111
2 1

2 2 2

0 1 0 11
3 0000 0011 1

2 2 2

Input

Step

Step

Step



  
  

  
  

 
   

 
 
 

Step State

 

Table 13. Shor’s QG information flow with 2f f  

     

 
 

       

       

Step State

000 000

0 1 0 1 0 1
1 000

2 2 2

0 1 1
2 0000 0101 1010 1111 0

22

0 1 0 1 0 1 0 1
000 010

1 2 2 2 2
3 0

2 0 1 0 1 0 1 0 1
100 110

2 2 2 2

Input

Step

Step

J

Step
J



  
  


    

    
     

 


 
   

       
 

 

Information analysis of the Shor’s QAG To understand how the intelligence of   changes while the 

Shor’s algorithm runs the set of the first n  qubits, namely  1, ,T n  is considered for the case where 2n  

is multiple of r .  

The input vector defined in Eq. (4.41) is such that 

     0Sh vN
T TE input E input   (48) 

The intelligence of the state is: 

   1input   (49) 

Eq. (48) is easily proved by observing that 
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 0 0
T n

input input   (50) 

( 0 0
n

 is the n th  tensor power of 0 0 ). Since 2 2log 1 0, log 0 0 n  corresponds to the null squared 

matrix of order 2n . Then it follows from Eq. (42) and Eq. (42) that the value of  Sh
TS input  and 

 vN
TS input  are both 0. In other words, the input state belongs to the measurement basis , therefore, both 

its Shannon and von Neumann entropy with respect to T  are zero. 

When  n nQFT I  is applied [Step 1, Eq. (42)], the first n  qubits undergo a unitary change of basis. 

This means their von Neumann entropy is left unchanged. On the contrary, the Shannon entropy increases. 

From Eq. (42) the Shannon entropy value is obtained from the main diagonal values. This means that after 

Step 1 it is given by 

    1 1, 0Sh vN
T TE n E    (51) 

The intelligence of the state with respect to the first n  qubits is at this point  1 0T   . The appli-

cation of FU  (Step 2) entangles the first n  qubits with the last n . In fact, being f  periodical with period r  

and being 
2n

k
r

  an integer number, the state 2  can be written 

      
 

 
1

2 2 2
0 2

2
1

r n

l

l l r l r f l
r






                  

 . (52) 

From Eq. (52), the density matrix 2 2 T
   is written as a k k  block matrix 

 

     

     

     

2 2

1

2nT

I r I r I r

I r I r I r

I r I r I r

 

 
 
 
 
  
 

, (53) 

where  I r  denotes the identity matrix of order r . The matrix 2 2 T
   can be decomposed into the ten-

sor product of 21 log k  smaller density matrices: 

  
2

2

2 2 log

log

1 11 1

1 12
kT

k

I r
r

 
 

  
 

. (54) 

The von Neumann entropy of a tensor product can be written as the summation of the von Neumann en-

tropies of its factors. Therefore: 

        2 2 2 2

1 1 1 1
log log log

2 2

vN
TS k Tr A A Tr I r I r

r r


      
        

      
, (55) 

where 
1 1

1 1
A

 
  
 

. Since / 2A  is similar to 1 1  through a unitary change of basis, then Eq.(55) is written 

as 

 

     2 2 2 2 2

1 1
log 1 1 log 1 1 log logvN

T r rS r Tr Tr I I r
r r


  

     
  

.  (56) 

The first equality in Eq. (56) is obtained by noting that  21 1 log 1 1 0Tr  . From the structure of 

the matrix in Eq. (53) it follows that the Shannon entropy did not change. Then for the set T  of the first n  

qubits 
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    2 2 2, logSh vN
T TS n S r   . (57) 

This means that  

  2 2

1
logT r

n
  . (58) 

Finally, when  n
nQFT I  is applied [Step 3, Eq. (44)], the last n  qubits are left unchanged, whereas 

the first n  qubits undergo a unitary change of basis through the QFT. This implies that the von Neumann 

entropy is reduced. Indeed, from Eq. (45), the input superposition of the first n  qubits is periodic with period 

2n

k
r

  and only r  different basis vectors can be measured, every one with probability 
1

r
. This means 

    2 2log , logSh vN
T TS output r S output r  . (59) 

The intelligence of the output state with respect to T  is  

   1T output  . (60) 

From Eq. (60) it follows that the QFT preserves the von Neumann entropy and the Shannon entropy of 

the first n  qubits as much as possible.  

The two operators represented in Table 9 produce the information flow reported in Table 14 and Ta-

ble 15.  

Table 14. Shor’s QAG information flow with 1f f  

     
0 0 1

1 3 0 0

1
2 3 1

3

3 1 1 1

Sh vN
T T TStep E E

Input

Step

Step

Step

  

 

It is worth observing how the intelligence of the state increases and decreases while the algorithm 

evolves. 

Information analysis of Shor’s algorithm is presented in Table 16. 

Table 15. Shor’s QAG information flow with 2f f  

     
0 0 1

1 3 0 0

2
2 3 2

3

3 2 2 1

Sh vN
T T TStep E E

Input

Step

Step

Step

  

 

Now, for comparison, consider the case 2n   for the function 2f  with the period 4 and the entangle-

ment operator as the particular case of Eq. (47). 
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2

0 0 0

0 0 0

0 0 0

0 0 0

F

I I

I C
U

C I

C I

 
 

 
 
 

 

 (Case 3)  (61) 

Table 16. Information Analysis of Shor’s Algorithm (case1, 1
f f ) in Eq. (46) 

 

Table 17 shows the evolution of the algorithm when applied with this operator.  

Table 17. Information Analysis of Shor’s Algorithm for case 3 

 

From Table 17 the following is observed: 

 The entanglement operator creates very strong quantum correlation among vectors 1, 2, 3 and 4. This 

correlation identifies the input function that has the maximal period (and so maximal entanglement).  
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 The entanglement operator creates the quantum correlation with negative conditional entropies be-

tween qubits 1 and 2, and between qubits 3 and 4. This is the nonclassical supercorrelation effect 

from entanglement operator. 

 The interference operator preserves quantum correlation, but does not decrease the classical entropy 

because entanglement is too great (degree of resistance is very high).  

Shor’s algorithm undergoes the special structure of its input space: periodical functions. Every function 

is characterized by its capacity to create quantum entanglement, which depends on its period. In Fig. 3 this 

structure is pictured.  

 

Figure 3. Quantum Information Structure of Shor’s Input Space 

Physical interpretation of the analysis results 

 

1 

When the QA computation begins, the Shannon entropy coincides with the von Neumann 

entropy, but they are both zero. The intelligence is then maximal since the system is in a 

basis state. 

 

2 

The superposition operator increases the Shannon entropy of the first n  qubits to its maxi-

mum, but leaves the von Neumann entropy unchanged. The intelligence is minimal since 

the degree of disorder is at its maximum but has not been stored into the system yet. 

 

3 

The entanglement operator increase the von Neumann entropy of the first n  qubits accord-

ing to f, but leaves the Shannon entropy unchanged. The intelligence increase at this step 

since some information is stored into quantum correlation using super-correlation that cre-

ated by the present of a new effect in evolution of QA’s as the negative conditional entropy 

between the partial qubits 

 

 

 

4 

4.1. The interference operator preserves quantum correlation, but transpose it between basis 

vectors; this transposing maintains the period of the input function encoded, but it has as 

side effect to reduce the classical entropy, letting possible to access the period information 

generating an intelligent state, namely a state containing all required quantum information 

but with minimum classical entropy as a qualitative measure of free energy.  

4.2. The interference operator does not change the value of the von Neumann entropy in-

troduced by the entanglement operator, but decreases the value of the Shannon entropy to 

its minimum, that is to the value of the von Neumann entropy itself. The intelligence of the 

state reaches its maximum again, but now with a non-zero quantity of information in quan-

tum correlation.  

As described above, the von Neumann entropy can be interpreted as the degree of information in a vec-

tor, namely, as a measure of the information stored in quantum correlation about the function f. The Shannon 

entropy is interpreted as the measure of the degree of inaccessibility of this information through the meas-
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urement. In this context, the QG G  of Eq. (39) transfers information from f  into the output vector mini-

mizing the quantity of unnecessary noise producible by the measurement, or, more technically, minimizing 

the non-negative, according to 

     Sh vN
T TS output S output S output    

(the defect exchange of measurement entropy) with  1, ,T n .The intelligence of the output state increas-

es while the average unnecessary noise decreases. According to this definition, the action of the QFT in the 

Shor’s algorithm is to associate with every possible function f  a maximally intelligent output state, namely 

a state output  such that   1T output  . This is clear from the graphical representation of the infor-

mation flow and the intelligence relative to the two functions considered in Example in Fig. 4. If the period 

r  does not divide 2n  exactly, then the QFT is not optimal. In fact the final superposition for the first n  

qubits is not a periodical superposition. Nevertheless, by increasing the number n  of qubits used for encod-

ing input strings, it is possible to approximate this periodical superposition as well as desired. 

The way the function f  is encoded into the operator FU  and the set T  used for the calculation of the 

QA-intelligence  T output  are problem dependent.  

Consider, for instance, the Deutsch-Jozsa decision making QA problem: one must decide if a Boolean 

function    : 0,1 0,1
n n

f   is constant or balanced.  

 

Figure 4. Information flow and intelligence of the Shor’s QA 

The same encoding scheme of the Shor’s algorithm can be used to solve this problem. In this case, after 

the entanglement operator has acted, the von Neumann entropy of every proper subset of the first n  qubits is 

always 0, whereas the von Neumann entropy of the first n  qubits is 1 for some balanced functions. This 
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means that for these functions no interference operator in the form mInt I  can increase the intelligence of 

the state with respect to the first n  qubits, as it happens in the Shor’s algorithm.  

In other words, the state of the system after entanglement has been applied is already maximally intelli-

gent with respect to first n  qubits and the information accessibility cannot be increased through the applica-

tion of any interference operator. One solution to this problem is to encode f  into the unitary operator 

 F nU I H C       where FU  is obtained as in the Shor’s algorithm. 

With this encoding scheme, the von Neumann entropy of the first n  qubits after Step 2 is always 0. On 

the contrary, the von Neumann entropy of any subset of the first n  qubits can be positive, implying entan-

glement between this subset and the rest of the system. In particular, every singleton constituted by one qubit 

may be characterized by a positive value of the von Neumann entropy. The Deutsch-Jozsa QA interference 

operator is chosen in order to reduce as much as possible the gap between the Shannon and the von Neumann 

entropies of every one of these singletons.  

This operator is the Walsh-Hadamard transform of order n , defined as the tensor power nH . Indeed, it 

is easy to verify that for every state  and every qubit i , the matrix 
  1

i
H H     is diagonal. This 

means the action of nH  is to maximize the intelligence of every one of the first n  qubits by annihilating the 

gap between its Shannon and von Neumann entropies. 

Information-theoretical analysis of Grover’s quantum search algorithm  

The searching problem can be stated in terms of a list  0,1,..., 1N L  with a number N of unsorted ele-

ments. Denote by 0x  the marked element in L  that are sought. The quantum mechanical solution of this 

searching problem goes through the preparation of a quantum register in a quantum computer to store the N 

items of the list. This will allow exploiting quantum parallelism. Thus, assume that the quantum registers are 

made of n source qubits so that 2nN  .  

A target qubit is used to store the output of function evaluations or calls.  

To implement the quantum search, construct a unitary operation that discriminates between the marked 

item 0x  and the rest. The following function  

0

0

0

0,    if  
( )

1,    if  
x

x x
f x

x x


 


, 

and its corresponding unitary operation 
00

( )
xf xU x y x y f x  . Count how many applications of this 

operation or oracle calls are needed to find the item. The rationale behind the Grover algorithm is: 1) to start 

with a quantum register in a state where all the computational basis states are equally present; 2) to apply 

several unitary transformations to produce an outcome state in which the probability of catching the marked 

state 0x  is large enough. 

The steps in Grover’s algorithm are shown in tabular form below. 
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Step Computational algorithm Formula 

Step 1 Initialize the quantum registers to the state: 1 : 00...0 1input   . (62) 

Step 2 Apply bit-wise the Hadamard one-qubit gate to the source register, so as to 

produce a uniform superposition of basis states in the source register, and 

also to the target register: 

2 1
( 1)

2 1 ( 1)/2
0 0,1

1
: ( 1)

2

n

n y
H n

x y

U x y 


 


 

    . 

(63) 

 

 

 

Step 3 

Apply the operator 
0xf

U : 

0

0

2 1
( )

3 2 ( 1)/2
0 0,1

1
: ( 1) ( 1)

2

n

x

x

f x y
f n

x y

U x y 



 

     . 

Let 
0xU be the operator by 

0

0 0

0 0

0

   if   
: (1 2 )

      if   
x

x x x
U x x x x

x x x

 
   



, 

that is, it flips the amplitude of the marked state leaving the remaining 

source basis states unchanged. The state in the source register of Step 3 

equals precisely the result of the action of 
0xU , i.e., 

3 0 0 2( 1 2 1)x x      . 

 

 

 

(64) 

 

 

 

Step 4 

Apply next the operation D known as inversion about the average. This op-

erator is defined as follows    
0

:
n n

H f HD U I U U I 
    , and 

 3output D , where 
0f

U is the operator in Step 3 for 0 0x  . The ef-

fect of this operator on the source is to transform 

( )x x

x x

x x       , where : 2 n
x

x

     is the mean of the 

amplitudes, so its net effect is to amplify the amplitude of 0x  over the 

rest.  

 

 

 

(65) 

Step 5 Iterate Steps 3 and 4 a number of times m.  

 

Step 6 

Measure the source qubits (in the computational basis). The number m is 

determined such that the probability of finding the searched item 0x  is 

maximal. 

 

According to Steps 2 – 4 above, the QAG of Grover’s quantum search algorithm (QSA) is  

   n
n FG D I U H H    

 

that acts on the initial state of both registers in the QSA.  

Computational analysis of Grover’s QSA is similar to analysis of the Deutsch-Jozsa QA. The basic 

component of the algorithm is the quantum operation encoded in Steps 3 and 4, which is repeatedly applied 

to the uniform state 2  in order to find the marked element. Steps 5 and 6 in Grover’s algorithm are also 

applied in Shor’s QSA. Although this procedure resembles the classical strategy, Grover’s operation enhanc-

es by constructive interference of quantum amplitudes (see Table 16) the presence of the marked state. 
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The operator encoding the input function is 

 

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

F

I

C

I

I
U

I

I

I

I

 
 
 
 
 
 
 
 
 
 
 
 
 

. (66) 

Table 18 represents a general iteration algorithm for information analysis of Grover’s QSA according to 

the above presented algorithm.  

Table 18. Information Analysis of Grover’s Algorithm (General Iteration) 

 

Tables 19 and 20 two iterations of this algorithm with the operator FU  from Eq. (66) are reported.  

From these tables, the following are observed: 

 

1 The entanglement operator in each iteration increase correlation among the differ-

ent qubits. 

2 Super-correlation from entanglement operator is created according to negative 

conditional entropies between different qubits. 

3 Interference operator reduces the classical Shannon entropy but it destroys part of 

the quantum super-correlation measure by conditional and von Neumann entropy. 
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Table 19. Information Analysis of Grover’s Algorithm (First Iteration) 

 

Grover’s QSA builds in several iterations any intelligent states. Since each iteration encodes the 

searched function by entanglement, but then partly destroys the encoded information by the interference op-

erator, several iterations are needed in order to conceal both the need to have encoded information and the 

need to access it.  

Methodologically, the principle of maximal intelligence on output states is used for synthesizing QAGs. 

In general, the joint action of the superposition operator and of entanglement operator is to introduce the in-

formation necessary to solve the problem in the system quantum correlation.  

This information, measured through the von Neumann entropy of every qubit, cannot explode, since this 

would mean too much randomness in the final outcome. The interference operator must reduce the random-

ness of the output state as much as possible. This means the interference operator is chosen in such that it 

preserves the von Neumann entropy, but makes the Shannon entropy collapse on its lower bound.  

Table 20. Information Analysis of Grover’s Algorithm (Second Iteration) 
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From the application standpoint, the existence of a measure for the intelligence degree of a state allows 

the combination of QA techniques for encoding functions with some other computational methods, such as 

genetic algorithms. In this context, the measure of unnecessary noise becomes a fitness function in order to 

measure the desirability of a result. Thus, quantum computing provides a way of processing information that 

can be used in the classical problem solving domain. 

Simulation results of QA-termination problem solution based on principle of 
Shannon/von Neumann minimum entropy  

From the step-by-step majorization principle of QA’s it follows that for efficient termination of QA’s 

that give the highest probability of successful result, the Shannon entropy was minimal for the step 1m . 

This is the principle of minimum Shannon entropy for termination of a QA with the successful result. This 

result also follows from the principle of QA maximum intelligent state as in Eq. (0). For this case according 

to Eq. (0)  

 
 

 

 

max 1 min ,

0 (for pure quantum state)

Sh
T

T

vN
T

H

T

S






 



. (67) 

Thus, the principle of maximal intelligence of QA’s include as particular case the principle of minimum 

Shannon entropy for QA-termination problem solution.  

QA-termination problem solving based on minimum Shannon/von Neumann dynam-
ic simulation entropy  

Consider the complete basis vector 

1 2 2
0 0 0 1 1 1nA a a a   

. 

For this case, the Shannon entropy is 

  
2

2 2

1

log

n

Sh
i i

i

S A a a


  ,      
2

1

log

n

vN T T
i i i i i i

i

S A a a a a 


   (68) 

where  T
i i ia a  are eigenvalues of quantum state A . Using the decomposition of quantum state vector A  

with the selection of measurement and calculation: 

1

1

1 2 2 2

1 3 2

2 4 2

0 0 0 0 0 1 1 1 0 1 1 1

0 0 0 1 1 1 0

     0 0 0 1 1 1 1

n n

n

n

A a a a a

a a a

a a a





   

     

     

 

or  

 
0 1

A A A  . (69) 

Then the partial entropy can be calculated as 

 

   

   

2 2

0 0

2 2

1 1

log log

log log

Sh vN T T
i i i i i i i i

i i

Sh vN T T
j j i i i i i i

j i i

S a a S a a a a

S a a S a a a a

 

 


   

   

 

 
 (70) 

where 11,3, ,2 , 2,4, ,2n ni j  .  
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In the more general case of Shor’s QA, 2
0 0 0, 2 , ,2 1

n ni i i i     
, where 1i  for the state vector 

0 0
A  and 2ni   for the state vector 

1 1
A .  

Fig. 5 shows the final simulation results of dynamic behavior for Shannon and von Neumann entropies 

according to Grover’s operator (after 3 and 7 iterations) action (the case when intermediate results after su-

perposition and entanglement applications are not shown).  

Fig. 6 shows the simulation results of dynamic behavior for Shannon and von Neumann entropies ac-

cording to superposition and entanglement operator (after 3 and 7 iterations) actions (the case when interme-

diate results after superposition and entanglement applications are shown).  

 

Figure 5. Simulation results of Grover algorithm (intermediate results after superposition and entanglement 

are not shown) 

 

Figure 6. Simulation results of Grover algorithm (intermediate results after superposition and entanglement 

are shown) 
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Figs 5 and 6 show the action of constructive interference that created the maximal value 1 of intelligent 

state of Grover’s QSA after 7 iterations.  

Fig. 7 shows the final simulation results of dynamic behavior for Shannon and von Neumann entropies 

for Shor’s QA (the case of 2 bit function – period 2) without intermediate simulation results after actions of 

superposition and entanglement operators.  

 

Figure 7. Simulation results of Shor algorithm  

(intermediate results after superposition and entanglement are not shown, 2 bit function) 

Fig. 8 shows the intermediate simulation results of dynamic behavior for Shannon and von Neumann 

entropies for Shor’s QA (the case of 2 bit function – period 2) after actions of superposition and entangle-

ment operators.  

 

Figure 8. Simulation results of Shor algorithm  

(intermediate results after superposition and entanglement are shown, 2 bit function (4 qubit)) 

Figs 7 and 8 show the action of constructive interference that created also as in Grover’s QSA the max-

imal value 1 of intelligent state of Shor’s QA after 14 iterations.  

Figs 9 (a) – (d) show simulation results of dynamic behavior for Shannon and von Neumann entropies 

for termination of Deutsch, Deutsch-Jozsa, Grover’s (with different search items number) and Shor’s QAs 

respectively.  
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Figures 9 (a, b). Simulation results of dynamics behavior for Shannon and von Neumann entropies of 

Deutsch’s and Deutsch-Jozsa’s QA 

 

 

Figure 9 (с). Simulation results of dynamics behavior for Shannon and von Neumann entropies of Grover’s 

QA 

 

Figure 9 (d). Simulation results of dynamics behavior for Shannon and von Neumann entropies of Shor’s QA 

Analysis of QA-termination problem solving based on minimum Shannon/von Neu-
mann dynamic simulation entropy  

The diagonal matrix elements in Grover’s QSA-operators are connected a database state to itself and the 

off-diagonal matrix elements are connected a database state to its neighbors in the database. The diagonal 

elements of the diffusion matrix have the opposite sign from the off-diagonal elements. The magnitudes of 

the off-diagonal elements are roughly equal, so we can write the action of the matrix on the initial state, as 

Example. 
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 

 

 

 

 

 

31

31

11 1 1

31

31

31

a N ba b b b b b

a N bb a b b b b

a N bb b a b b b

a N bb b b a b b N N

a N bb b b b a b

a N bb b b b b a

      
   
      
       

    
      
      
             

, 

where 1a b  . 

If one of the states is marked, i.e. has its phase reserved with respect to those of the others, the multi-

mode interference conditions are appropriate the constructive interference to the marked state, and destruc-

tive interference to the others. That is, the population in the marked bit is amplified. The form of this matrix 

is identical to that obtained through the inversion about the average procedure in Grover’s QSA. This opera-

tor produce a contrast in the probability density of the final states of the database of  
21

1a N b
N
      for 

marked bit versus  
21

3a N b
N
      for the unmarked bits; N  is the number of bits in the data register. 

Grover algorithm is a optimal and it is very efficient search algorithm. And Grover-based software is 

currently used for search routines in large database. 

Example. A quantitative measure of success in the database search problem is the reduction of the in-

formation entropy of the system following the search algorithm. Entropy  Sh
iS P  in this example of a single 

marked state is defined as  

  
1

log
N

Sh
i i i

i

S P P P


  , (71) 

where iP  is the probability that the marked bit resides in orbital i . In general, according to, the von Neu-

mann entropy is not a good measure for the usefulness of Grover‘s algorithm. For practically every value of 

entropy, there exit states are good initializers and states that are not. For example, 

  
2

1
1 2

log
log 1n mix pure

N
S N S


  

   
 

 
    

 
, but when initialized in  1n mix


 

, the Grover algorithm is as 

bad as guessing the market state. Another example may be given using pure states 0 0H H  and 1 1 .H H  

With the first, Grover arrives to the marked state quadratic speed-up, while the second is practically un-

changed by the algorithm.  

We are used the Shannon information entropy for optimization of the termination problem of Grover’s 

QSA. Information analysis of Grover’s QSA based on using of Eg.(71), gives a lower bound on necessary 

amount of entanglement for searching of success result and of computational time: any QSA that uses the 

quantum oracle calls  sO  as 2I s s  must call the oracle at least 
1 1

2 log

eP
T N

N 

 
  
 

 times to 

achieve a probability of error eP . The information system consists of the N -state data register. Physically, 

when the data register is loaded, the information is encoded as the phase of each orbital. The orbital ampli-

tudes carry no information. While state-selective measurement gives as result only amplitudes, the infor-

mation is completely hidden from view, and therefore the entropy of the system is maximum:  

   log 1/ logSh
init iS P N N   . 

The rules of quantum measurement ensure that only one state will be detected each time. If the algo-

rithm works perfectly, the marked state orbital is revealed with unit efficiently, and the entropy drops to zero.  

Otherwise, unmarked orbitals may occasionally be detected by mistake. The entropy reduction can be calcu-

lated from the probability distribution, using Eq. (71).  
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Fig. 10 show the result of entropy calculation for the simulation quantum search of one marked state in 

the case 7N  . 

 

Figure 10. Shannon entropy analysis of Grover’s QSA dynamics with seven inputs 
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