OnNEeKTPOHHBIN XXypHan « CUCTEMHbIN aHanu3 B Hayke n obpasoBaHUN» Boinyck Ne3, 2014 rog

YK 004.415.2, 004.588

DESIGN INFORMATION TECHNOLOGY OF QUANTUM ALGORITHM GATES

Barchatova Irinal, Degli Antonio Giovanni?, Ulyanov Sergey?

1PhD Student;

Dubna International University of Nature, Society and Man,
Institute of system analysis and management;

141980, Dubna, Moscow reg., Universitetskaya str., 19;
e-mail: i.a.barhatova@gmail.com.

2PhD, professor;

Polo Didattico e di Ricerca di Crema;

Via Bramante, 65-26013, Crema (CR), Italy;
e-mail: gda@dsi.unimi.it.

3Doctor of Science in Physics and Mathematics, professor;
Dubna International University of Nature, Society and Man,
Institute of system analysis and management;

141980, Dubna, Moscow reg., Universitetskaya str., 19;
e-mail: ulyanovsv@mail.ru.

IT design of quantum algorithmic gates (QAG) is considered. General structures of the QAG design
method and simulation system are introduced. Applications to efficient simulation of quantum algorithms
(QA) on classical computer are described.

Keywords: IT design of quantum algorithmic gates, efficient simulation of quantum algorithms, general
structure of the quantum algorithms.

MHPOPMALIMOHHAA TEXHOJIOIMMA NPOEKTUPOBAHUA KBAHTOBbIX
ANTOPUTMUYECKUX AYEEK

Bapxarosa Upuna Asnexcanaposnal, Jlkuosanuu geau Antonno?, Yiabsinos Cepreii Bukro-
poBuy®

YAcnupanm;

I'BOY BO «Mesicoyrnapoonwiii Yuusepcumem npupoovl, obujecmesa u uenosexa «yonay,
Hncmumym cucmemnozo ananusa u ynpaeieHus,

141980, Mockosckas 00x., 2. /[ybna, yn. Ynueepcumemckas, 19;

e-mail: i.a.barhatova@gmail.com.

2[loxmop nayx, npogheccop;

Ilono ouoammuxo, Kpema, paxynomem unhopmayuoHHvIx mexHoio2ull;
HUmanus, Kpema, Bua bpamanme, 65-26013;

e-mail: gda@dsi.unimi.it.

3loxmop gusuxo-mamemamuyeckux Hayx, npogeccop;

I'BOY BO «Meaicoynapoonutii Yuueepcumem npupoobsl, oowecmaa u yeioseka «/younay,
Hncmumym cucmemnozo ananuza u ynpaeieHus,

141980, Mockoeckasi 00xa., 2. [[ybHa, yn. Yuusepcumemckas, 19;

e-mail: ulyanovsv@mail.ru.

Paccmompena ungopmayuonnas mexnonozus npoeKmuposanus K8AHMOGHIX ANCOPUMMUYECKUX SUEeK.
Onucvigaiomes 0ouue cmpykmypsbli Memooo8 NpoeKmupo8aHus K8AHMOBbIX AN20PUMMULECKUX AUeeK U UX
Mooenuposanus. Ilpusedenvl npunodicenuss dQhekmusHo2o Mo0enupo8anHus KEAHMOoBblX AN20PUMMO8 HA
Kaaccuieckom Komnvromepe.

OnNEeKTPOHHBIN XXypHan « CUCTEMHbIN aHanu3 B Hayke n obpasoBaHUN» Boinyck Ne3, 2014 rog

KittoueBbie ciioBa: MHPOPMAIMOHHAS TEXHOJOTHUS MPOSKTUPOBAHUS KBAHTOBBIX AITOPUTMHUECKUX SUC-
eK, 3 PEeKTUBHOE MOJIETNPOBAHNE KBAHTOBBIX AITOPUTMOB, 00IIIas CTPYKTYpa KBAHTOBBIX alTOPUTMOB.

General structure of the quantum algorithmic gate (QAG) design method

Traditionally QA is written as a quantum circuit.

As shown in Fig. 1, the general structure of the quantum circuit is based on three quantum operators
(superposition, entanglement, and interference) and measurement.

Repeated k times
| | } t
| | i | |h
| | | | —
| | | P
o>—+—»] H |— > | —» bit |
n | [| | M
: : % L
| | | |
) L H AN - p tlp hit -S|
| [f t U
| I | :
E
| | .
x> —> S I'» : : p bit ML p
| [— | | E
m | | | ([|h N
| | | |
| |v | | T
|x>—:—> S : g | ; > it - —»
| | | | o
[Input | :|Superposition|:|Entanglement|:| Interference |: [Output |
| | | |

Figure 1. Quantum circuit structure

Input in the quantum circuit acts on an initial canonical basis vector to generate a complex linear com-
bination (called a superposition) of basis vectors as an output. This superposition contains the information to
answer the initial problem. After the superposition has been created, measurement takes place in order to
extract the answer information. In quantum mechanics, a measurement is a non-deterministic operation that
produces as output only one of the basis vectors in the entering superposition.

A general QA, written as a quantum circuit, can be automatically translated into the corresponding pro-
grammable quantum gate for efficient classical simulation. This gate is represented as a quantum operator in
matrix form such that, when it is applied to the vector input representation of the quantum register state, the
result is the vector representation of the desired register output state.

The simulation system of quantum computation is based on QAG’s.
The design process of QAG’s includes the matrix design form of three quantum operators: superposition

(Sup), entanglement (U) and interference (Int) that are the background of QA structures. In general form,
the structure of a QAG can be described as follows (see Chapter 1):

QaG=[(nte"1)-u.] ["He"s], (1)

where | is the identity operator; the symbol ® denotes the tensor product; S is equal to I or H and depend-
ent on the problem description. One portion of the design process in Eq. (1) is the type-choice of the entan-
glement problem dependent operator U that physically describes the qualitative properties of the function

f.

The efficient implementations of a number of operations for quantum computation include controlled
phase adjustment of the amplitudes in the superposition, permutation, approximation of transformations and

2

OnNEeKTPOHHBIN XXypHan « CUCTEMHbIN aHanu3 B Hayke n obpasoBaHUN» Boinyck Ne3, 2014 rog

generalizations of the phase adjustments to block matrix transformations. These operations generalize those
used as example in quantum search algorithms (QSA’s) that can be realized on a classical computer. The
application of this approach is applied herein to the efficient simulation on classical computers of the
Deutsch QA, the Deutsch—Jozsa QA, the Simon QA, the Shor QA and the Grover QA.

Implementation of a QA is based on a QAG. In the language of classical computing, a quantum com-
puter is programmed by designing a QAG. The prior art reports relatively few such gates because the basic
principles underlying the quantum version of programming are in their infancy and algorithms to date have
been programmed by ad-hoc techniques.

Fig. 2 is a block diagram showing a gate approach for simulation of a QA using classical computers.

Quantum
Algorithm

l

Transformation
v

0
Quantum
Gate

Figure 2. The gate approach for simulation of quantum algorithms using classical computers

o

In Fig. 2, an input is provided to a QA and the QA produces an output. However, the QA can be trans-
formed to produce a QAG such that an input vector (corresponding to the QA input) is provided to the QAG
to produce an output vector (corresponding to the QA output).

Fig. 3 is a block diagram showing the design of the QAG.

In Fig. 3, an input block of the QA is a function f that maps binary strings into binary strings. This
function f is represented as a map table block, defined for every string its image. The function is first en-
coded in corresponding block into a unitary matrix operator U_ depending on the properties of f . In some

sense, this operator calculates f when its input and output strings are encoded into canonical basis vectors
of a complex Hilbert space.

INPUT
[—— Encoder Us

J—=F F>Uf =

Quantum Block

ouTPUT 1

Basis

Answerluummm Decoder 4

Vectors

Binary strings Complex
level ‘ Hilbert space

Figure 3. Schematic block diagram of QAG method design

The operator U maps the vector code of every string into the vector code of its image by f . The quan-
tum block operates on basis vectors in a complex Hilbert space. The vectors operated on by the quantum
3

OnNEeKTPOHHBIN XXypHan « CUCTEMHbIN aHanu3 B Hayke n obpasoBaHUN» Boinyck Ne3, 2014 rog

block are provided to a decoder, which decodes the vectors to produce an answer. Once generated, the matrix
operator Ug is embedded into a quantum gate G.

The quantum gate G is a unitary matrix whose structure depends on the form of matrix Ur and on the
problem to be solved. The quantum gate is a unitary operator built from the dot composition of other more
specific operators. The specific operators are described as tensor products of smaller matrices.

The quantum circuit is a high-level description of how these smaller matrices are composed using tensor
and dot products in order to generate the final quantum gate as shown in Fig. 1.The mathematical back-
ground of this approach is based on mappings between the quantum block operations in the complex Hilbert
space. The encoder and decoder operate in a map table and interpretation space, and input/output occurs on a
binary string level. The Clifford and Pauli groups are the background for universal QAG design for simula-
tion of a QA’s on classical computers.

The probability of every basis vector of being the output of measurement depends on its complex coef-
ficient (probability amplitude) in the entering complex linear combination.

Main QAG’s and main quantum operators

Three quantum operators, superposition, entanglement, and interference, are the basis for quantum
computations of qualitative and quantitative measures in quantum soft computing. As described above, Fig. 3
shows the structure of a QAG based on the three quantum operations of superposition, entanglement, and
interference.

Fig. 4 shows methods in QAG design.

The methods as shown in Fig. 4 are based on qualitative measures of QAG design: 1) analysis of QA
dynamics and structure gate design; 2) analysis of information flow; and 3) structure simulation of intelligent
QA’s on classical computers.

) e, U, F
Possibility of successful Solution |g 2 Analysis OZ%A Si Dynamics
(Necessary Conditions) f_-‘: bt
T
]
Y
Y
Accuracy & Reliability of - =
suceesshil Solwtion I8 s Analysis of Information
(Sufficient Conditions) ; Flow
5
3
s
h 4
Shannon (Relative) Entropy =
Von Neumann Entropy =
i < 8 Intelligence of QA
& Mutual Information g
=
Information Distances }T
Quantitative Measures |4 Quantum Operators |4 Qualitative Measures

Figure 4. Methods in Quantum Algorithm Gate Design

In this paper analysis of QA dynamics and structure gate design, and structure simulation of intelligent
QA’s on classical computers are discussed.

As shown in Fig. 4 analysis of QA dynamics provides the background for showing the existence of a so-
lution and that the solution is unique with the desired probability. Analysis of information flow in the QA

4

OnNEeKTPOHHBIN XXypHan « CUCTEMHbIN aHanu3 B Hayke n obpasoBaHUN» Boinyck Ne3, 2014 rog

gates provides the background for showing that the unique solution exists with the desired accuracy and that
the reliability of the solution can be achieved with higher probability.

With the method of quantum gate design presented herein, various different structures of QA can be re-
alized, as shown in Table 1 below.

The intelligence of a QA is achieved through the principle of minimum information distance between
Shannon and von Neumann entropy and includes the solution of the QA stopping problem.

The output states of a QA as the solution of expected problems are the intelligent states with minimum
entropic relations of uncertainty (coherent superposition states). The successful results of QA computing are
robust to noise excitations in quantum gates, and intelligent quantum operations are fault-tolerant in quantum
soft computing.

Table 1. Quantum gate parameters for QA’s structure design

Gate Symbolic Form:
h+1
Name Algorithm (Int ") U ' mSJ
F LI
'mw Entanglement Superposition
m=1, S=H (x=1)
DeUtSCh- _n nH ®I ‘U D.—J.. n+lH
Jozsa ll(nil th0 () F ()
(D.-J)
m=n, S=1
Simon (x=0)Int="H k=0(n) ("H®")-Usm("He")
(Sim) ho0
m=n, S=1(x=0)
Sshhor Int = QFT, (QFT, ®"1)-Us"-("H® ")
(Shr) k=0(Poly(n)) h=0
m=1 S=H(x=1)
Grover Int=D, (Dn®|)'U,fr _(n+1H)
(Gr) _ _ n/2
k=1 h=0(2"?)

A quantum computer is difficult to build because of decoherence effects.
Decoherence introduces errors in the superposition.

The decoherence problem is reduced by using tools of quantum soft computing such as a quantum ge-
netic search algorithm (QGSA). Errors produced by decoherence are of three kinds: (i) phase errors; (ii) bit-
flip errors; and (iii) both phase and bit-flip errors. These three errors can all be modeled using unitary trans-
formations.

This means that if the QGSA is implemented on a physical quantum-mechanical system, one would
gain the advantages of quantum parallelism and reduce the problem of decoherence, because decoherence
can be used as a natural generator of mutation and crossover operators.

Design technology of quantum algorithmic gate boxes and simulation system

The problems solved by the QA can be stated as follows:
Input A function f : {0,1}" —»{0,1}"

Problem Find a certain property of f

OnNEeKTPOHHBIN XXypHan « CUCTEMHbIN aHanu3 B Hayke n obpasoBaHUN» Boinyck Ne3, 2014 rog

The structure of a quantum operator U_ in QA’s as shown in block of Fig. 3 is outlined, with a high

level representation, in the scheme diagram Fig. 1. In Fig. 3 the input of the QA is a function f that maps
from binary strings into binary strings. This function is represented as a map table, defining for every string
its image. The function f is encoded according to an F -truth table. The function is transformed according to
a transform U _ -truth table into a unitary matrix operator Ur depending on f’s properties. In some sense, this
operator calculates f when its input and output strings are encoded into canonical basis vectors of a complex
Hilbert space: Ur maps the vector code of every string into the vector code of its image by f. A squared ma-
trix Ug on the complex field is unitary if and only if (iff) its inverse matrix coincides with its conjugate

transpose: U;' =U. . A unitary matrix is always reversible and preserves the norm of vectors.

Fig. 5 shows structure of the quantum block from Fig. 3.

INFUT
| VECTOR
INPUT

Up p—— Gate

OUTPUT
VECTOR

Measurement

OUTPUT
BASIS COLLECTING
i BASIS
BN e A

Figure 5. Structure of Quantum Block in Fig. 3

In the structure, the matrix operator Ur has been generated it is embedded into a quantum gate as a
QAG, a unitary matrix whose structure depends on the form of matrix Ur and on the problem to be solved. In
the QA, the QG acts on an initial canonical basis vector (which can always choose the same vector) in order
to generate a complex linear combination (superposition) of basis vectors as output. This superposition con-
tains all the information to answer the initial problem.

After this superposition has been created, in measurement block takes place in order to extract this in-
formation. In quantum mechanics, measurement is a non-deterministic operation that produces as output only
one of the basis vectors in the entering superposition. The probability of every basis vector of being the out-
put of measurement depends on its complex coefficient (probability amplitude) in the entering complex line-
ar combination.

The segmental action of the QAG and of measurement characterizes the quantum block in Fig. 5. The
guantum block is repeated k times in order to produce a collection of k basis vectors. Since measurement a
nondeterministic operation, these basic vectors are not be necessarily identical and each one of them will
encode a piece of the information needed to solve the problem. The collection block in Fig. 3.5 of the algo-
rithm outputs the interpretation of the collected basis vectors in order to get the answer for the initial problem
with a certain probability.

Encoder
The behavior of the encoder in Fig. 3 is described in the scheme diagram of Fig. 6. Function f is encod-
ed into matrix Ur in three steps.

In step 1, the map table (f —truth table) of function f: {0,1}" —{0,1}" is transformed into the map table
(F —truth table) of the injective function F:{0,1}"*"—{0,1}™*™ such that:

OnNEeKTPOHHBIN XXypHan « CUCTEMHbIN aHanu3 B Hayke n obpasoBaHUN» Boinyck Ne3, 2014 rog

F(Xo, .y Xn-1, Yo, s ym.1) = (Xo, oy Xn-1, f(Xo, I, Xn.1) @ (yo, . ym.1)).

Remark. The need to deal with an injective function comes from the requirement that Ur is unitary. A
unitary operator is reversible, so it cannot map 2 different inputs in the same output. Since Ur will be the ma-
trix representation of F, F is injective. If one directly employed the matrix representation of function f, one
could obtain a non-unitary matrix, since f could be non-injective. So, injectivity is fulfilled by increasing the
number of bits and considering function F instead of function f. The function f can be calculated from F by
putting (Yo,....ym-1) = (0,...,0) in the input string and reading the last m values of the output string.

F > o

Encoder,

J-m.table — F-m.table

F-map
table
Encoder,
F-m.table — U'~m.table
OUTPUT
=y » Ur

Figure 6. The encoder block scheme diagram
Reversible circuits realize permutation operations. It is possible to realize any Boolean circuit
F:B"— 13" by reversible circuit. For this case, one need not calculate the function F: 8"— 2™, One can
calculate another function with expanding F,:B""— IR™™ that is defined as following relation:
Fo (%, ¥)=(x,y®F(x)) where the operation @ is defined as addition on module 2.

Then the value of F(x) is defined as F, (x,0)=(x,F(x)) . For example, the XOR operator between two

binary strings p and g of length m is a string s of length m such that the i-th digit of s is calculated as the ex-
clusive OR between the i-th digits of p and g:

P =(Po, .., Pr1), 4 = (do, -, Un-1); $ =P © g = ((Po+do) Mod 2, .., (Pn-1+Gn-1) Mod 2)).

In step 2, the function from F map table is transformed into Ur map table, according to the following
constraint:

vse{0,1} ™ Ur[s)] = [F(s)])

n+m n+m

The code mapz: {0,1}™™— C? (C2

{0 [g)-10. @=[J)

Z-(XO""’Xn+m—l):T(XO)®“'®T(Xn+m—l):|XO"‘Xn+m—1>

Code 7z maps bit values into complex vectors of dimension 2 belonging to the canonical basis of C . Be-
sides, using tensor product, z maps the general state of a binary string of dimension n into a vector of dimen-
sion 2", reducing this state to the joint state of the n bits composing the register. Every bit state is trans-
formed into the corresponding 2-dimesional basis vector and then the string state is mapped into the corre-
sponding 2"-dimesional basis vector by composing all bit-vectors through tensor product. In this sense tensor
product is the vector counterpart of state conjunction.

is the target Complex Hilbert Space) is such that:

OnNEeKTPOHHBIN XXypHan « CUCTEMHbIN aHanu3 B Hayke n obpasoBaHUN» Boinyck Ne3, 2014 rog

The tensor product between two vectors of dimensions h and k is a tensor product of dimension h-k,
such that:

X Y1

X Yi X Yk
® —

X Yk Xy Y1

X Yk

If a component of a complex vector is interpreted as the probability amplitude of a system of being in a
given state (indexed by the component number), the tensor product between two vectors describes the joint
probability amplitude of two systems of being in a joint state.

For example:
1 0
. (1) (1) |o] L (D (0 |1]
(0,0)_{0]®(0]_ ° =Joo). (0,1)—>(0J®[J— " |=jon),
0 0
0 0
. (O 1) |0 . (0 0) |0
w0—(%)o(2)-|° |-t @n—(%)o[%)-|]-»
0 1

Basis vectors are denoted using the ket notation|i). This notation is taken from Dirac description of
guantum mechanics.

In step 3, the Ur map table is transformed into Ug using the following transformation rule:
[Ue] =1 Ue]i)=li).
This rule can be understood by considering vectors |i) and | j) as column vectors. These vectors belong
to the canonical basis, where Ur defines a permutation map of the identity matrix rows. In general, row | j)
is mapped into row|i).

This rule will be illustrated in detail below, in the example based on Deutsch’s algorithm.

Quantum block

The heart of the quantum block is the quantum gate, which depends on the properties of matrix Ug. The
guantum block uses the QAG, which depends on the properties of matrix Ug. The structure of a quantum op-
erator U, in QA’s as shown in Fig. 3 is outlined, with a high level representation, in the scheme diagram of

Fig. 5.

The scheme in Fig. 5 gives a more detailed description of the quantum block. The matrix operator U of
Fig. 6 is the output of the encoder block represented in Fig. 3.

OnNEeKTPOHHBIN XXypHan « CUCTEMHbIN aHanu3 B Hayke n obpasoBaHUN» Boinyck Ne3, 2014 rog

Here, it becomes the input for the quantum block. This matrix operator is embedded into a more com-
plex gate: the gate G (QAG). Unitary matrix G is applied k times to an initial canonical basis vector ||> of

dimension 2™™, Each time, the resulting complex superposition G|O. ..01.. .1) of basis vectors is measured in
measurement block, producing one basis vector |x;) as result. The measured basis vectors {x,...,x} are
collected together in block of basis vectors.

This collection is the output of the quantum block. The “intelligence” of the QA’s is in the ability to
build a QAG that is able to extract the information necessary to find the required property of f and to store it
into the output vector collection.

In order to represent QAGs it is useful to employ some diagrams called quantum circuits, as shown in
Fig. 1. Each rectangle is associated with a matrix 2"x2", where n is the number of lines entering and leaving
the rectangle. For example, the rectangle marked Uk is associated with the matrix Ur.

Using a high-level description of the gate and, using transformation rules shown in Fig. 7, it is possible
to compile the corresponding gate-matrix.

These rules are listed in Fig. 7 as following: (a) Rule 1 — Tensor Product Transformation; (b) Rule 2 —
Dot Product Transformation; (c) Rule 3 — Identity Transformation; (d) Rule 4 — Propagation Rule; (¢) Rule 5
— Iteration Rule; and (f) Rule 6 — Input/Output Tensor Rule.

It will be clearer how to use these rules when we afford the first examples of quantum algorithm.

R, R I ey)
=" P] e = M S M= = — Mo M D)
-1 :‘[rl —— ! ! : :
Step Sten ;I Step 1 ! Stpr ' Step !
(a) (b)
] 1]
i | i
HE I P = ——*-PI ; : ; :
E rI— E i == M ® bit i34 MY ¢ *Mis-
I{ Step ! Step i Sup ! Sup
© (d)
i 1
' b) ' 1 —;—F —w—b w1/ bir i
: ; : i - 51°8.8/5,
i ¥,0 0\ g BV o & Mp O = . M :
! ' ! _ | s : ; [v1-@..8]v,> / bit
i Step i Step i e i [y U i _—
i Step i Step
(e) ' !

(f)

Figure 7. Transformation rules

The tensor product between two matrices Xn.m and Yn« is a (block) matrix (n-h)x(m-k) such that:

XllY " leY Xll " le
X®Y=l with X =

XY o XY Xog Xom

An example of a matrix tensor product is as follows:

OnNEeKTPOHHBIN XXypHan « CUCTEMHbIN aHanu3 B Hayke n obpasoBaHUN» Boinyck Ne3, 2014 rog

1_{5 6} 2{5 6} 5 6 10 12
[12}@{56}2 78 78]| |7 8 14 16|
3 4] |7 8 5 6 5 6] | (15 18 20 24

3‘{7 8} 4‘[7 8} 21 24 28 32

Decoder

The decoder block of Fig. 3 interprets the basis vectors (collected in block basis vectors) of after the it-
erated execution in the quantum block. Decoding these vectors involves retranslating them into binary strings
and interpreting them directly in decoder block if they already contain the answer or use them, for instance as
coefficients vectors for some equation system, in order to get the searched solution.

Examples of design method application: QA’s Benchmark’s gate design and
simulation of decision making QA

Let us consider Benchmarks of QAG design for typical QA.

Deutsch’s algorithm

In order to illustrate the general method to synthesize a QA and the QG implementing it, a simple peda-
gogical example, Deutsch’s algorithm, is used. The roles of superposition, entanglement and parallel quan-
tum massive calculation are illustrated by this example.

Deutsch's problem: A function f:{0,1}—{0,1} is said constant iff ye{0,1}:vxe{0,1}: f(x)=y. It is said
to be balanced iff [{xe{0,1}: f(x)=0} = {xe{0,1}: f(x)=1}|.

Thus, Deutsch’s problem can be stated as follows:
Input A balanced or constant function f

Problem Decide if f is constant or balanced

Figure 8 shows the structure of Deutsch’s problem.

|— Function fis constant

S 1 1 2
If(_\'eillll)=_1'E:UJ$ = Algorithm

I—-{ Function f is balanced

Input Output

Figure 8. Problem definition of Deutsch’s QA
There are four possible functions fi: {0,1}—{0,1}.

They are defined by the following map tables:
Constant Functions Balanced Functions

10

OnNEeKTPOHHBIN XXypHan « CUCTEMHbIN aHanu3 B Hayke n obpasoBaHUN»

Boinyck Ne3, 2014 roa

x | fi(X) x | f3(X)
1 | o 0 @ |0 0
1 0 1 1
X | fa(X) x | fa(X)
2 | o 1 @ |0 1
1 1 1 0
The set {fi}ic{1.2.3.4; is the input set for our algorithm.
Every function fi is represented by its map table.
Fig. 9 shows definitions of constant and balanced functions.
1 Siide 1
— epof
: — o

Thiz ia a demonstration of Deutsch's quantum algorithm,
D eutzch's problem:

There are 4 possible combinations:
Fd

ool ron
TIor1T 1110
In thiz example we will analyse f=[0 1]

command window.

Far the given function £:40,1} = {0,1}, find if the function is a comstant or ballanced.

The intermediate results of zome calculations pou can see on the matlab's

Figure 9. Deutsch’s quantum algorithm simulation: Problem definition visualization

Encoder. The encoder block encodes input function f into matrix Ug. If, for example, the function to be

investigated is f = f3, then the map table is the following:

X f3(x)
0 0
1 1

Step 1

Function f is first transformed into function F:{0,1}* — {0,1}? such that

F(Xo, Yo) = (Xo, f(X0)®yo).

In logic representation this means:

Yo F(Xo, Yo)
0 (Xo, f(x0))
1 (Xo, —f(x0))

11

OnNEeKTPOHHBIN XXypHan « CUCTEMHbIN aHanu3 B Hayke n obpasoBaHUN»

As usual, the NOT operator acting on a binary string flips the value of every digit in the string

P = (Po, ..., Pn-), = P = ((Po+1)mod2, ..., (Pr-1+1)mod2).

Therefore, if f = f3, F- map table is the following:

(Xo, Yo) F(Xo, Yo)
(0,0) (0,0)
(0,2) (0,2)
(1,0 (1,1
1,1) (1,0

Fig. 10 shows the result of F-map table building.
Step 2

In this step, the map table of F is transformed into the map table of Ue.

The transformation rule is the following:

Vvse{0,1}% Ug[(s)]= 7 [F(s)].

Boinyck Ne3, 2014 roa

Finap=[x Fyl
Mite: Orthis and on the following graphs, the infeger walues must be converted
inbo comespanding ket notanions, Bke 0-20:, 2:110x , ete

Slide 2

Function

is firstly

transformed into function
F{0,1}>-{0,1}? such that

Rxy %)= (% £%)8x,)

In logic representation this

means:
I Rxy)
0 (% 1x))
1 (% =F(x))

Figure 10. Deutsch’s quantum algorithm simulation, Step 1: F-map table building

So, Ur map table is:

% Yo) Ur [%,Yo)
|00) |00)
|01) |01)
|10) 11)
|11) |10)

or, writing basis vectors as column vectors:

12

OnNEeKTPOHHBIN XXypHan « CUCTEMHbIN aHanu3 B Hayke n obpasoBaHUN» Boinyck Ne3, 2014 rog

Vv Uer vV
(1,0,0,0) (1,0,0,0)
(0,1,0,0)' (0,1,0,0)"
(0,0,1,0)' (0,0,0,1)"
(0,0,0,1)" (0,0,1,0)" ::l

The TRANSPOSE (T) operator acting on a row or column vector transforms the vector into its corre-
sponding column or, row vector (respectively):

Step 3

The matrix associated with such a map table is obtained from the identity matrix 4x4 by a permutation
of its rows: the first and the second rows are mapped into themselves, whereas the third row is mapped into
the fourth one and the fourth row into the third one:

o O +» O
= O O O
o, O O

A general way to build Uk is to express every vector Ug (|s>) as a linear combination of the basis vec-
tors. The coordinates of this combination are all 0, unless for one basis vector corresponding to the image of
|s) by Ue:

U, |00) =1|00) +0|01) + 0[10) + 0|11)
U |01)=0[00)+1|01) +0|10) + 0|11)
U, [10)=0[00) +0|01) +0[10) +1|11)
U [11)=0[00)+0|01)+1/10)+0|11)

Calculate [Ue]; as the coordinate of vector Uk (| j)) with respect to vector |i), where i and j are binary se-
guences. This means:

[UF]ij =le UF|j>=|i> ’
Value [Ur]; is called the probability amplitude of | j) being mapped |i) into by Ur.

The probability amplitude of |00) of being mapped into |00) is, for instance, 1, since Ur|00)=1|00),
whereas its probability amplitude of being mapped into |01) is 0, since Ur|00)=0|01). Using this technique,
the following unitary matrix is built:

Ue | |00) |01) |[10) |12)

00| 1 0 0 o0

o)} o 1 0 0

13

OnNEeKTPOHHBIN XXypHan « CUCTEMHbIN aHanu3 B Hayke n obpasoBaHUN» Boinyck Ne3, 2014 rog
oyl o o o0 1

| o o 1 o0

Fig. 11 shows the design process of unitary matrix Ue.

In this step, the map table of Fis
transformed into the map table of Lf.
The transformation rule is the following:

¥5e{0,13%: U{s)]= r[A5)]
So, U map table is:

00>
10>
110>
M=

[%de” | Upl%ys—

= o~ | oo

[o1= 01>

|10 |11=

Buiiding the inective lunction UF, usng Ket funclion: [11= |10=

H{-KaiquD]

1000 { 00> | |0l 0= | |1l
0100 r | 1] | |
5810 po-| 1 o0 | o0 | o
[0 i} 1 0 i
‘|' o= | o 0 i 1
= o 0 1 o

Figure 11. Deutsch’s quantum algorithm simulation, Step 2: Entanglement operator

Quantum block. The encoder block has generated matrix Ug. This matrix is now embedded into the QG
that will act on the input vector |00) .

Fig. 12 (a) shows this gate using a quantum circuit.

]]]]
| | ' I i i 1 [

= +E+’ % W I | | ;
[l Hofn] %1% £ P L iy I 08
i A I 0 : | i i |
| | F ' | I u I '

o | | 1 1 it ||] > | ! F : '
1 I ' ' = % % bat
' ' e v | ! I '

INPUT STEP 1 STEPZ STEP 3 QOUTPUT
INFUT STEP'1 STEP 2 STEP3 QUTPUT

bit

o— G-EeH)UpHoh) [om |\

INPUT STEPL STEP 2 STEF3 OUTPUT
(d))

Figure 12. Deutsch’s quantum algorithm simulation:

Circuit representation and corresponding gate design

14

OnNEeKTPOHHBIN XXypHan « CUCTEMHbIN aHanu3 B Hayke n obpasoBaHUN» Boinyck Ne3, 2014 rog
Each rectangle in Fig. 12 (a) represents a classical matrix operator nxn, where n is the number of lines
entering and leaving the rectangle.

A matrix operator is said classical, when it maps every basis vector into another basis vector. For exam-
ple, operator Ug is classical. A thick rectangle stands for a non-classical matrix operator. A non-classical ma-
trix operator maps at least one basis vector into a superposition of basis vectors.

Example: Classical and Non-Classical Matrix operators.

Classical Matrix Operator Ug Non-Classical Matrix Operator H
U, [[00) [Jo1) [0} [11

|OO> 1 0 0 0 H |0> |1>

|01> 0 1 0 0 |0> 1/2112 1/21/2

|10> 0 0 0 1 |1> 1/21/2 _1/21/2

[11) | 0 0 1 0

The above circuit is compiled into the corresponding computable gate. The first passage involves com-
pleting the circuit making some operators explicit. Consider, for instance, Step 1 in Fig. 12 (a). The second
line is empty in this step. This means that the second entering basis vector is left unchanged. This vector acts
in the identity matrix operator and completes the circuit. This is rule 3 described in Fig. 7. The result of the
compilation is presented on the Fig. 12 (b). The identity matrix operator is classical and it is so defined as:

IR

0| 1 0

| o 1

At this point a matrix operator is built corresponding to every step whose action corresponds to the con-
current action of the matrix operators acting on parallel lines. Rules 1 and 6 from Fig. 7 are used to obtain as
the quantum circuit of Fig. 12 (c).

Finally, unique matrix operator is built that is equivalent to the sequential application of the operators in
step 1, step 2 and step 3. This is operator composition and it is obtained with the dot product among matrices
in the reverse order of application, as rule 2 states. Applying rule 2 from the Fig. 7 to the circuit yields as the
quantum circuit of Fig. 12 (d), namely the programmable gate implementing Deutsch’s algorithm.

Figure 13 shows the result of computer design of QG of Deutsch's QA.

.
o G-HeH)UpHel) [cpoo

STEP OUTPUT

Mow azsemblag the quarium gate for dewtsch shgonthm

1] H = 1/5artf2]"hadamard 2} % Hadamard rotation matix

2] HH = kson[H H] Zlrlererence opersho

3] HI = kron[H eyed2]) %5upeipositon opesator

4] G = HHUPHI %Final gate for deutsch's quantum crgut

f

Figure 13. Deutsch’s quantum algorithm simulation, Step 4. Quantum gate assembling

15

OnNEeKTPOHHBIN XXypHan « CUCTEMHbIN aHanu3 B Hayke n obpasoBaHUN» Boinyck Ne3, 2014 rog

Computational steps of design process. To compute and design the gate, first calculate (H ® I). The
output matrix is 4x4. Label each column and row with the corresponding basis vector. Calculate the ampli-
tude probability for each basis vector of being mapped into another basis vector using H and 1. Take vector
|00> for instance: its probability amplitude of being transformed into |01> is the product between the proba-
bility amplitude of |0> of being mapped into |0> by H and the probability amplitude of |0> of being trans-
formed into |1> by I. This is the tensor product.

Therefore:

H 0> |1>
0> |1/27% 1272
11> |1/2v2 -1/2v2

and
I 0> |1>
0> | 1 0
1>1] 0 1

The values H®I and H®H are calculated as follows:

H®I |00> |01> |10> 11>

00> | 1/217 0 1/2172 0
01> 0 1/212 0 1/2v2
10> | 1/22 0 1220
111> 0 1/212 0 -1

H®H | |00> |01> |10> |11>

00> | 12 172 172 172

o1> | 12 <12 12 AR
o> | 12 12 12 -2
> | 12 12 12 12

One can rewrite Urwhen f = f3:

Us, | 00> 01> [10> |11>
00> 1 0 0 0
01> 0 1 0 0
110> 0 0 0 1
111> 0 0 1 0

The final programmable gate Gz = (H ® H)-(Ur,-(H ® 1)) is obtained as:

16

OnNEeKTPOHHBIN XXypHan « CUCTEMHbIN aHanu3 B Hayke n obpasoBaHUN»

Boinyck Ne3, 2014 roa

Ur(H®I) [[00> [01> 10> [11>
00> 1220 122 0
01> 0 12 0 1/2v2
10> 0 22 0 12w
111> 12¥2 0 122 0

Gs 00> 1> 10> [11>
00> 1272 1272 0 0
01> 0 0 1w 1w
110> 0 0 12w 12
111> 1212 1% 0

To calculate the programmable gates for the other possible input functions, the map tables are as fol-

lows:

(Xo, Yo) F1(Xo, Yo)
X f1(x) (0,0) (0,0)
0 0 (0,1) (0,1)
1 0 (1,0) (1,0)
(1,1) (1,1)
(Xo, Yo) F2(Xo, Yo)
X f2(X) (0,0) (0,1)
0 1 0,2) (0,0)
1 1 (1,0) (1,1)
(1,2) (1,0)
From every table, it is easy to calculate the matrix operator:

Xo Yo> UF, [Xo Yo> Ur, |00> |01> |10> 11>
|00> |00> |00> 1 0 0 0
|01> |01> |01> 0 1 0 0
|10> |10> |10> 0 0 1 0
11> [11> 11> 0 0 0 1

17

OnNEeKTPOHHBIN XXypHan « CUCTEMHbIN aHanu3 B Hayke n obpasoBaHUN» Boinyck Ne3, 2014 rog

[Xo Yo> UF, [Xo Yo Ur, |00> |01> |10> 11>
|00> 01> 100> 0 1 0 0
01> 100> 01> 1 0 0 0
110> 111> 110> 0 0 0 1
111> 110> 111> 0 0 1 0

(X0, Yo) Uk, [Xo Yo> Ur, |00> |01> |10> [11>
|00> 01> |00> 0 1 0 0
01> |00> |01> 1 0 0 0
|10> |10> |10> 0 0 1 0
111> 111> 11> 0 0 0 1

Different U, (i=1,2,4) generate different programmable gates Gi=(H ® H)-Ug,-(H ® 1):
G1 |00> |01> |10> 11>

00> | 1277 1217 0 0
01> | 1/2¥2 -12¥2 0
10> 0 0 1212 1/2v2
111> 0 0 1212 -1/2v2

G, | [00> [01> 10> [11>

00> | 1272 1/2%%2 0 0
01> | -1/212 1/2v2 0 0
10> 0 0 1/2v2 1212
111> 0 0 -12vr 1w

G. | [00> [01> 10> [11>

|00> 1/242 1/2%2 0 0
|01> 0 0 -1/2v2 1/242
|10> 0 0 1212 112
|11> 1722 1/242 0 0
Finally, different programmable gates generate different superposition states:
G100> |= |1/2Y2 |00> + 1/2¥2 01>
Gl00> |[= [1/212 00> - 1/22 |01>
Gs|00> |= |1/212 |00> + 1/2Y2 11>
G400> |= |1/212 |00> - 12Y2 11>

18

OnNEeKTPOHHBIN XXypHan « CUCTEMHbIN aHanu3 B Hayke n obpasoBaHUN» Boinyck Ne3, 2014 rog

Observe that G1|00> and G;|00> can be written as the tensor products of two simpler vectors:
G100> |= [1/22 10> @ (0> + [1>)

G2/00> |= |1/2Y2 0> ® (0> — [1>)

This is not possible for G3|00> and G4/00>. These two vectors make two entangled states.

This means that Deutsch’s QA needs entanglement for speed-up of quantum parallel massive calcula-
tions.

A vector v of dimension 2" is said to represent an entangled state if and only if it cannot be written as the
tensor product of n vectors of dimension 2. Mathematically, the entanglement condition is written as:

=V, VY, V=Y, 8.0V,

Figs 14 and 11 show the result of computer check of entanglement property.

When the QAG has generated the output vector, which is a linear complex superposition of basis vec-
tors measurement takes place. It is assumed that measurement is a non-deterministic operation whose input is
the linear superposition of basis vectors and whose output is only one of these basis vectors. The probability
of a basis vector being the result of measurement is given by the squared modulus of its complex coordinate
in the starting superposition.

This description of measurement is taken from quantum mechanics and it is the main constraint on the
access one has to the results of the QAG. The non-deterministic evolution of a quantum system by measure-
ment is the true qualitative difference between a quantum computation and a simple parallel computation.

Inverse matrix of Uf:
i 0 0 0
e 010 0
s 0 0 0 1
0 0 1 0
Conjugate transpose of Uf:
1 0 0 0O
0 1 0 0O
Checking if matsix L is Injective, by comparing its nverse matiix with its conjugate 0 0 0 1
lianspose maltis
0 0 1 0
We can see that this matrix
_ are the same
o |

Figure 14. Deutsch’s quantum algorithm simulation, Step 3. checking if entanglement operator is injective
or not
In quantum mechanics measurement is a non-deterministic operator. Writing a vector v as the
i=1

complex linear combination of n basis vector Viol=4 the probability to observe Viwhen v is

measured is given by the squared modulus of the complex co-ordinate of i inv.

19

OnNEeKTPOHHBIN XXypHan « CUCTEMHbIN aHanu3 B Hayke n obpasoBaHUN»

V=V, eV, ot Y, e

following is obtained:

Boinyck Ne3, 2014 roa

Vector | Probability
v Jes [
Measurement 2
v ez |
Y e |

Superposition of basis vectors

Result of measurement

(before a measurement) Vector Probability
|00> 11/72|)2=0.5

G1/00>=1/N2 |00> + 1/+/2 |01>
[01> 11N2][2=0.5
|00> 11N2][2=0.5

G200>=1/72 [00> — 1/+2 01>
[01> 11N2][2=0.5
|00> 11N2][2=0.5

G3/00>=1/N2 [00> + 1/42 |11>
[11> 11N2][2=0.5
|00> 11/72|[2=0.5

G4/00>=1/2 [00> — 1/N2 [11>
[11> 11/N2][2=0.5

When applying measurement to the superposition of basis vectors resulting from one of our 4 gates, the

With measurement, the quantum block ends. In Deutsch’s algorithm the quantum block is repeated only

one time, so only one resulting basis vector is collected. Thus for success result of decision making is enough
50% of probability.

Decoder. When the final basis vector has been produced, it is interpreted to find the information it car-

ries in order to establish if f is constant or balanced. If the resulting vector is [00> nothing can be said about
which function was encoded in Ug. But if the result is |01> or |[11>, the function was f; or f, in the first case,
f3 or f4 in the second. In fact only gates G; and G, may produce a vector such that, when it is measured, basis
vector [01> has a non-null probability of being observed. Similarly, only gates Gz and G4 may produce a su-
perposition of basis vectors where vector |11> has non-null probability amplitude. Since f; and f, are con-
stant, whereas f; and fs are balanced, the resulting vector is easily decoded in order to answer Deutsch’s prob-

lem:

Resulting vector

(after measurement)

Answer

|00> Nothing can be said
|01> f is constant
|11> f is balanced

ulated on computers with Von Neumann architecture.

er design of superposition and interference quantum operators.

The above described design and calculation processes of QAG for Deutsch’s QA can be efficiently sim-

Computer design process of Deutsch’s QAG and simulation results. Fig. 15 shows the result of comput-

20

OnNEeKTPOHHBIN XXypHan « CUCTEMHbIN aHanu3 B Hayke n obpasoBaHUN»

Boinyck Ne3, 2014 roa

Superposiion operstor

Interfarence oparator

Figure 15. Deutsch’s quantum algorithm: Superposition and Interference operators

Fig. 16 shows the result of QG assembly and results of numerical data simulation using this QAG.

1.

H =
0.70710678118655 0.70710678118655
0.70710676118655 -0.70710676118655
HH =
0.50000000000000 0.50000000000000 ©.50000000000000 0,50000000000000
0.50000000000000 ~0.50000000000000 0.50000000000000 -0.50000000000000
0. 50000000000000 0.50000000 -0. -0.50000000000000
0.50000000000000 ~-0.50000000000000 -0.50000000000000 0.50000000000000
HI =
0.70710676118655 0 0.70710678118655 0
0 0.70710678118655 0 0.70710678118655
0.70710678118653 0 -0.70710678118655 o
0 0.70710678118655 0 -0.70710678118655
6 =
0.70710678118655 0.70710678118655 0 0
0 0 0.70710678118655 -0.70710678118655
0 0 0.70710678118655 0.70710678118655
0.70710678118655 —0.70710678118655 0 0

Figure 16. Deutsch’s quantum algorithm simulation, Step 4: Quantum gate assembling, results of calcula-

Fig. 17 shows the general results of decision-making Deutsch’s QA for fourth different cases.

tions

21

OnNEeKTPOHHBIN XXypHan « CUCTEMHbIN aHanu3 B Hayke n obpasoBaHUN» Boinyck Ne3, 2014 rog

Constant functions Balanced functions

flvefoaf)=0 Flvefort)=0_1

x=0"lz=1

flrefor))=1 rlrefol))=1 o0

a=l lxz=l1

Figure 17. Deutsch quantum algorithm simulation: Algorithm 3d dynamics

Two-dimensional dynamic evolution of QAG for the case of constant function definition is shown in
Fig. 18.

The case of balanced function definition the simulation result of QAG is shown in Fig. 19.

. 1 1

Sre pal)=0 freloa))=1
: ' Il sale - Ogeresign . ; : Inital atuie - Dwewsien .
N | _ - EER I | R
ol - — = ol G ol - 2 B Ap i
§$ i . ok |n- ﬁ% LI i--

Bt sbir ppr i oo : E;:il#ﬂ;l — Sabt ol SpRTORI Pl o E;:ili!n:"
é R— . : e J R é. ~ s £ E, r: T
E; I . I ”] wle . . J:-» ﬂ!‘ ! . | - T J;..
: T T e i M
.é Nliru\lxq)em;i apeshor .. : i.i:llau\; i |. Siate sor codae gl cparsly : :uluu ue: :
N | . .. S | "I Bl
i - » = 1 = W & = e " ¥4
gs: I - — ! k‘ . |
ﬁ 182 sher kIS OpRatal = £ E-;ym'l‘nl E 5 S e enbetaeacs cperala 3 = BTy FYERn 5
aaf] i 0o} e
it ; i .
igg ! - ! = m]?Ei = ! . @ g
? £ | fl }s = i 3 4
g =1
(a) (b}

Figure 18. Deutsch quantum algorithm simulation: Algorithm 2d dynamics. Constant functions

22

OnNEeKTPOHHBIN XXypHan « CUCTEMHbIN aHanu3 B Hayke n obpasoBaHUN»

Boinyck Ne3, 2014 roa

1 : v ll
flrelott)=0_1 flvelod)=1] 0
=i 1= 5=0 - ls=1
: 3 Il it P i . sl stale o Spemsisn
§ et * 4w [" . e
‘N | { g N | , .
413;; " = Bl ™ A o R 1&1! " r " i =l o & & =
4} .-! . > T a2 = * o |-
] Sake b st tpeny :_ E:;mm:qw : ! 8310 shur supanation apnt : F;u#v;u ::
HE i i 0 . . 4 |- frual} =]' -l g * . |-
4 1 S S-S S ! 3 - ¢ & 4 e
alf R} 3 = e ® e 0w '5!. Bl =l e W ‘-
ﬁé (T T T T §7 =l & 4 0 |m
i ater v e i : l:-:;ﬁm: T : S e waeghTer] G : ;mx; :
a re) oo " . e e wl -
ag[I 4 I L - + L §§ I I L L] L] L
41? i 5 Lai i " O a2 L i " - R
i e o a0 i e = o]
i el A s L e
| St sl marinerce e i Entrigy satuton i State afer mierereace oz i Entugy ewlsion
1] am e [o] §
b | S i
o . 8 A E EQ ! e . : =
H A
§ i ‘ &
3 3 F H 3 b
S ep
@) (b}

Figure 19. Deutsch quantum algorithm simulation: Algorithm 2d dynamics. Balanced functions

Figs 18 and 19 show also the entropy evaluation of the QAG for both cases.

These results are used for stopping criteria of the QA below.

Figs 20 and 21 show the results of final superposition measurement for definition of function property

and its interpretation (decoding process), respectively.

The final guperposition

Measurement L

‘“*\U/"

=]

Razults of 10 measuramants of final superposion

Prabability

2 3

"
i
£6
2
8
24
E
1] 1 2 3 =
appberag the cuacium gate G 1o the Nl inpul vecks to okt am the final '2 2
EUpEpOsion ==
sp= GkedjO D)
o
o 1
Measured vecior
e
e Or thiz and on the loBowng Craphe:, #i adegel vakis: fust ' the nal
rrrztone. bhe Bod0: 351113 elz eni= 110

[The fimal euperposition is: s memgmrmiock:
[em =
(0. FOTLLN | O05+(0. TOTILp# 11

[tt comtains the following vectors with nonzero probability amplitudes

o O i andion the lolrwing graphs. $1a infogar vabas: must be corvested
0 conesponcing kst notalions. ke Dl 350110 60

ams =

T

0. 70711 00
[o.70711 11

Figure 20. Deutsch’s quantum algorithm simulation, Step 5: Applying gate G to the input vector |00> and

measurement

23

OnNEeKTPOHHBIN XXypHan « CUCTEMHbIN aHanu3 B Hayke n obpasoBaHUN» Boinyck Ne3, 2014 rog

Results of 10 ements of final superposition Shde 8

{=7]

b

Result:
Function is
balanced

LS

Mumber of measuraments
o

o

1 2 3
Measured vec‘tgr

o

Result mberpretation:

Outpait = 00> nothing can be said, probability S0
Oudpait = 1003 funchon (] s constant, pobabilty 50%
Ougput = (113 lunction i(x) is ballanced. probabslity 500
Output = 105 enor, probabdiity 0%

Figure 21. Deutsch’s quantum algorithm simulation, Step 6. Interpretation of results (decoding)

Deutsch-Jozsa’s algorithm
The Deutsch-Jozsa’s algorithm is based on the special form of its QAG. This example shows the im-
portance of the structure of the matrix operator Ur.

Deutsch-Jozsa's problem. Definition of Deutsch-Jozsa’s problem is stated as:
Input A constant or balanced function f:{0,1} " — {0,1}

Problem Decide if f is constant or balanced

This problem is very similar to Deutsch’s problem, but it has been generalized to n > 1.

Fig. 22 shows the structure of the Problem and Fig. 23 shows the steps of gate design process.

I—‘ Function f1s constant

svefaf)=yelon) — Algorithm

I—-{ Function 71s balanced
Input Output

Figure 22. Deutsch-Jozsa’s QA: Problem definition
According to design steps on the Fig. 23 consider Step 0: the Encoder.
Step 0
Encoder. As a threshold matter, it is useful to deal with some special functions with n = 2 to illumi-
nate various aspects of this algorithm. Then the general case with n = 2 is discussed, and finally a balanced
or constant function is encoded in the more general situation n > 0.

N Definition of design step

Step 0: Encoder
0 [Step 0.1: Injective function F building

Step 0.2: Preparation of map table for entanglement operator Us

24

OnNEeKTPOHHBIN XXypHan « CUCTEMHbIN aHanu3 B Hayke n obpasoBaHUN» Boinyck Ne3, 2014 rog

Step 1: Preparation of quantum operators
Step 1.1: Preparation of superposition operator
1 |Step 1.2: Preparation of entanglement operator using information from step 0.2
Step 1.3: Preparation of interference operator
Step 1.4: Quantum gate assembly

Step 2: Algorithm execution
Step 2.1: Application of superposition operator
2 [Step 2.2: Application of entanglement operator
Step 2.3: Application of interference operator

Step 2.4: Measurement and interpretation of the output

Figure 23. Deutsch-Jozsa’s QA: Steps of the algorithm design
Consider the encoding steps process according to the structure in the Fig. 6.
A. Encoding a constant function with value 1. Consider the case:

n=2, vxe{01}":f(x)=1.

In this case, f map table is so defined:

X f(x)
00 1
01 1
10 1
11 1

The encoder block takes f map table as input and encodes it into matrix operator Ug, which acts inside of a
complex Hilbert space.

Step 1
Function f is encoded into the injective function F, built according to the following statement:

F{0,0™ - {0,0"" : F (%, %, Yo) = (X0, % T (X0 %) @ ¥p)
Then F map table is:

(Xo, X1, Yo) F(Xo, X1, o)
000 001
010 011
100 101
110 111
001 000
011 010
101 100
111 110

Step 2
Now encode F into Ur map table using the rule:

vte{0,13": Uk [«t)]= AF(1)],

25

OnNEeKTPOHHBIN XXypHan « CUCTEMHbIN aHanu3 B Hayke n obpasoBaHUN» Boinyck Ne3, 2014 rog

where zis the code map defined above. This means:

[Xo X1 Yo> Uk [Xo X1 Yo>
|000> |001>
|010> |011>
|100> |101>
|110> 111>
|001> |000>
|011> |010>
|101> |100>
111> [110>

Here, ket notation is used to denote basis vectors.
Step 3

Starting from the map table of Ug, calculate the corresponding matrix operator. This matrix is obtained
using the rule:

[UF]ij =1<:>UF|j>:|i>'

So, Uk is the following matrix:

Ur 000> |001> |010> |011> 100> |101> 110> 111>
|000> 0 1 0 0 0 0 0 0
|001> 1 0 0 0 0 0 0 0
|010> 0 0 0 1 0 0 0 0
|011> 0 0 1 0 0 0 0 0
|100> 0 0 0 0 0 1 0 0
|101> 0 0 0 0 1 0 0 0
|110> 0 0 0 0 0 0 0 1
111> 0 0 0 0 0 0 1 0

Using matrix tensor product, Ur can be written as:

U =1®1®C=?1®C
where ® is the tensor product, | is the identity matrix of order 2 and C is the NOT-matrix defined as:

01
C= L 0} . Matrix C flips a basis vector: in fact it transforms vector |0> into |1> and |1> into |0>.

If matrix Ur is applied to the tensor product of three vectors of dimension 2, the resulting vector is the
tensor product of the three vectors obtained applying matrix | to the first two input vectors and matrix C to
the third.

Tensor product and entanglemen. Given m vectors Vi,.., Vm O dimension 291 29m and m matrix opera-
tors My,.., M, Of order 291x29 ., 29m »29m the following property holds:

26

OnNEeKTPOHHBIN XXypHan « CUCTEMHbIN aHanu3 B Hayke n obpasoBaHUN» Boinyck Ne3, 2014 rog

(M;®.0M_)-(v,®..®V,)=M, -V, ®..QM -V,.

This means that, if a matrix operator can be written as the tensor product of m smaller matrix operator,
the evolutions of the m vectors the operator is applied to are independent, namely no correlation is present
among this vector. An important corollary is that if the initial state was not entangled, also the final state is
not entangled. If, for example, U =1 ® | ® C then the structure of Ur is such that first two vectors in the
input tensor product are preserved (action of 1), whereas the third is flipped (action of C). One can easily ver-
ify that this action corresponds to the constraints stated by Ur map table.

B. Encoding a constant function with value 0. Now consider the case:

In this case f map table is defined as:

X f(X)

00 0
01 0
10 0
11 0

Step 1

F map table is:

(Xo, X1, Yo) F(Xo, X1, Yo)

000 000
010 010
100 100
110 110
001 001
011 011
101 101
111 111

Step 2

F map table is encoded into Ur map table:

[Xo X1 Yo> Uk [Xo X1 Yo>
|000> |000>
|010> |010>
|100> |100>
|110> |110>
|001> |001>
011> 011>
|101> |101>
111> 111>

Step 3

It is relatively easy to transform this map table into a matrix. Each vector is preserved.
Therefore, the corresponding matrix is the identity matrix of order 23

27

OnNEeKTPOHHBIN XXypHan « CUCTEMHbIN aHanu3 B Hayke n obpasoBaHUN» Boinyck Ne3, 2014 rog

Ur | [000> [001> [010> [011> |100> |101> [110> [ii1>
000> 1 0 0 0 0 0 0 0
o> | o 1 0 0 0 0 0
010> | 0 0 1 0 0 0 0 0
011> | o0 0 0 1 0 0 0 0
100> | © 0 0 0 1 0 0 0
01> | o 0 0 0 0 1 0 0
110> | o0 0 0 0 0 0 1 0
1> | o 0 0 0 0 0 0 1

Using matrix tensor product, this matrix can be written as:

U =1®1I®1=°I®I.

The structure of Ug is such that all basis vectors of dimension 2 in the input tensor product evolve inde-
pendently. No vector controls any other vector.

C. Encoding a balanced function. Consider now the balanced function:

N=2, V(X,...%,)e{0,1" 1 f(X,....x,) =% @ ®X,.

In this case f map table is the following:

X f(X)
00 0
01 1
10 1
11 0

Step 1

The following map table calculated in the usual way represents the injective function F (where f is en-
coded into):

(Xo, X1, Yo) F(Xo, X1, Yo) (Xo, X1, Yo) F(Xo, X1, Yo)
000 000 001 001
010 011 011 010
100 101 101 100
110 110 111 111

28

OnNEeKTPOHHBIN XXypHan « CUCTEMHbIN aHanu3 B Hayke n obpasoBaHUN» Boinyck Ne3, 2014 rog

Step 2
Now encode F into Ur map table:

[Xo X1 Yo> UF |Xo X1 Yo>
000> 000>
010> 011>
100> 101>
110> 110>
001> 001>
011> 010>
101> 100>
111> 111>

Step 3
The matrix corresponding to Uk is:

Ur 000> |001> |010> |011> 100> |101> 110> 111>
|000> 1 0 0 0 0 0 0 0
|001> 0 1 0 0 0 0 0 0
|010> 0 0 0 1 0 0 0 0
011> 0 0 1 0 0 0 0 0
|100> 0 0 0 0 0 1 0 0
|101> 0 0 0 0 1 0 0 0
[110> 0 0 0 0 0 0 1 0
111> 0 0 0 0 0 0 0 1

This matrix cannot be written as the tensor product of smaller matrices.

It can be written as a block matrix as follows:

Usr | |00> | (01> | [10> | [11>
00> | 0 0 0
01> 0 C 0 0
110> 0 0 C 0
111> 0 0 0 |

This means that the matrix operator acting on the third vector in the input tensor product depends on the
values of the first two vectors. If these vectors are |0> and |0>, for instance, the operator acting on the third
vector is the identity matrix, if the first two vectors are |0> and |1> then the evolution of the third is deter-
mined by matrix C.

This operator creates entanglement, namely correlation among the vectors in the tensor product. One
cannot represent such an operator as a tensor product of simpler operators such as | and C in the same man-
ner as it was possible in case of entanglement operators of constant functions presented above.

D. General case with n = 2. Consider now a general function with n = 2.

29

OnNEeKTPOHHBIN XXypHan « CUCTEMHbIN aHanu3 B Hayke n obpasoBaHUN»

In this general case f map table is the following:

X f(x)
00 foo
01 for
10 fio
11 f11

with fie{0,1}, i=00,01,10,11.

If f is constant then 3ye{0,1}vxe{0,1}?: f(x) = y.
If f is balanced then [{fi: fi = 0}=[{fi: fi = 1}|.

Boinyck Ne3, 2014 roa

Step 1
Injective function F (where f is encoded) is represented by the following map table calculated in the
usual way:

(Xo, X1, Yo) F(Xo, X1, Yo)

000 00 foo
010 01 fo
100 10 fo
110 11fy
001 00 — foo
011 01—fn
101 10— fyp
111 11T

Step 2

Now encode F into Ur map table:

[Xo X1 Yo> Uk [Xo X1 Yo>
|000> |0 0 foo>
|010> |01 for>
|100> |10 fio>
110> 111 fu>
|001> |00 — foo>
011> 01— for>
|101> |10 — fio>
111> 11— fi>

Step 3
The matrix corresponding to Ur can be written as a block matrix with the following general form:
Ur 00> 01> [10> [1I>
|00> Moo 0 0 0
|01> 0 Moz 0 0
|10> 0 0 Mo 0
111> 0 0 0 Mi1

where Mi=1iffi=0and M;=C if fi=1,i=00,01,10,11.

30

OnNEeKTPOHHBIN XXypHan « CUCTEMHbIN aHanu3 B Hayke n obpasoBaHUN» Boinyck Ne3, 2014 rog

The structure of this matrix is such that, when the first two vectors are mapped into some other vectors,
the null operator is applied to the third vector, generating a null probability amplitude for this transition. This
means that the first two vectors are always left unchanged. On the contrary, operators M; € {I, C} and they
are applied to the third vector when the first two are mapped into themselves. If all M; coincide, operator Ug
encodes a constant function.

Otherwise, it encodes a non-constant function.
If {Mi: M; = I}={Mi: M; = C}| then f is balanced.

E. General case. Consider now the general case n>0. Input function f map table is the following:

xe{0,1}" f(x)
0..0 fo.0
0.1 fo.1
1..1 fia

with fie{0,1}, ie{0,1}".
If f is constant then Jye{0,1}vxe{0,1}" : f(x) =y.
If fis balanced then |{fi: fi = O} = |{fi: fi = 1}|.

Step 1
The map table of the corresponding injective function F is:
xe{0,1}"1 F(x)
0..00 0..0 fo.0
1..10 1.1f11
1.11 1.1 —-f11
Step 2
Now encode F into Ug map table:
x> Uk x>
|000> |00 fo.o>
|1..10> |ll fi>
|0..01> [0..0 — fo.0>
|1..11> 1.1 —f11>
Step 3
The matrix corresponding to Ur can be written as a block matrix with the following general form:
Ur [0..0> |0..1> 11..1>
|0..0> Mo.o 0 0 0
0..1> 0 Mo..1 0 0
[1..1> 0 0 0 Mi.1

31

OnNEeKTPOHHBIN XXypHan « CUCTEMHbIN aHanu3 B Hayke n obpasoBaHUN» Boinyck Ne3, 2014 rog

where Mi=l iffi=0and Mi=C iffi=1, ie{0,1}".

This matrix leaves the first n vectors unchanged and applies operator M; €{l, C} to the last vector. If all
M; coincide with | or C, the matrix encodes a constant function and it can be written as "l ®1 or "l ® C. In this
case no entanglement is generated.

Otherwise, if the condition [{Mi: M; = 1}=|{M;: M; = C}| is fulfilled, then f is balanced and the operator
creates quantum correlation among vectors. It means that Deutsch-Jozsa’s QA needs bound amount of en-
tanglement and can be efficiently simulated on classical computer.

Matrix tensor and dot powers. Given a matrix M denote its k™-power tensor product as:
‘M =M ®..®M (k times). By contrast the k"-power dot productis: M* =M -...-M (k times)

Quantum block. Matrix Ug, the output of the encoder, is now embedded into the QAG of Deutsch-
Jozsa’s algorithm. As with Deutsch’s algorithm, this gate is described using a quantum circuit in Fig. 24 (a).

{a) [=1]

[P TR | bR
T e e L S H e B S

Input Seperpesitien Entanglomest [nierDe ence ouiput

nput Superposition Entamglemont [mterference Dulput

! | @ B o

i : T e | : o : "y : T : "HET | !
v s CHOD Us-("H) |t pigs g ([0 o iubdiE R
mi _SW| |T!J“El_ll_| Inpat Smperpesfion Entonglement Interference Cutput

Figure 24. Deutsch-Jozsa’s quantum algorithm simulation: Circuit representation and corresponding gate
design

Using Rule 3 (see Fig. 7), similar to the case of Deutsch’s QAG, compile the previous circuit into the
one presented on the Fig. 24.

Now, consider operator Ug in the case of constant and balanced functions. The structure of this operator
strongly influences the structure of the whole gate. It is possible to analyze this structure in the case fis 1
everywhere, f is 0 everywhere and in the general case with n = 2.

The general form for the gate with n>0 is given below.

A. Constant function with value. 1. If f is constant and its value is 1, matrix operator Ug can be written
as "l ® C. This means, as it is stated by Rule 1 in Fig. 7, that Ur can be decomposed into n +1 smaller opera-
tors acting concurrently on the n+1 vectors of dimension 2 in the input tensor product.

The resulting circuit representation is shown according to Fig. 24 in Fig. 25.

32

OnNEeKTPOHHBIN XXypHan « CUCTEMHbIN aHanu3 B Hayke n obpasoBaHUN» Boinyck Ne3, 2014 rog

1 [} [} [}
1 | } [}
] 1 : 1 ~
o>—L+—p H |—L1—»| I . H j—— bit
1
I : i :
| H | I
n h | | i
H H 1 1
H \ | 1
1 | : 1 .
o>——»! H L 1 ; H |——> pit
! : ! :
i : i : .
1>——1 H — C | ——— bit
! H | |
1 I [} I
INPUT] | STEP1 | STEP2 1 STEP3 |
| H l 1

Figure 25. Constant Function with Value 1 — First Circuit

Now use Rule number 2 from Fig. 7 and find the sub-gate acting on every vector of dimension 2 in in-
put. The result of this operation is shown in Fig. 26.

| |
| |
| |
[0>———> H-1-H ——> bit
| |
" | |
| |
| |
|
[0>——» H-1-H —— bit
i |
i i
| N
1>———p .C. —+— bit
1> I.-C-H | i
|
| |
INPUT] | STEP i OUTPUT
|

Figure 26. Constant Function with Value 1 — Second Circuit

Observe that every vector in input evolves independently from other vectors. This is because operator
Ur doesn’t create any correlation. So, the evolution of every input vector can be analyzed separately.

This circuit can be written in a simpler way as shown in Fig. 27, observing that M-1 = M.
It can be show that H?=1.

Therefore the circuit is rewritten in this way as shown in Fig. 28.

I [}
I I
I [}
lo>—L—»! H? —L— bit
I I
i i
n | |
I I
i i
I
[0>———p| H2 ——» bit
= a
I
1>——») C-H —i—» bit
I
I I
I I
INPUT : STEP : OUTPUT
I I

Figure 27. Constant Function with Value 1 — Third Circuit

33

OnNEeKTPOHHBIN XXypHan « CUCTEMHbIN aHanu3 B Hayke n obpasoBaHUN»

| |
I |
I |
|0>—:—> | —}—» bit
| i
" : |
] |
I |
| I
[0>———» I ——» bit
: |
' i
I .
1> . —+—» bit
1>—> C-H !
| I
I |
INPUT : STEP : OUTPUT
I |

Boinyck Ne3, 2014 roa

Figure 28. Constant Function with Value 1 — Fourth Circuit

Consider now the effect of the operators acting on every vector:
110)=[0), C-H|l)=——+=F+.
| > | > |> A

Using these results in rule number 4 of Fig. 7 and applying Rule number 3 of Fig. 7, yields following
circuit representation as shown on the Fig. 29 as the particular case of the structure shown in Fig. 24.

| |
| |
| |
|0> : — (0>

| |
| |

n I :
| |
| |
| |

o : — (0>
| |
' l
|
0>~ |1
|1>———»] C-H I el
| : 21/2
|
| |
INPUT : STEP : OUTPUT

| |

Figure 29. Constant Function with Value 1 — Fifth Circuit
It is easy to see that, if f is constant with value 1, the first n vectors are preserved.

B. Constant function with value. 0. A similar analysis can be repeated for a constant function with value
0. In this situation Ug can be written as "l ® | and the final circuit is shown on the Fig. 3.30. Also in this case,
the first n input vectors are preserved. So, their output values after the QAG has acted are still [0>.

| |
| |
| |
|0>— — (0>
| |
| |
n I l
| |
| |
| |
© : — 0>
| |
' l
I L o> [1>
|1>—— H —:—b -
! 2
| |
| |
INPUT] | STEP | [oUTPUT
| |

Figure 30. Constant Function with Value 0 — Final Circuit

OnNEeKTPOHHBIN XXypHan « CUCTEMHbIN aHanu3 B Hayke n obpasoBaHUN» Boinyck Ne3, 2014 rog

C. General case (n = 2). The gate implementing Deutsch-Jozsa’s algorithm in general case is obtained
operating on the circuit of Figs 24c¢ and 24d, with Rules 1 and 2 defined in Fig. 7. This is the circuit evolu-
tion as shown on the Figs 31and 32.

| | | [
! | | |
|
o>——L— Ly —> ——» bit
| | [
| : : :
. : : :
: n+1H : UF : nH®| :
|
o>—L—p Ly —» —— bit
|
I | | |
| [! '
|1>_'_.I ! > —p —:—V bit
| | | |
| | | [
| | | |
INPUT] | STEP1 | STEP2 i STEP3 | [OUTPUT
| | |

Figure 31. Evolution of the circuit in Fig. 24 (c)
If n =2, Ur has the following form:

Ur |00> |01> |10> 11>
00> | Moo 0 0 0
01> 0 Moz 0 0
110> 0 0 Mo 0
111> 0 0 0 Mi1

where Mie{l, C}, i = 00,01,10,11.

lo>—L—» —L— bit

I
I

. I

n . I
: I

I

I

("H ®1) ‘U -("H)

|0>—'—bI ——» bit
|
|
: |
[1>———m —:—V bit
|
| |
| |
INPUT : STEP : OUTPUT
| |

Figure 32. Deutsch-Jozsa’s quantum gate

Calculate the QG G=(*H ® I) -Ug-(**'H) in this case:
*H |00> |01> |10> 11>

00> | H2 H2 H2 H_2
01> | HR2 -HI2 HI2 -HR2
10> | HR2 HR2 -H2 -HR2
11> | HR2 -HI2 -H2 HR2

35

OnNEeKTPOHHBIN XXypHan « CUCTEMHbIN aHanu3 B Hayke n obpasoBaHUN»

Boinyck Ne3, 2014 roa

Hel |00> 01> |10> [11>
|00> 1/2 1/2 112 112
|01> 112 -1/2 1/2 -1/2
110> 112 112 172 172
|11> 112 -1/2 -1/2 1/2
Ur-°H |00> 01> |10> [11>
|00> MooH/2 MooH/2 MooH/2 MooH/2
|01> Mo1H/2 -Mo1H/2 Mo1H/2 -Mo1H/2
|10> M1oH/2 M1oH/2 - MyoH/2 - MyoH/2
|11> M11H/2 - MyH/2 - MyH/2 M1H/2
G |00> 01> |20> 11>
|00> (Moo+Mor+Mio+Mus (Moo-Mo1+Myo- (Moo+Moz-Mio- (Moo-Moz-
YH/4 Mai1)H/4 Mu1)H/4 Mzo+Mu1)H/4
01> (Moo-Mo1+Mio- (Moo+Mo1+Mig+Mig (Moo-Mo:- (Moo+Mo1-Mio-
Mi1)H/4)H/A Mio+Ma11)H/4 Mi)H/4
110> (Moo+Mo1-Myo- (Moo-Moz- (Moot+Mo1+Mio+M1g (Moo-Mo1+M1o-
Mll)H/4 M10+M11)H/4)H/4 Mll)H/4
11> (Moo-Moz- (Mgo+Mo1-Myo- (Moo-Mo1+Myo- (Moot+Mo1+M1o+Ma1)
Mig+Ma1)H/4 Mi)H/4 Mi)H/4 H/4

Now, consider the application of G to vector |001>:

1 1
G|001>=Z|00>®(M00 + Mo, + My, + My) H |1>+Z|01>®(M°° —Mg; + My =My JH[1)+

1 1
+Z|10>®(Moo+M01_M10_Mn)H|1>+Z|11>®(Moo_M01_M10+M11)H|1>

Consider the operator (Mgo+Mo1+M1o+M11)H under the hypotheses of balanced functions Mie{l, C}and

|{Mi2 M;i = |}| = |{Mi2 M;i =

Thus:

C}|. Then:
Moo+Mo1+Mio+Muy |0> [1>
|0> 2 2
|1> 2 2
(Moo+Mor+Mio+M11)H/4 |0> [1>
|0> 1/242 0
11> 1/242 0

36

OnNEeKTPOHHBIN XXypHan « CUCTEMHbIN aHanu3 B Hayke n obpasoBaHUN» Boinyck Ne3, 2014 rog

1
Z(MOO+M01+M10+M11)H|1>=0.

This means that the probability amplitude of vector |001> of being mapped into a vector |000> or |001>
is null.

Consider now the operators:
(Moo+Mo1+M1g+M11)H
(Moo—Mo1+M10—M11)H
(Moo+Mo1—M10—M11)H

(Moo—Mop1—M19+M11)H

under the hypotheses Vi: Mi= I, which holds for constant functions with values 0:

Moo+Mo1+Mio+Mus |0> 1>
0> 2 0
1> 0 4

(Moo+Mo1+M1o+Ma1)H/4 |0> |1>

0> 1272 12172
11> 122 -1/2v2
Moo—Mo1+M1o—M11 |0> [1>
|0> 0 0
[1> 0 0
MootMoi—M1o—M11 |0> [1>
|0> 0 0
[1> 0 0
Moo—Moi—M10+M1z |0> [1>
|0> 0 0
|1> 0 0

Using these calculations, the following results are obtained:

1
Z(MOO —Mg; + My =My,)H|1) =0,
1
Z(MOO +Mg; =My =My,)H[1) =0,

1
% (Moo =M = Myg + My, JH 1) =0.

This means that the probability amplitude of vector |[001> of being mapped into a superposition of vec-
tors |010>, |011>, |100>, |101>, |110>, |111> is null. The only possible output is a superposition of vectors
|000> and |001>, as shown before using circuits. A similar analysis can be developed under the hypotheses
Vi: Mi=C.

37

OnNEeKTPOHHBIN XXypHan « CUCTEMHbIN aHanu3 B Hayke n obpasoBaHUN» Boinyck Ne3, 2014 rog

It is useful to outline the evolution of the probability amplitudes of every basis vector while operator °H,
Ur and 2H ®I are applied in sequence, for instance when f has constant value 1. This is shown in Fig. 33.

|000> |001> |010> |011> |100> 101> 110> 111>

Figure 33 (a). Input probability amplitudes

1
0,5
o J]]]]
1
[000= [001= [010= [011= [100= [101= [110= [111=
Figure 33 (b). Probability amplitudes after Step 1
1
n,%
0 1 1 1 [
. J]]]]
g
[000= [001= [010= [011= [100= [101= [110= [111=
Figure 33 (c). Probability amplitudes after Step 2
1
0,5
0
o L
g
1000 1001 1090 | = | 900 1101 1190 111

Figure 33 (d). Probability amplitudes after Step 3

Operator 3H in Fig. 33 (b) puts the initial canonical basis vector [001> into a superposition of all basis
vectors with the same (real) coefficients in modulus, but with positive sign if the last vector is [0>, negative
otherwise.

Operator Ug in Fig. 33 (c) in this case doesn’t create correlation: it flips the third vector independently
from the values of the first two vectors.

Finally, 2H ® | in Fig. 33 (d) produces constructive interference: for every basis vector |xox1yo> it calcu-
lates its output probability amplitude o 'xyx,y, as the summation of the probability amplitudes of all basis vec-
tors in the form |xox1yo> in the input superposition, all with the same sign if |xox;> = |00>, otherwise changing
the sign of exactly the middle of the probability amplitudes. Since, in this case, the vectors in the form
|Xox10> have the same (negative real) probability amplitude and vectors in the form |xox11> have the same
(positive real) probability amplitude, when |xox1> = |00>, probability amplitudes interfere positively. Other-
wise the terms in the summation interfere destructively annihilating the result.

38

OnNEeKTPOHHBIN XXypHan « CUCTEMHbIN aHanu3 B Hayke n obpasoBaHUN» Boinyck Ne3, 2014 rog

D. General case (n > 0). In the general case n >0, Ur has the following form:

Ur |0..0> |0..1> |1..1>
|0..0> Mo..o 0 0 0
[0..1> 0 Mo. 1 0 0
11..1> 0 0 0 M1

where Mie{l, C}, ie{0,1}".
Calculate the QAG G=("H ®I) -Ug-(""*H):

MY 0..0> li> [1..1>
|0..0> H/2"? H/2™? H/2"?
li> H/2"2 e CDMHRY L (1) @DHj
11..1> H/2"2 e (D@D () @D D

Here the binary string operator, which represents the parity of the AND bit per bit between two strings,
is used.

Priority of bit per bit AND Given two binary strings x and y of length n, define:

X-y=X-Y19% Y, ®..0X, Y,
The symbol «-» used between two bits is interpreted as the logical AND operator.
It can be shown that the matrix "*H really has the described form. It can be shown that:

n], -C

ij 2n/2

The proof is by induction: n = 1:

1 (<00 LS
|:1H :|0,0 - T ool2 |:1H :|0,l - Coou2

2 172
2 2

o U2 iz

[1H] 1 w[lﬂm__l w

n>1:

39

OnNEeKTPOHHBIN XXypHan « CUCTEMHbIN aHanu3 B Hayke n obpasoBaHUN»

["H ="

1o
21T|:n :L,j = U2 2(n—l)/Z

1 n-1
F[H:LJ :_W 2(n—1)/2

Boinyck Ne3, 2014 roa

1 (_1)i<J' (_1)(i0)‘(10)

2n/2

RN E INE AL

g o2 o(n-12 = gn/2

) 1 (_1)i‘J' _(_1)(i1)'(10)

1 e
ﬁ[']i,j _2:|.T2(nfl)/2 -
1 (_1)i-i (_1)(i1)‘(11)

2n/2

2“/2

Matrix "*H is obtained from "H by tensor product. Similarly, matrix "H ® I is calculated:

"Hal 0..0> i> [1..1>
|0..0> /272 /272 1/2v2
i> |/2n/2 (_1)i-j|/2n/2 (_1)i . (l..1)|/2n/2
|1"1> |/2n/2 (_1)(1..1) g |/2n/2 (_1)(1..1) 4(1..1)|/2n/2
Ug-™H 0..0> li> [1..1>
|O..0> |\/|o,_oH/2n/2 |\/|o,,oH/2n/2 |\/|o_,oH/2n/2
li> MiH /2"2 (-1)"1 MjH/2"? (-1)" & MiH/2™2
|1..1> |\/|1_1H/2n/2 (—1)(1“1) 1 M1,,1H/2n/2 (-1)(1“1) (1.1) Ml_lH/Zn/Z

Only the first column of gate G is calculated since this operator is applied exclusively to input vector

|0...01> and so only the first column is involved.

G 0..0>
[0..0> | (Mo.o+..+Mi+..+My.1)H/2"
i> (Zjcroyn (-1)M;)H/2"
|11> (zje{o,l}” (-1)(1"1) JMJ)H/Zn

Now consider the case of f constant. This means that all matrices M; are identical.

This implies:

In this summation the number of +1 equals the number of —1. Therefore, the input vector [0...01> is

zin(zj(‘l)i'ij)H =0,

mapped into a superposition of vectors |0...00> and |0...01> as shown using circuits.

OnNEeKTPOHHBIN XXypHan « CUCTEMHbIN aHanu3 B Hayke n obpasoBaHUN» Boinyck Ne3, 2014 rog

If f is balanced, the number of M;= I equals the number of M;= C. This implies:

1 Loty ey LT 1
2_”(ZiM")H_2_”(2 | +2 C)H—EL =
C1rjn 1] 11 o0
C2J2(1 1)1 1] J2[1 of

Zin(szj)Hp):o.

This means that input vector |0...01>, in the case of balanced functions, cannot be mapped by the QAG
into a superposition containing vectors |0...00> or |0...01>.

And therefore:

The guantum block terminates with measurement. The above results show the possible outputs of meas-
urement and their probabilities:

Superposition of Basis Vectors Result of Measurement
(Before Measurement) Vector Probability
Constant functions: |0..00> || cxol[?
G[0...01>=(0..0>®(a|0>+0cu|1>) 0..01> lleall

Balanced functions:
_ Vvie{0,1}"-{0..00, 0..01}:|i> || cxil|?
GJ0...01>=%ic 0,131 - {0.00, 0.01} i |i>

The set A-B is given by all elements of A, unless those elements belonging to B too. This set is some-
times denoted as A/B. The quantum block is repeated only one time in Deutsch-Jozsa’s algorithm. So, the
final collection is made only by one vector.

Decoder. As in Deutsch’s algorithm, when the final basis vector has been measured, one must interpret
it in order to decide if f is constant or balanced. If the resulting vector is |0...0> it is known that the function
was constant, otherwise it is balanced. In fact gate G produces a vector such that, when it is measured, only
basis vectors |0...00> and [0...01> have a non-null probability amplitude exclusively in the case f is constant.
Besides, if f is balanced, these two vectors have null coefficients in the linear combination of basis vectors
generated by G. In this way, the resulting vector is decoded in order to answer Deutsch-Jozsa’s problem:

Resulting Vector
Answer
(after measurement)
[0...00> f is constant
|0...01> f is constant
otherwise f is balanced

Computer design process of Deutsch-Jozsa QAG (D.—J. QAG) and simulation results. Consider the de-
sign process of the Deutsch-Josa QAG according to the steps represented in Fig. 23.

For step 0 (encoding), case n =3, examples of constant and balanced functions encoding are shown in
Figs 34 and 35.

41

OnNEeKTPOHHBIN XXypHan « CUCTEMHbIN aHanu3 B Hayke n obpasoBaHUN» Boinyck Ne3, 2014 rog

: . 3 = 3
flrepal)=o0 flreforf)=1
fr"" %s
IR T R S T o g B R R
1. fud
% d

Figure 34. Deutsch-Jozsa’s QA: Step 0. Constant functions encoding. Order n = 3

- ¥ : 3
vefoal)=1 0 {x o
f(& { lj IL-'-UU |1'-Ull -I s {U‘l} lx={mu,uu\uu\1u} Ix:{_uﬂ[n.ﬂﬂl.lﬂﬂ.lﬂli—
| i,
L] ¥
:ﬂ -; ?ﬂ D.’ i 1l I} ‘; ; m o '; ‘i. m 1
i i
= L

Figure 35. Deutsch-Jozsa’s QA: Step 0. Balanced functions encoding. Order n = 3

For step 1 in Fig. 23, the example of quantum operator preparation such as superposition operator in
Fig. 36 is shown.

n+1{

Figure 36. Deutsch-Jozsa’s QA: Step 1.1. Preparation of quantum operators. Superposition operator
Figs 37-40 shows the step 1.2 from Fig. 23 as the preparation of entanglement operators:

42

OnNEeKTPOHHBIN XXypHan « CUCTEMHbIN aHanu3 B Hayke n obpasoBaHUN» Boinyck Ne3, 2014 rog

For a constant function:
f(e{01)’ =0)and f (<{o,1}* =1

as shown in Figs 37 and 38;
For a balanced function:

f(efo)’=1

x>011 0

s [1 x={010,011,110,111}
Mu) and f| {01} = :
< 0 x={000,001100,101}

as shown in Figs 39 and 40 respectively.

Avelorf)=1_ d_

Figure 39. Deutsch-Jozsa’s QA: Step 1.2. Preparation of quantum operators: Entanglement operator

43

OnEeKTPOHHbIN XypHan «CUCTEMHbIA aHanM3 B Hayke U o6pa3oBaHMmny Boinyck Ne3, 2014 rog

o8t

igue':] /{__e {0.1:3): ll\=<tblll.lllLll«llll2

] .) q (000001100108

Figure 40. Deutsch-Jozsa’s QA: Step 1.2. Preparation of quantum operators: Entanglement operator

Step 1.3 in Fig. 23 shows the preparation of the interference operator and is shown in Fig. 41. Compari-
son between superposition and interference operators is shown in Fig. 42.

;-q.

i Cisesesavasrensa

Superposition Interference

Figure 42. Deutsch-Jozsa’s QA: Superposition and interference operators

The evolution of gate design process from Fig. 23 is shown in Fig. 43.

44

OnEeKTPOHHbIN XypHan «CUCTEMHbIA aHanM3 B Hayke U o6pa3oBaHMmny Boinyck Ne3, 2014 rog

e =pIFTo
A
fr=oaf)=1

A idaa
.f{-"é'h]}j]=qnuuqrgu

AT J/,
f{ﬁ.i {Ll.l}z } = llr‘--{n]ﬂ.l‘l]l.l]UJl]} g

T

5= 000, 70,1 00,1011

Interference Entanglement Superposition

Figure 43. Deutsch-Jozsa’s QA: Step 1.4. Quantum gate assembly
Step 1.4 from Fig. 23 as QAG assembly for design cases is shown in Fig. 44.

‘f'(xe {01}3)= 0 f{xe {01}3]=l -f{.*re{O‘I}j}=u;_=ulqu;'011 f(’"”- {0'1}3)_ l|_(:{nm,m1.1m.m]

= 0|
F={000,001,300,101)

Figure 44. Deutsch-Jozsa’s QA: Step 1.4. Assembled quantum gates

Figs 45 and 46 show the results of algorithm gate execution for constant and balanced functions respec-
tively (corresponding to step 2 from Fig. 23).

45

OnNEeKTPOHHBIN XXypHan « CUCTEMHbIN aHanu3 B Hayke n obpasoBaHUN»

Boinyck Ne3, 2014 roa

flxe {0_.)1}3

Inilsal state

Suparposdion

[(] L] L] L] L] L] L] L] L]

08
81
_&§ WG Gt Ui T e e e @ink (e paie i |ﬂ?1- T i [pie
18
o

Enate after intederence operator

Stale sfter superposition operalor Entanglerment
B L3 a2 o= L) LF-3 4 3 L)] ’I I
W oo W o W _pe e o e [l g e
.&_n&'é 'E‘!ﬁ'b!-..t!’-.’. 'l'"&'"!'l',
_3 - Ex} F-3 axm o o . k-3 R r
aft T
Stata after artanglement oparaor Interference

ik amm i \
§] 3
o = & B 0 B9 4 4 4 BB BB 4 4 2 i |
N PR N RO RS IS DN [NOODe 0TS (R [T [INDR (1S (11N 18R | 5
fﬂ] 1 i !
-0, § /
o :
i 2 - H
Sep
(@)
flxe {0,1} =]
Iniifal state Superposion

T

L] L] L] L] L]] L] L] L]] L] L]

o
i g e D e pE e @i (e pn pNs (e (e i i [

,Bohh oooo
=0 T b SN =

State sfier superpasition aperaior

Entanglernant

State after interderance operator

[

O o T T T T L L e

L obSS oooo \Behd oooo i
Nt AT T AT IR T DT D b G ==

JOF . vﬁ&ﬂ" . s T b!_w'&_ i . i ¥ “Q‘_.l? - | ' _

3 =2 om e m a2 e "ﬂ

i} 11t
State ater ertanglement aparator Interfesenc e

(b)

Figure 45. Deutsch-Jozsa’s QA: Step 2. Algorithm execution: Constant functions

46

OnNEeKTPOHHBIN XXypHan « CUCTEMHbIN aHanu3 B Hayke n obpasoBaHUN» Boinyck Ne3, 2014 rog

fleefoa¥)=1 o

x=011

x=011

Indtial state Suparposilion

I b b
Fu

& @ & & 4 ol L] 4 -4 4
i f0RE NG NG (S NS fAIT (S [T (TE oth RNE [(LS D

,BEbd oooo
=0 (71w b £ (=

State afler superposilion operator Entanglemant
e eosonsaonos. | T
Sl Ry g g Mg Mg Moge 0 B
g oz oz oz oz oz am oz nm . L
! ' 1

State after ertanglement cperator Intuference

, ¢ oo , bhd cooo , bbb oo
NS T O P IR O DTN A OO0
T T T T T

State afler irterference operator Ertropy evolution

0. B 4 i
8 3 /
0 i 5 ; i
o e e s et (R e pree pone | & Ky il

=3
fﬂ 1 H
-0 AT /

1 2 3 Fi
Slep

(@)

~
=
m

x={010.011.110.111} |x={000,001.100.101}

3
1))=1
' Indtizl state

. pooo- POl BOWe DOibe [ROG RN BN EAITe (00 (KW A0 [KAIs (R [IWEe (KR DM o

T b S
T

T s

State afler superposinon operator

b o o az o o2 o=

B3z 5

o G oL Bl LU B L BN S

tm'm"nm W W os W oo W W oo W
0 L E3 ar £t 4 ox 034

e 04

bebs oooo

i el ,B5hh oooo / e
By I o
T e e r

State afler endanglemint operator

State after imederence operator

naF EE
i} ¥ @ 8 a I pes 6 o 8 o 4 & & a4 e &
‘ﬁ b opoe g gose gans pean I Fata fain (s 0T poae poile (AR pEEe g pom
A o
1 FH 3 F]
Step

(b)
Figure 46. Deutsch-Jozsa’s QA: Step 2. Algorithm execution: Balanced functions
Fig. 47 shows the 3D result of amplitude probability evolution for Deutsch-Jozsa’s QA execution.

47

OnEeKTPOHHbIN XypHan «CUCTEMHbIA aHanM3 B Hayke U o6pa3oBaHMmny Boinyck Ne3, 2014 rog

f{xe{m}j]=um,()[,m f(xf {0_1}3)_ l|x=[UIU.D]],HU,]]]]

& n|
a={00h, 001,100 101}

(a) {b) ¢} (clh

Figure 47. Deutsch-Jozsa’s QA: Step 2. Algorithm execution 3d dynamics: Probability amplitudes

Fig. 48 shows the 3D result of probability evolution of this QA.

1|

: E =10

Jf (:_ — %{}1” } a={ 00011130011
T={000,101,100.101)

e loaf)=0 fxefory)=1 ‘j{xe{O,lF):l

=01 quiﬂll

Fig. 48. Deutsch-Jozsa’s QA: Step 2. Algorithm execution 3d dynamics: Probabilities
Result interpretation (corresponding to step 2.4 from Fig. 23) is shown in Fig. 49.

Answer w
C Consant)

A B (L T " [
10-00> 001> ‘

000> |[0--01>

Figure 49. Deutsch-Jozsa’s QA: Step 2.4 Result interpretation

Measured basis vector

Probability

48

OnNEeKTPOHHBIN XXypHan « CUCTEMHbIN aHanu3 B Hayke n obpasoBaHUN» Boinyck Ne3, 2014 rog

In Deutsch-Jozsa’s QA, the mathematical and physical structures of the interference operator (”H I)
differ from its superposition operator(”*lH). The interference operator extracts the qualitative information

about the property (constant or balanced property of function f) with operator "H , and separate this property
qualitatively with operator I. Deutsch-Jozsa’s QA is a decision making algorithm.

For the case of Deutsch-Jozsa’s QA only one iteration is needed without estimation quantitatively the
qualitative property of function f and with error probability 0.5 of successful result. It means that the Deutsch-
Jozsa QA is a robust QA.

The superposition operator organizes the quantum massive parallel computation process and robust ex-
traction of function property is provided by the entanglement operator. The next section illustrates the Si-
mon’s QA and the role of the interference operator in the searching problem.

Simon’s algorithm

Simon’s algorithm is now illustrated using circuits and pointing out the role of interference.

Simon's problem. Simon’s problem is formulated as follows:
Input f:{0,1}" —»{0,1}":

35€{0,1}"-{0..0}:vx,ye{0,1}": f(x) = f(y) & (x =y v X = y®s)

Problem Find s

Encoder. As for the Deutsch-Jozsa’s algorithm, firstly consider some special cases.

A. Introductory example. Consider the case:

n=2, f(00)=00, f(01)=01, s=11.

Then, the f map table is:

(Xo, X1) f(Xo, X1)
00 00
01 01
10 01
11 00

Step 1
Function f is encoded into the injective function F built in the usual way:

n+n n+n

F:{01 " —{01} such that
F (X0 X0 X010 Yor Yo Yoa) = (Xo0 X Xaas F (%00 X000 %01) D (Yo Yaros Yoa)

This is the F map table:

(Xo,.., Xn-1, Yo,.+, yn—l) F(Xo,.., Xn-1, Yo,.-, Yn-l)
0000 0000
0100 0101
1000 1001
1100 1100
0001 0001
0101 0100

49

OnNEeKTPOHHBIN XXypHan « CUCTEMHbIN aHanu3 B Hayke n obpasoBaHUN» Boinyck Ne3, 2014 rog

(Xo,.., Xn-1, Yo,.., yn—l) F(Xo,.., Xn-1, Yo,-.-, yn.l)
1001 1000
1101 1101
0010 0010
0110 0111
1010 1011
1110 1110
0011 0011
0111 0110
1011 1010
1111 1111

Step 2
Now encode F map table into Ur map table. As usually, the rule is:

vte{0,1}™": Ur [t)]= dF(t)],

where 7is the code map defined by Eq. (2) above. This means:

[Xo.. Xn-1 Yo.. Yn1> UE[Xo.. Xn-1 Yo.. Yn-1>
|0010> |0010>
|0110> [0111>
[1010> |1011>
[1110> [1110>
|0011> |0011>
[0111> |0110>
[1011> |1010>
[1111> [1111>

Step 3
Using the rule:

[UF]ij :1<:>UF|j>:|i>

calculate Uras a block matrix:

Ur |00> |01> |10> 11>
|00> I®1 0 0 0
01> 0 I®C 0 0
|10> 0 0 I®C 0
111> 0 0 0 I®1

This matrix preserves the first two vectors in the input tensor product vector. It preserves the last two
when the first two vectors are |0> and [0> or |1> and |1>. It preserves the third vector, but it flips the fourth,
when the first two vectors are [0> and |1> or |1> and |0>. Observe that the block matrix in cell (i, i) is identi-
cal to the block matrix in cell (i®s, i®s), where i is the binary label of the vector marking the matrix row and
column of the cell.

B. General case with n = 2. In general, if n = 2, repeating steps 1, 2 and 3 as for Deutsch-Jozsa’s algo-
rithm, the general operator Ug is obtained in the following form:

50

OnNEeKTPOHHBIN XXypHan « CUCTEMHbIN aHanu3 B Hayke n obpasoBaHUN»

Boinyck Ne3, 2014 roa

Uk 00> [01> 10> [1I>
00> | Moo 0 0 0
01> 0 Moz 0 0
|10> 0 0 Mo 0
11> 0 0 0 M1

where Mie{I®I, I®C, C®I, CR®C} and Mi=M; <(j=ivj=i®s).

C. General case. Generalizing the results obtained in the previous examples and reasoning like in
Deutsch-Jozsa’s algorithm, one can find the structure of Ur for Simon’s algorithm too. The final matrix is:

Ur |0..0> |0..1> |1..1>
|0...0> Mo...o0 0 0
0...1> 0 Mo...1 0
[1..1> 0 0 0 M1

where Mi=P1 ®...®P;, Pxe{l, C}, k=1,...,n and Mi = M; <(j=ivj=i®s).
Note that the column labels are basis vectors of dimension n (not 2n).

Quantum block In Fig. 50 (a) shows the circuit describing Simon’s QG.

(a)

[] |
-, | — =1 1
=] —~{5}—
. L E : i
~* { E Ilﬂ Il »as
T % Us .
. i
]
N
-‘]
1 -
i i i
] 1 |
FY'FE?] : STER I : STEP I sTER 2 : FFTTPTl
Bo
1 1
1) 1
: |
0.. & 1 [(CHE'D -Ur |- CHO'D [} | Iov ou>
: :
1) 1
! == HorTeT

—HE
L--—«m

Uy

STEPI

STEP)

STERS

Figure 50. Simon’s quantum algorithm simulation: Circuit representation and corresponding gate design

Using the transformation rules defined in Fig. 23 this circuit is complied into the corresponding gate.

Fig. 50 (d) shows Simon's QAG. To calculate this gate and establish what output vector it produces, it is
first useful to deal with the introductory example of Section A, passing then to the general case with n = 2.
Finally, the gate structure is described in the general situation (n > 0).

A. Introductory example. In the case considered before (n = 2, f(00) = 00, f(01) = 01, s = 11), the QAG

assumes this form:

G=("H ®"1) U -("H®")

where U has been calculated in Section A, Step 2.

@)

o1

OnNEeKTPOHHBIN XXypHan « CUCTEMHbIN aHanu3 B Hayke n obpasoBaHUN» Boinyck Ne3, 2014 rog

Start finding matrix 2H ®21, using the results about the tensor power of matrix H obtained in previous
section.

H®? | [00> [01> [10> [1l>
00> | /2 Az AR AR
01> | A AR AR -AR
10> | AR AR AR -AR
> | AR -AR -AR AR

Recall matrix Ur and calculate G:

Uk 00> 01> 10> [1I>
|00> 2| 0 0 0
01> 0 I®C 0 0
110> 0 0 I®C 0
111> 0 0 0 2|
Ur- (CH®2l) |00> 01> |10> 11>
|00> 21/2 21 /2 21/2 21/2
|01> I®C/2 - 1®C/2 I®C/2 - 1®C/2
|10> I®C/2 I®C/2 - 1®C/2 - 1®C/2
111> 212 -21/2 -2/2 2112
G |00> [01> |10> 11>
|00> (21+1®C)/2 0 0 (21-1®C)/2
|01> 0 (21+1®C)/2 (A-1®C)/2 0
110> 0 (2-1®C)/2 (2+I®C)/2 0
11> (21-1®C)2 0 0 (21+1®C)/2

With G from (3.2) having this structure, apply it to vector |0000> to obtain the following result:
(‘1+1@C) (‘1-19C)
G|0000) =|00>#|00> +|11>#|00> .
This means:

G|0000) = %|oo>(|oo> +|01>)+%|11>(|00> —[01)).

If the output vector is measured, one can obtain only 4 possible results: |0000>, |0001>, |1100> and
|1101>. Encode back into their binary labels the values of the first two basis vectors of dimension 2 in the
output tensor product: these labels are 00 or 11. Then solve the system:

52

OnNEeKTPOHHBIN XXypHan « CUCTEMHbIN aHanu3 B Hayke n obpasoBaHUN» Boinyck Ne3, 2014 rog

(00)-(tlt2)=0 0-t,®0-t,=0 090=0 ot o »

(11)'(t1t2)203> 1'tl@1-t2:0 = t1®t2=0 j{t’l Ozt_ 03{:1_1
*) *= =

t,#0,t,#0 t,=0,t, 20 t,#0,t,%0 b 2)

Since s=(11), then s=(t1 , t). Therefore, s can be calculated as the solution of the system:

(00)-5=0
(11)-s=0
s+(0,0)

B. General case with n = 2. In the general case with n=2, matrix Ur has the form:

Usr | [00> | (01> | [10> | 11>
00> | Moo 0 0 0
01> 0 Mo 0 0
10> 0 0 Mo 0
111> 0 0 0 Mu

where Mie{I®I, I®C, C®I, C®C} and M = Mj < (j=i v j=i®s).

Using matrix 2H ®?I calculated above, obtain:

Ur- CH®72I) 100> 01> 10> 1>
|00> Moo/2 Moo/2 Moo/2 Moo/2
|01> Mo1/2 -Mo1/2 Mo1/2 -Mo1/2
|10> M1o/2 M10/2 -M10/2 - M1o/2
|11> M11/2 -M11/2 -M11/2 M11/2
G |00> |01> |10> 11>
|00> (Moo+Mo1+Mio+M:1 (Moo-Mor+Mio- (Moo*+Mo1-Mio- (Moo-Mos-
1)/4 Mu)/4 M11)/4 Mio+Mu1)/4
01> (Moo-Mo1+Mio- (Moo+Mor+Mzyot+M; (Moo-Moz- (Moo+Mo1-Mio-
Mu1)/4 1)/4 M1o+Mu1)/4 Mu1)/4
110> (Moo+Mo1-Myo- (Moo-Moz- (MootMo1+M1o+M1 (Moo-Mo1+Mio-
Ma1)/4 Mao+Ma1)/4)4 Ma1)/4
11> (Mgo-Moz- (Mgot+Mo1-Mao- (Moo-Mo1+M1o- (Moog+Mor+Mio+M
M10+M11)/4 M11)/4 M11)/4 11)/4

Now, consider the following cases:

(i) s = 01; (ii) s = 10; (jii) s = 11.

53

OnNEeKTPOHHBIN XXypHan « CUCTEMHbIN aHanu3 B Hayke n obpasoBaHUN»

In the first case Moy=Mo1£M10=M11. This means:

Boinyck Ne3, 2014 roa

Ga 100> 01> 110> 111>

|00> (Moo*+My)/2 0 (Moo—M10)/2 0

01> 0 (Moo+Mig)/2 0 (Moo—Mi0)/2

|10> (Moo—Mu0)/2 0 (Moo+M0)/2 0

111> 0 (Moo—M10)/2 0 (Moo+Mo)/2
In the second case Moo=M10#Mo1=M11. This means:

Gio |00> |01> |10> [11>

|00> (Moo*+Moy)/2 (Moo—Mo1)/2 0 0

|01> (Moo—Moz)/2 (Moo+Moz)/2 0 0

110> 0 0 (Moo+Mo1)/2 (Moo—Mo1)/2

11> 0 0 (Moo—Mos)/2 (Moo+Moy)/2
Finally, in the third case Mop=M11£Mg1=M1o. This means:

Gu 100> 01> 110> 111>

|00> (Moo+Mo1)/2 0 0 (Moo—Mo1)/2

01> 0 (Moo+Moy)/2 (Moo—Moz)/2 0

110> 0 (Moo—Mo1)/2 (Moo+Moz)/2 0

111> (Moo—Mo1)/2 0 0 (Moo+Moy)/2
Consider the application of Ggi, G1o and G1; to vector |[0000> in the three cases:

Case S Output vector: Gs/0000>

1 01 G01/0000>=1/2 |00>(Moo+M10)[00> + 1/2 [10>(Moo-M10)|00>

2 10 G10/0000>=1/2 |00>(Mgo+Mo1)|00> + 1/2 |01>(Mgo-Mo1)|00>

3 11 G12/0000>=1/2 |00>(Moo+Mo1)[00> + 1/2 [11>(Moo-Mo1)|00>

Measure the output vector in these three cases and encode back into binary values the first two basis
vectors in the tensor product, to obtain the following result:

Case S Binary Values (FROM THE FIRST TWO VECTORS) Probabilities

(a, b)=(0,0) 0.5

1 01
(a, b)=(1,0) 0.5
(a, b)=(0,0) 0.5

2 10
(a,b)=(0,1) 0.5
(a, b)=(0,1) 0.5

3 11
(a, b)=(1,1) 0.5

Note that (a, b) - s = 0 where a and b are the binary values from the first two vectors. The equations so
generated let us find s as the solution of the corresponding system.

54

OnNEeKTPOHHBIN XXypHan « CUCTEMHbIN aHanu3 B Hayke n obpasoBaHUN»

Boinyck Ne3, 2014 roa

C. General case (n > 0). Now consider a general positive value for number n.

The operator Uk is:

Ue [0..0>]0..1> |1..1>
[0..0> | Mo.o 0 0
[0..1> 0 Mo..1 0
11..1> 0 0 0 Mi. 1

where Mi= P1®..QP, , Pke{l, C}, k =1,...,n and and Mi = M; < (j=i v j=i®s).

Operator "H® "I is built from operator "H:

"H&' | 10..0> [0..1> i> [1..1>
ny/oni2 ny/on/2 ny/oni2 ny/oni2
|0..0> 1/2 1/2 1/2 1/2
0.1> | "2 -/ (-1)©-D-1 ("1/2"2) -/
) (_1) i-(0.1) B .
i> n|/2n/2 R, (_1)I-] (n|/2n/2) (_1) 1-(1..1) (n|/2n/2)
("1/2"2)
|1__1> nj/on2 _np/2m2 (_1)(1..1)-j (n|/2n/2) (_1)(1..1) -(1.1) (n|/2n/2)
Ur- ("H®") |0..0> i> [1..1>
|0..0> Mo, o/2"2 Mo.o/2"? Mo.o/2"2
|i> Mi/2n/2 (_1)i.j Mi/2n/2 (_1)i -(1.1) Mi/2n/2
11> My 1/2" (-1)D 1 My 1/27 (-1)@D @D
o . . Ml..1/2n/2

The first column of the final gate has the following form:

G 0..0>
|0..0> (Mo.o+..+Mi+..+My 1)/2"
i> (Zjcoyn (-1)IM5)/2"
|ll> (Eje{o,l}” (-1)(1“1) 'ij)/2n

i

. . 1 :
The interference operator ("H® "I) creates the following term: — Z (—1)I M;.

jefo)”

55

OnNEeKTPOHHBIN XXypHan « CUCTEMHbIN aHanu3 B Hayke n obpasoBaHUN» Boinyck Ne3, 2014 rog
Since Mh= Mk < (h = k v h = k®s), then this term may be written as:

1
2I’1

1 1

j<fosy” ym zgé[(_l)i.k (Y |m, =§kes(‘1)i'k 1) M

where S is such that:

—3x,yeS:x®s=y —3Ix,ye{01"-S:xds=y.

The gate can be rewritten in this way:

G |0..0>
|0‘ . ‘0> ZkeS (-1)(0“0)"‘[1+(-1)(°'“O)'S]Mk/2”
li> Zkes (-1)[1+(-1) Ik /2"
n...1> Skes (-1)EDH[L+(-1)T- DM /2"

The term [1+ (- 1) "] is 0 if and only if i - s = 1. So, only those cells in the column that are labeled by |i>
such that i - s = 0 are non-null. This means that:

1 :
G|0..00..0>=2n_1 > i)

i{0,1}":i-s=0
The quantum block ends with measurement, which therefore produces a basis vector |i> such that
i -s=0. Thus, the interference operator (”H ® ”I) is created the important component of final result and
with the entanglement operator and a measurement process can extract this final result.

In this case, the interference operator ("H ® ”I) extracts the qualitative property of the function f us-

ing operator (”H) and estimates quantitatively this property as a solution number with operator(”l) .

With tensor product(@)the interference operator(“H ® "l)joins both possibilities in one automation
operation.

Simon’s QA is the search algorithm and this property is described by specific structure of interference
operator. Operator (”H) from interference operator (“H ® I) in Deutsch-Jozsa’s QA created the distribu-

tion of probability amplitude with the same amplitude of probability |a,|=|cy|= i; the measurement with

2

the ancillae qubit as iz(|0>—|1>)®l extracts only the qualitative information about the function f, and

N

gives sufficient and necessary values of probability 0.5 for the separation of solutions in decision-making
algorithm. The quantum block for this QA is repeated only one time and the final collection is made only one
basic vector.

For state vector ||> of Deutsch-Jozsa’s QA the estimator of amplitude of probability is:
L 1)'M. |H
o 2 ()M H.

56

OnNEeKTPOHHBIN XXypHan « CUCTEMHbIN aHanu3 B Hayke n obpasoBaHUN» Boinyck Ne3, 2014 rog

The operator H in this operator plays the role of the destructive interference for ancillary qubit:

H (%[|0>—|1>]j=|0> and realize toss and coin procedure of random measurement. The different signs

(iEJ of amplitude probability in ancillary qubit with identity operator | guarantee the recognition the so-
lution with toss and coin procedure of measurement that is necessary and sufficient conditions for successful
result of quantum computing.

In the case of Simon’s QA the estimator of amplitude of probability in state vector |i) is as follows:

Choice of
solution

1 i 1 ik 1®s
n (_1) J Mj =on (_1) + (_1) ? Mk ,
2 keS 2 keS N .
Quantitave solution
estimator

where S is such that include almost quantitative information about the solutions.

The estimator of amplitude probability in Simon’s QA constructively distributed the amplitude of prob-
ability: increase the amplitude for «good» solution with quantitative estimation of this solution and decrease
other amplitudes of solution probability.

In Simon’s QA the role of interference is different than in Deutsch-Jozsa’s QA while this operator ex-
tract the qualitative information about the solution and estimate quantitatively this solutions using n times
iterations in quantum block.

The quantum block is repeated enough times to get enough information to determine s. Since every vec-
tor will constitute a coefficient vector for an equation where s is the variable vector, this number depends on
how many different equations are needed in order to find s. Since s has length n, in general one will need a
number n of different equations. This requires, in general, a linear number of measurements.

Decoder. The quantum block is repeated O(n) times until a collection of n different vectors have been
generated. As for the case n = 2, for every vector in this collection, the first n basis vectors of dimension 2
composing it through tensor product are encoded back into their binary values. In this way they can be used
as coefficients for building an equation whose variables are the bits of s. By solving the system made of
these equations, one can find s.

Simon’s QA is the benchmark of the search QA family and separates this family from the decision mak-
ing QA family using the special description form of interference operator. This algorithm has a mathematical

structure similar to the superposition operator (”H ® "I) but has different physical meaning.

References

1. Ulyanov S.V., Ghisi F., Kurawaki ., Litvintseva L.V. Simulation of quantum algorithms on classical
computer. — Note del Polo Ricerca, Universita degli Studi di Milano (Polo Didattico e di Ricerca di
Crema). — Milan, 1999. — Vol. 32.

2. Ulyanov S.V., Kurawaki 1., Yazenin A.V. et all. Information analysis of quantum gates for simulation of
quantum algorithms on classical computers // Proceedings of Intern. Conf. on Quantum
Communication, Measurements and Computing (QCM&C’2000). — Capri. Italy, 2000. Kluwer Acad.
/Plenum Publ. — 2001. — Pp. 207-214.

3. Ulyanov, S.V., Litvintseva V. L., Ulyanov, S.S. Quantum Information and Quantum Computational
Intelligence: Design & Classical Simulation of Quantum Algorithm Gates. — Note del Polo Ricerca,
Universita degli Studi di Milano (Polo Didattico e di Ricerca di Crema). — Milan, 2003. — Vol. 80.

S7

