
Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2014 год

1

УДК 004.415.2, 004.588

DESIGN INFORMATION TECHNOLOGY OF QUANTUM ALGORITHM GATES

Barchatova Irina1, Degli Antonio Giovanni2, Ulyanov Sergey3

1PhD Student;

Dubna International University of Nature, Society and Man,

Institute of system analysis and management;

141980, Dubna, Moscow reg., Universitetskaya str., 19;

e-mail: i.a.barhatova@gmail.com.

2PhD, professor;

Polo Didattico e di Ricerca di Crema;

Via Bramante, 65-26013, Crema (CR), Italy;

e-mail: gda@dsi.unimi.it.

3Doctor of Science in Physics and Mathematics, professor;

Dubna International University of Nature, Society and Man,

Institute of system analysis and management;

141980, Dubna, Moscow reg., Universitetskaya str., 19;

e-mail: ulyanovsv@mail.ru.

IT design of quantum algorithmic gates (QAG) is considered. General structures of the QAG design
method and simulation system are introduced. Applications to efficient simulation of quantum algorithms
(QA) on classical computer are described.

Keywords: IT design of quantum algorithmic gates, efficient simulation of quantum algorithms, general

structure of the quantum algorithms.

ИНФОРМАЦИОННАЯ ТЕХНОЛОГИЯ ПРОЕКТИРОВАНИЯ КВАНТОВЫХ
АЛГОРИТМИЧЕСКИХ ЯЧЕЕК

Бархатова Ирина Александровна1, Джиованни дели Антонио2, Ульянов Сергей Викто-

рович3

1Аспирант;

ГБОУ ВО «Международный Университет природы, общества и человека «Дубна»,

Институт системного анализа и управления;

141980, Московская обл., г. Дубна, ул. Университетская, 19;

e-mail: i.a.barhatova@gmail.com.

2Доктор наук, профессор;

Поло дидаттико, Крема, факультет информационных технологий;

Италия, Крема, Виа Браманте, 65-26013;

e-mail: gda@dsi.unimi.it.

3Доктор физико-математических наук, профессор;

ГБОУ ВО «Международный Университет природы, общества и человека «Дубна»,

Институт системного анализа и управления;

141980, Московская обл., г. Дубна, ул. Университетская, 19;

e-mail: ulyanovsv@mail.ru.

Рассмотрена информационная технология проектирования квантовых алгоритмических ячеек.
Описываются общие структуры методов проектирования квантовых алгоритмических ячеек и их
моделирования. Приведены приложения эффективного моделирования квантовых алгоритмов на
классическом компьютере.

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2014 год

2

Ключевые слова: информационная технология проектирования квантовых алгоритмических яче-

ек, эффективное моделирование квантовых алгоритмов, общая структура квантовых алгоритмов.

General structure of the quantum algorithmic gate (QAG) design method

Traditionally QA is written as a quantum circuit.

As shown in Fig. 1, the general structure of the quantum circuit is based on three quantum operators

(superposition, entanglement, and interference) and measurement.

Figure 1. Quantum circuit structure

Input in the quantum circuit acts on an initial canonical basis vector to generate a complex linear com-

bination (called a superposition) of basis vectors as an output. This superposition contains the information to

answer the initial problem. After the superposition has been created, measurement takes place in order to

extract the answer information. In quantum mechanics, a measurement is a non-deterministic operation that

produces as output only one of the basis vectors in the entering superposition.

A general QA, written as a quantum circuit, can be automatically translated into the corresponding pro-

grammable quantum gate for efficient classical simulation. This gate is represented as a quantum operator in

matrix form such that, when it is applied to the vector input representation of the quantum register state, the

result is the vector representation of the desired register output state.

The simulation system of quantum computation is based on QAG’s.

The design process of QAG’s includes the matrix design form of three quantum operators: superposition

(Sup), entanglement (
FU) and interference (Int) that are the background of QA structures. In general form,

the structure of a QAG can be described as follows (see Chapter 1):

 

1

,
h

n n m

FQAG Int I U H S


         
(1)

where I is the identity operator; the symbol  denotes the tensor product; S is equal to I or H and depend-

ent on the problem description. One portion of the design process in Eq. (1) is the type-choice of the entan-

glement problem dependent operator
FU that physically describes the qualitative properties of the function

f .

The efficient implementations of a number of operations for quantum computation include controlled

phase adjustment of the amplitudes in the superposition, permutation, approximation of transformations and

|x>

H

UF

|0>

Input Superposition Entanglement Interference Output

H|0>

INT
.
.
.

n

|x>

m .
.
.

.

.

.

.

.

.

h

S

S

h

h

h

Repeated k times

.

.

.

.

.

.

M

E

A

S

U

R

E

M

E

N

T

bit

bit

bit

bit

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2014 год

3

generalizations of the phase adjustments to block matrix transformations. These operations generalize those

used as example in quantum search algorithms (QSA’s) that can be realized on a classical computer. The

application of this approach is applied herein to the efficient simulation on classical computers of the

Deutsch QA, the Deutsch–Jozsa QA, the Simon QA, the Shor QA and the Grover QA.

Implementation of a QA is based on a QAG. In the language of classical computing, a quantum com-

puter is programmed by designing a QAG. The prior art reports relatively few such gates because the basic

principles underlying the quantum version of programming are in their infancy and algorithms to date have

been programmed by ad-hoc techniques.

Fig. 2 is a block diagram showing a gate approach for simulation of a QA using classical computers.

Figure 2. The gate approach for simulation of quantum algorithms using classical computers

In Fig. 2, an input is provided to a QA and the QA produces an output. However, the QA can be trans-

formed to produce a QAG such that an input vector (corresponding to the QA input) is provided to the QAG

to produce an output vector (corresponding to the QA output).

Fig. 3 is a block diagram showing the design of the QAG.

In Fig. 3, an input block of the QA is a function that maps binary strings into binary strings. This

function is represented as a map table block, defined for every string its image. The function is first en-

coded in corresponding block into a unitary matrix operator depending on the properties of . In some

sense, this operator calculates when its input and output strings are encoded into canonical basis vectors

of a complex Hilbert space.

Figure 3. Schematic block diagram of QAG method design

The operator
FU maps the vector code of every string into the vector code of its image by f . The quan-

tum block operates on basis vectors in a complex Hilbert space. The vectors operated on by the quantum

f

f

FU f

f

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2014 год

4

block are provided to a decoder, which decodes the vectors to produce an answer. Once generated, the matrix

operator UF is embedded into a quantum gate G.

The quantum gate G is a unitary matrix whose structure depends on the form of matrix UF and on the

problem to be solved. The quantum gate is a unitary operator built from the dot composition of other more

specific operators. The specific operators are described as tensor products of smaller matrices.

The quantum circuit is a high-level description of how these smaller matrices are composed using tensor

and dot products in order to generate the final quantum gate as shown in Fig. 1.The mathematical back-

ground of this approach is based on mappings between the quantum block operations in the complex Hilbert

space. The encoder and decoder operate in a map table and interpretation space, and input/output occurs on a

binary string level. The Clifford and Pauli groups are the background for universal QAG design for simula-

tion of a QA’s on classical computers.

The probability of every basis vector of being the output of measurement depends on its complex coef-

ficient (probability amplitude) in the entering complex linear combination.

Main QAG’s and main quantum operators

Three quantum operators, superposition, entanglement, and interference, are the basis for quantum

computations of qualitative and quantitative measures in quantum soft computing. As described above, Fig. 3

shows the structure of a QAG based on the three quantum operations of superposition, entanglement, and

interference.

Fig. 4 shows methods in QAG design.

The methods as shown in Fig. 4 are based on qualitative measures of QAG design: 1) analysis of QA

dynamics and structure gate design; 2) analysis of information flow; and 3) structure simulation of intelligent

QA’s on classical computers.

Figure 4. Methods in Quantum Algorithm Gate Design

In this paper analysis of QA dynamics and structure gate design, and structure simulation of intelligent

QA’s on classical computers are discussed.

As shown in Fig. 4 analysis of QA dynamics provides the background for showing the existence of a so-

lution and that the solution is unique with the desired probability. Analysis of information flow in the QA

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2014 год

5

gates provides the background for showing that the unique solution exists with the desired accuracy and that

the reliability of the solution can be achieved with higher probability.

With the method of quantum gate design presented herein, various different structures of QA can be re-

alized, as shown in Table 1 below.

The intelligence of a QA is achieved through the principle of minimum information distance between

Shannon and von Neumann entropy and includes the solution of the QA stopping problem.

The output states of a QA as the solution of expected problems are the intelligent states with minimum

entropic relations of uncertainty (coherent superposition states). The successful results of QA computing are

robust to noise excitations in quantum gates, and intelligent quantum operations are fault-tolerant in quantum

soft computing.

Table 1. Quantum gate parameters for QA’s structure design

Name

Algorithm

Gate Symbolic Form:

 

1h

m n m

F

SuperpositionEntanglement
Interference

Int I U H S



 
 

     
  
   

Deutsch-

Jozsa

(D. – J.)

1,m  S H (1x )
nInt H

1k  0h 

   . . 1n D J n

FH I U H   

Simon

(Sim)

,m n S I

(0x ) nInt H  k O n

0h 

   n n Sim n n

FH I U H I   

Shor

(Shr)

,m n S I (0x )

nInt QFT

  k O Poly n 0h 

   n Shr n n

n FQFT I U H I   

Grover

(Gr)

1,m  S H (1x )

nInt D

1,k   /22nh O

   1Gr n

n FD I U H  

A quantum computer is difficult to build because of decoherence effects.

Decoherence introduces errors in the superposition.

The decoherence problem is reduced by using tools of quantum soft computing such as a quantum ge-

netic search algorithm (QGSA). Errors produced by decoherence are of three kinds: (i) phase errors; (ii) bit-

flip errors; and (iii) both phase and bit-flip errors. These three errors can all be modeled using unitary trans-

formations.

This means that if the QGSA is implemented on a physical quantum-mechanical system, one would

gain the advantages of quantum parallelism and reduce the problem of decoherence, because decoherence

can be used as a natural generator of mutation and crossover operators.

Design technology of quantum algorithmic gate boxes and simulation system

The problems solved by the QA can be stated as follows:

Input A function f : {0,1}n {0,1}m

Problem Find a certain property of f

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2014 год

6

The structure of a quantum operator
FU in QA’s as shown in block of Fig. 3 is outlined, with a high

level representation, in the scheme diagram Fig. 1. In Fig. 3 the input of the QA is a function f that maps

from binary strings into binary strings. This function is represented as a map table, defining for every string

its image. The function f is encoded according to an F -truth table. The function is transformed according to

a transform
FU -truth table into a unitary matrix operator UF depending on f’s properties. In some sense, this

operator calculates f when its input and output strings are encoded into canonical basis vectors of a complex

Hilbert space: UF maps the vector code of every string into the vector code of its image by f. A squared ma-

trix UF on the complex field is unitary if and only if (iff) its inverse matrix coincides with its conjugate

transpose:
1

F FU U  . A unitary matrix is always reversible and preserves the norm of vectors.

Fig. 5 shows structure of the quantum block from Fig. 3.

Figure 5. Structure of Quantum Block in Fig. 3

In the structure, the matrix operator UF has been generated it is embedded into a quantum gate as a

QAG, a unitary matrix whose structure depends on the form of matrix UF and on the problem to be solved. In

the QA, the QG acts on an initial canonical basis vector (which can always choose the same vector) in order

to generate a complex linear combination (superposition) of basis vectors as output. This superposition con-

tains all the information to answer the initial problem.

After this superposition has been created, in measurement block takes place in order to extract this in-

formation. In quantum mechanics, measurement is a non-deterministic operation that produces as output only

one of the basis vectors in the entering superposition. The probability of every basis vector of being the out-

put of measurement depends on its complex coefficient (probability amplitude) in the entering complex line-

ar combination.

The segmental action of the QAG and of measurement characterizes the quantum block in Fig. 5. The

quantum block is repeated k times in order to produce a collection of k basis vectors. Since measurement a

nondeterministic operation, these basic vectors are not be necessarily identical and each one of them will

encode a piece of the information needed to solve the problem. The collection block in Fig. 3.5 of the algo-

rithm outputs the interpretation of the collected basis vectors in order to get the answer for the initial problem

with a certain probability.

Encoder

The behavior of the encoder in Fig. 3 is described in the scheme diagram of Fig. 6. Function f is encod-

ed into matrix UF in three steps.

In step 1, the map table (truth tablef ) of function f: {0,1}n {0,1}m is transformed into the map table

(truth tableF ) of the injective function F:{0,1}n+m{0,1}n+m such that:

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2014 год

7

F(x0, .., xn-1, y0, .., ym-1) = (x0, .., xn-1, f(x0, .., xn-1)  (y0, .., ym-1)).

Remark. The need to deal with an injective function comes from the requirement that UF is unitary. A

unitary operator is reversible, so it cannot map 2 different inputs in the same output. Since UF will be the ma-

trix representation of F, F is injective. If one directly employed the matrix representation of function f, one

could obtain a non-unitary matrix, since f could be non-injective. So, injectivity is fulfilled by increasing the

number of bits and considering function F instead of function f. The function f can be calculated from F by

putting (y0,...,ym-1) = (0,...,0) in the input string and reading the last m values of the output string.

Figure 6. The encoder block scheme diagram

Reversible circuits realize permutation operations. It is possible to realize any Boolean circuit

: n mF  by reversible circuit. For this case, one need not calculate the function : n mF  . One can

calculate another function with expanding : n m n mF  

  that is defined as following relation:

    , ,F x y x y F x   where the operation  is defined as addition on module 2.

Then the value of  F x is defined as     ,0 ,F x x F x  . For example, the XOR operator between two

binary strings p and q of length m is a string s of length m such that the i-th digit of s is calculated as the ex-

clusive OR between the i-th digits of p and q:

p = (p0, .., pn-1), q = (q0, .., qn-1); s = p  q = ((p0+q0) mod 2, .., (pn-1+qn-1) mod 2)).

In step 2, the function from F map table is transformed into UF map table, according to the following

constraint:

 s{0,1} n+m : UF[(s)] =  [F(s)] (2)

The code map : {0,1}n+m  C 2
n+m

 (C 2
n+m

 is the target Complex Hilbert Space) is such that:

   

     0 1 0 1 0 1

1 0
0 0 , 1 1

0 1

, , n m n m n mx x x x x x

 

       

   
      
   

   

.

Code  maps bit values into complex vectors of dimension 2 belonging to the canonical basis of C 2. Be-

sides, using tensor product,  maps the general state of a binary string of dimension n into a vector of dimen-

sion 2n, reducing this state to the joint state of the n bits composing the register. Every bit state is trans-

formed into the corresponding 2-dimesional basis vector and then the string state is mapped into the corre-

sponding 2n-dimesional basis vector by composing all bit-vectors through tensor product. In this sense tensor

product is the vector counterpart of state conjunction.

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2014 год

8

The tensor product between two vectors of dimensions h and k is a tensor product of dimension hk,

such that:

1 1

1 1 1

1

...

...

...

k

h k h

h k

x y

x y x y

x y x y

x y

 
 
 
    
    

      
     
     

 
 
 

.

If a component of a complex vector is interpreted as the probability amplitude of a system of being in a

given state (indexed by the component number), the tensor product between two vectors describes the joint

probability amplitude of two systems of being in a joint state.

For example:

1 0

1 1 0 1 0 1
(0,0) 00 , (0,1) 01 ,

0 0 0 0 1 0

0 0

 

   
   

                                  
   
   

0 0

0 1 0 0 0 0
(1,0) 10 , (1,1) 11 .

1 0 1 1 1 0

0 1

 

   
   

                                  
   
   

Basis vectors are denoted using the ket notation i . This notation is taken from Dirac description of

quantum mechanics.

In step 3, the UF map table is transformed into UF using the following transformation rule:

  1F ij FU U j i   .

This rule can be understood by considering vectors i and j as column vectors. These vectors belong

to the canonical basis, where UF defines a permutation map of the identity matrix rows. In general, row j

is mapped into row i .

This rule will be illustrated in detail below, in the example based on Deutsch’s algorithm.

Quantum block

The heart of the quantum block is the quantum gate, which depends on the properties of matrix UF. The

quantum block uses the QAG, which depends on the properties of matrix UF. The structure of a quantum op-

erator
FU in QA’s as shown in Fig. 3 is outlined, with a high level representation, in the scheme diagram of

Fig. 5.

The scheme in Fig. 5 gives a more detailed description of the quantum block. The matrix operator UF of

Fig. 6 is the output of the encoder block represented in Fig. 3.

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2014 год

9

Here, it becomes the input for the quantum block. This matrix operator is embedded into a more com-

plex gate: the gate G (QAG). Unitary matrix G is applied k times to an initial canonical basis vector i of

dimension 2n+m. Each time, the resulting complex superposition G 0 01 1 of basis vectors is measured in

measurement block, producing one basis vector
ix as result. The measured basis vectors  1, , kx x are

collected together in block of basis vectors.

This collection is the output of the quantum block. The “intelligence” of the QA’s is in the ability to

build a QAG that is able to extract the information necessary to find the required property of f and to store it

into the output vector collection.

In order to represent QAGs it is useful to employ some diagrams called quantum circuits, as shown in

Fig. 1. Each rectangle is associated with a matrix 2n2n, where n is the number of lines entering and leaving

the rectangle. For example, the rectangle marked UF is associated with the matrix UF.

Using a high-level description of the gate and, using transformation rules shown in Fig. 7, it is possible

to compile the corresponding gate-matrix.

These rules are listed in Fig. 7 as following: (a) Rule 1 – Tensor Product Transformation; (b) Rule 2 –

 Dot Product Transformation; (c) Rule 3 – Identity Transformation; (d) Rule 4 – Propagation Rule; (e) Rule 5

– Iteration Rule; and (f) Rule 6 – Input/Output Tensor Rule.

It will be clearer how to use these rules when we afford the first examples of quantum algorithm.

Figure 7. Transformation rules

The tensor product between two matrices Xnm and Yhk is a (block) matrix (nh)(mk) such that:

11 1 11 1

1 1

.. ..

..

.. ..

m m

n nm n nm

x Y x Y x x

X Y with X

x Y x Y x x

   
   

  
   
      

.

An example of a matrix tensor product is as follows:

(e)

(a) (b)

(f)

(c) (d)

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2014 год

10

5 6 5 6 5 6 10 12
1 2

7 8 7 81 2 5 6 7 8 14 16

3 4 7 8 15 18 20 245 6 5 6
3 4

21 24 28 327 8 7 8

      
       

                         
       
       

.

Decoder

The decoder block of Fig. 3 interprets the basis vectors (collected in block basis vectors) of after the it-

erated execution in the quantum block. Decoding these vectors involves retranslating them into binary strings

and interpreting them directly in decoder block if they already contain the answer or use them, for instance as

coefficients vectors for some equation system, in order to get the searched solution.

Examples of design method application: QA’s Benchmark’s gate design and
simulation of decision making QA

Let us consider Benchmarks of QAG design for typical QA.

Deutsch’s algorithm

In order to illustrate the general method to synthesize a QA and the QG implementing it, a simple peda-

gogical example, Deutsch’s algorithm, is used. The roles of superposition, entanglement and parallel quan-

tum massive calculation are illustrated by this example.

Deutsch's problem: A function f:{0,1}{0,1} is said constant iff y{0,1}:x{0,1}: f(x)=y. It is said

to be balanced iff |{x{0,1}: f(x)=0}| = |{x{0,1}: f(x)=1}|.

Thus, Deutsch’s problem can be stated as follows:

Input A balanced or constant function f

Problem Decide if f is constant or balanced

Figure 8 shows the structure of Deutsch’s problem.

Figure 8. Problem definition of Deutsch’s QA

There are four possible functions fi: {0,1}{0,1}.

They are defined by the following map tables:

Constant Functions Balanced Functions

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2014 год

11

(1)

x f1(x)

0 0

1 0

(2)

x f2(x)

0 1

1 1

(3)

x f3(x)

0 0

1 1

(4)

x f4(x)

0 1

1 0

The set {fi}i{1,2,3,4} is the input set for our algorithm.

Every function fi is represented by its map table.

Fig. 9 shows definitions of constant and balanced functions.

Figure 9. Deutsch’s quantum algorithm simulation: Problem definition visualization

Encoder. The encoder block encodes input function f into matrix UF. If, for example, the function to be

investigated is f = f3, then the map table is the following:

x f3(x)

0 0

1 1

Step 1

Function f is first transformed into function F:{0,1}2  {0,1}2 such that

F(x0, y0) = (x0, f(x0)y0).

In logic representation this means:

y0 F(x0, y0)

0 (x0, f(x0))

1 (x0, f(x0))

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2014 год

12

As usual, the NOT operator acting on a binary string flips the value of every digit in the string

p = (p0, ..., pn-1),  p = ((p0+1)mod2, ..., (pn-1+1)mod2).

Therefore, if f = f3, F- map table is the following:

(x0, y0) F(x0, y0)

(0,0) (0,0)

(0,1) (0,1)

(1,0) (1,1)

(1,1) (1,0)

Fig. 10 shows the result of F-map table building.

Step 2

In this step, the map table of F is transformed into the map table of UF.

The transformation rule is the following:

s{0,1}2: UF[(s)]=  [F(s)].

Figure 10. Deutsch’s quantum algorithm simulation, Step 1: F-map table building

So, UF map table is:

0 0x y UF
0 0x y

00 00

01 01

10 11

11 10

or, writing basis vectors as column vectors:

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2014 год

13

 v UF v
(1,0,0,0)

T
(1,0,0,0)

T

(0,1,0,0)
T
 (0,1,0,0)

T

(0,0,1,0)
T
 (0,0,0,1)

T

(0,0,0,1)
T
 (0,0,1,0)

T

The TRANSPOSE (T) operator acting on a row or column vector transforms the vector into its corre-

sponding column or, row vector (respectively):

   
1 1

1 1... ... ;

T

T

n n

n n

x x

x x x x

x x

   
   

    
   
   

.

Step 3

The matrix associated with such a map table is obtained from the identity matrix 44 by a permutation

of its rows: the first and the second rows are mapped into themselves, whereas the third row is mapped into

the fourth one and the fourth row into the third one:

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

FU

 
 
 
 
 
 

.

A general way to build UF is to express every vector UF (s) as a linear combination of the basis vec-

tors. The coordinates of this combination are all 0, unless for one basis vector corresponding to the image of

s by UF :

00 1 00 0 01 0 10 0 11

01 0 00 1 01 0 10 0 11

10 0 00 0 01 0 10 1 11

11 0 00 0 01 1 10 0 11

F

F

F

F

U

U

U

U

   

   

   

   

.

Calculate [UF]ij as the coordinate of vector UF (j) with respect to vector i , where i and j are binary se-

quences. This means:

  1F Fij
U U j i   .

Value [UF]ij is called the probability amplitude of j being mapped i into by UF.

The probability amplitude of 00 of being mapped into 00 is, for instance, 1, since UF 00 =1 00 ,

whereas its probability amplitude of being mapped into 01 is 0, since UF 00 =0 01 . Using this technique,

the following unitary matrix is built:

UF 00 01 | 10 11

00 1 0 0 0

01 0 1 0 0

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2014 год

14

10 0 0 0 1

11 0 0 1 0

Fig. 11 shows the design process of unitary matrix UF.

Figure 11. Deutsch’s quantum algorithm simulation, Step 2: Entanglement operator

Quantum block. The encoder block has generated matrix UF. This matrix is now embedded into the QG

that will act on the input vector 00 .

Fig. 12 (a) shows this gate using a quantum circuit.

Figure 12. Deutsch’s quantum algorithm simulation:

Circuit representation and corresponding gate design

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2014 год

15

Each rectangle in Fig. 12 (a) represents a classical matrix operator nn, where n is the number of lines

entering and leaving the rectangle.

A matrix operator is said classical, when it maps every basis vector into another basis vector. For exam-

ple, operator UF is classical. A thick rectangle stands for a non-classical matrix operator. A non-classical ma-

trix operator maps at least one basis vector into a superposition of basis vectors.

Example: Classical and Non-Classical Matrix operators.

Classical Matrix Operator UF Non-Classical Matrix Operator H

00 01 10 11

00 1 0 0 0

01 0 1 0 0

10 0 0 0 1

11 0 0 1 0

FU

1/2 1/2

1/2 1/2

0 1

0 1 2 1 2

1 1 2 1 2

H



The above circuit is compiled into the corresponding computable gate. The first passage involves com-

pleting the circuit making some operators explicit. Consider, for instance, Step 1 in Fig. 12 (a). The second

line is empty in this step. This means that the second entering basis vector is left unchanged. This vector acts

in the identity matrix operator and completes the circuit. This is rule 3 described in Fig. 7. The result of the

compilation is presented on the Fig. 12 (b). The identity matrix operator is classical and it is so defined as:

I 0 1

0 1 0

1 0 1

At this point a matrix operator is built corresponding to every step whose action corresponds to the con-

current action of the matrix operators acting on parallel lines. Rules 1 and 6 from Fig. 7 are used to obtain as

the quantum circuit of Fig. 12 (c).

Finally, unique matrix operator is built that is equivalent to the sequential application of the operators in

step 1, step 2 and step 3. This is operator composition and it is obtained with the dot product among matrices

in the reverse order of application, as rule 2 states. Applying rule 2 from the Fig. 7 to the circuit yields as the

quantum circuit of Fig. 12 (d), namely the programmable gate implementing Deutsch’s algorithm.

Figure 13 shows the result of computer design of QG of Deutsch's QA.

Figure 13. Deutsch’s quantum algorithm simulation, Step 4: Quantum gate assembling

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2014 год

16

Computational steps of design process. To compute and design the gate, first calculate (H  I). The

output matrix is 44. Label each column and row with the corresponding basis vector. Calculate the ampli-

tude probability for each basis vector of being mapped into another basis vector using H and I. Take vector

|00> for instance: its probability amplitude of being transformed into |01> is the product between the proba-

bility amplitude of |0> of being mapped into |0> by H and the probability amplitude of |0> of being trans-

formed into |1> by I. This is the tensor product.

Therefore:

H |0> |1>

|0> 1/21/2 1/21/2

|1> 1/21/2 -1/21/2

and

I |0> |1>

|0> 1 0

|1> 0 1

The values HI and HH are calculated as follows:

H  I |00> |01> |10> |11>

|00> 1/21/2 0 1/21/2 0

|01> 0 1/21/2 0 1/21/2

|10> 1/21/2 0 -1/21/2 0

|11> 0 1/21/2 0 -1/21/2

H  H |00> |01> |10> |11>

|00> 1/2 1/2 1/2 1/2

|01> 1/2 -1/2 1/2 -1/2

|10> 1/2 1/2 -1/2 -1/2

|11> 1/2 -1/2 -1/2 1/2

One can rewrite UF when f = f3:

UF3 |00> |01> |10> |11>

|00> 1 0 0 0

|01> 0 1 0 0

|10> 0 0 0 1

|11> 0 0 1 0

The final programmable gate G3 = (H  H)(UF3(H  I)) is obtained as:

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2014 год

17

UF3(HI) |00> |01> |10> |11>

|00> 1/21/2 0 1/21/2 0

|01> 0 1/21/2 0 1/21/2

|10> 0 1/21/2 0 -1/21/2

|11> 1/21/2 0 -1/21/2 0

G3 |00> |01> |10> |11>

|00> 1/21/2 1/21/2 0 0

|01> 0 0 1/21/2 -1/21/2

|10> 0 0 1/21/2 1/21/2

|11> 1/21/2 -1/21/2 0 0

To calculate the programmable gates for the other possible input functions, the map tables are as fol-

lows:

x f1(x)

0 0

1 0

(x0, y0) F1(x0, y0)

(0,0) (0,0)

(0,1) (0,1)

(1,0) (1,0)

(1,1) (1,1)

x f2(x)

0 1

1 1

(x0, y0) F2(x0, y0)

(0,0) (0,1)

(0,1) (0,0)

(1,0) (1,1)

(1,1) (1,0)

From every table, it is easy to calculate the matrix operator:

|x0 y0> UF1 |x0 y0>

|00> |00>

|01> |01>

|10> |10>

|11> |11>

UF1 |00> |01> |10> |11>

|00> 1 0 0 0

|01> 0 1 0 0

|10> 0 0 1 0

|11> 0 0 0 1

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2014 год

18

|x0 y0> UF2 |x0 y0>

|00> |01>

|01> |00>

|10> |11>

|11> |10>

UF2 |00> |01> |10> |11>

|00> 0 1 0 0

|01> 1 0 0 0

|10> 0 0 0 1

|11> 0 0 1 0

(x0, y0) UF4 |x0 y0>

|00> |01>

|01> |00>

|10> |10>

|11> |11>

UF4 |00> |01> |10> |11>

|00> 0 1 0 0

|01> 1 0 0 0

|10> 0 0 1 0

|11> 0 0 0 1

Different UFi (i=1,2,4) generate different programmable gates Gi=(H  H)UFi(H  I):

G1 |00> |01> |10> |11>

|00> 1/21/2 1/21/2 0 0

|01> 1/21/2 -1/21/2 0 0

|10> 0 0 1/21/2 1/21/2

|11> 0 0 1/21/2 -1/21/2

G2 |00> |01> |10> |11>

|00> 1/21/2 1/21/2 0 0

|01> -1/21/2 1/21/2 0 0

|10> 0 0 1/21/2 1/21/2

|11> 0 0 -1/21/2 1/21/2

G4 |00> |01> |10> |11>

|00> 1/21/2 1/21/2 0 0

|01> 0 0 -1/21/2 1/21/2

|10> 0 0 1/21/2 1/21/2

|11> -1/21/2 1/21/2 0 0

Finally, different programmable gates generate different superposition states:

G1|00> = 1/21/2 |00> + 1/21/2 |01>

G2|00> = 1/21/2 |00>  1/21/2 |01>

G3|00> = 1/21/2 |00> + 1/21/2 |11>

G4|00> = 1/21/2 |00>  1/21/2 |11>

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2014 год

19

Observe that G1|00> and G2|00> can be written as the tensor products of two simpler vectors:

G1|00> = 1/21/2 |0>  (|0> + |1>)

G2|00> = 1/21/2 |0>  (|0>  |1>)

This is not possible for G3|00> and G4|00>. These two vectors make two entangled states.

This means that Deutsch’s QA needs entanglement for speed-up of quantum parallel massive calcula-

tions.

A vector v of dimension 2n is said to represent an entangled state if and only if it cannot be written as the

tensor product of n vectors of dimension 2. Mathematically, the entanglement condition is written as:

1 1,..., : ...n nv v v v v   

Figs 14 and 11 show the result of computer check of entanglement property.

When the QAG has generated the output vector, which is a linear complex superposition of basis vec-

tors measurement takes place. It is assumed that measurement is a non-deterministic operation whose input is

the linear superposition of basis vectors and whose output is only one of these basis vectors. The probability

of a basis vector being the result of measurement is given by the squared modulus of its complex coordinate

in the starting superposition.

This description of measurement is taken from quantum mechanics and it is the main constraint on the

access one has to the results of the QAG. The non-deterministic evolution of a quantum system by measure-

ment is the true qualitative difference between a quantum computation and a simple parallel computation.

Figure 14. Deutsch’s quantum algorithm simulation, Step 3: checking if entanglement operator is injective

or not

In quantum mechanics measurement is a non-deterministic operator. Writing a vector v as the

complex linear combination of n basis vector
, 1, ,iv i n

 the probability to observe iv
when v is

measured is given by the squared modulus of the complex co-ordinate of iv
 in v.

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2014 год

20

2

1 1

2

1 21 2 2 2

2

Vector Probability

...
Measurement

nn

n n

v

v v v v v

v



   



    

When applying measurement to the superposition of basis vectors resulting from one of our 4 gates, the

following is obtained:

Superposition of basis vectors

(before a measurement)

Result of measurement

Vector Probability

G1|00>=1/2 |00> + 1/2 |01>
|00>

|01>

||1/2||2=0.5

||1/2||2=0.5

G2|00>=1/2 |00>  1/2 |01>
|00>

|01>

||1/2||2=0.5

||1/2||2=0.5

G3|00>=1/2 |00> + 1/2 |11>
|00>

|11>

||1/2||2=0.5

||1/2||2=0.5

G4|00>=1/2 |00>  1/2 |11>
|00>

|11>

||1/2||2=0.5

||1/2||2=0.5

With measurement, the quantum block ends. In Deutsch’s algorithm the quantum block is repeated only

one time, so only one resulting basis vector is collected. Thus for success result of decision making is enough

50% of probability.

Decoder. When the final basis vector has been produced, it is interpreted to find the information it car-

ries in order to establish if f is constant or balanced. If the resulting vector is |00> nothing can be said about

which function was encoded in UF. But if the result is |01> or |11>, the function was f1 or f2 in the first case,

f3 or f4 in the second. In fact only gates G1 and G2 may produce a vector such that, when it is measured, basis

vector |01> has a non-null probability of being observed. Similarly, only gates G3 and G4 may produce a su-

perposition of basis vectors where vector |11> has non-null probability amplitude. Since f1 and f2 are con-

stant, whereas f3 and f4 are balanced, the resulting vector is easily decoded in order to answer Deutsch’s prob-

lem:

Resulting vector

(after measurement)
Answer

|00> Nothing can be said

|01> f is constant

|11> f is balanced

The above described design and calculation processes of QAG for Deutsch’s QA can be efficiently sim-

ulated on computers with Von Neumann architecture.

Computer design process of Deutsch’s QAG and simulation results. Fig. 15 shows the result of comput-

er design of superposition and interference quantum operators.

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2014 год

21

Figure 15. Deutsch’s quantum algorithm: Superposition and Interference operators

Fig. 16 shows the result of QG assembly and results of numerical data simulation using this QAG.

Figure 16. Deutsch’s quantum algorithm simulation, Step 4: Quantum gate assembling, results of calcula-

tions

Fig. 17 shows the general results of decision-making Deutsch’s QA for fourth different cases.

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2014 год

22

Figure 17. Deutsch quantum algorithm simulation: Algorithm 3d dynamics

Two-dimensional dynamic evolution of QAG for the case of constant function definition is shown in

Fig. 18.

The case of balanced function definition the simulation result of QAG is shown in Fig. 19.

Figure 18. Deutsch quantum algorithm simulation: Algorithm 2d dynamics. Constant functions

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2014 год

23

Figure 19. Deutsch quantum algorithm simulation: Algorithm 2d dynamics. Balanced functions

Figs 18 and 19 show also the entropy evaluation of the QAG for both cases.

These results are used for stopping criteria of the QA below.

Figs 20 and 21 show the results of final superposition measurement for definition of function property

and its interpretation (decoding process), respectively.

Figure 20. Deutsch’s quantum algorithm simulation, Step 5: Applying gate G to the input vector |00> and

measurement

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2014 год

24

Figure 21. Deutsch’s quantum algorithm simulation, Step 6: Interpretation of results (decoding)

Deutsch-Jozsa’s algorithm

The Deutsch-Jozsa’s algorithm is based on the special form of its QAG. This example shows the im-

portance of the structure of the matrix operator UF.

Deutsch-Jozsa's problem. Definition of Deutsch-Jozsa’s problem is stated as:

Input A constant or balanced function f:{0,1} n  {0,1}

Problem Decide if f is constant or balanced

This problem is very similar to Deutsch’s problem, but it has been generalized to n > 1.

Fig. 22 shows the structure of the Problem and Fig. 23 shows the steps of gate design process.

Figure 22. Deutsch-Jozsa’s QA: Problem definition

According to design steps on the Fig. 23 consider Step 0: the Encoder.

Step 0

Encoder. As a threshold matter, it is useful to deal with some special functions with n = 2 to illumi-

nate various aspects of this algorithm. Then the general case with n = 2 is discussed, and finally a balanced

or constant function is encoded in the more general situation n > 0.

N Definition of design step

0

Step 0: Encoder

Step 0.1: Injective function F building

Step 0.2: Preparation of map table for entanglement operator Uf

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2014 год

25

1

Step 1: Preparation of quantum operators

Step 1.1: Preparation of superposition operator

Step 1.2: Preparation of entanglement operator using information from step 0.2

Step 1.3: Preparation of interference operator

Step 1.4: Quantum gate assembly

2

Step 2: Algorithm execution

Step 2.1: Application of superposition operator

Step 2.2: Application of entanglement operator

Step 2.3: Application of interference operator

Step 2.4: Measurement and interpretation of the output

Figure 23. Deutsch-Jozsa’s QA: Steps of the algorithm design

Consider the encoding steps process according to the structure in the Fig. 6.

A. Encoding a constant function with value 1. Consider the case:

   2, 0,1 : 1
n

n x f x    .

In this case, f map table is so defined:

x f(x)

00 1

01 1

10 1

11 1

The encoder block takes f map table as input and encodes it into matrix operator UF, which acts inside of a

complex Hilbert space.

Step 1

Function f is encoded into the injective function F, built according to the following statement:

        
1 1

0 1 0 0 1 0 1 0: 0,1 0,1 : , , , , ,
n n

F F x x y x x f x x y
 
  

Then F map table is:

(x0, x1, y0) F(x0, x1, y0)

000 001

010 011

100 101

110 111

001 000

011 010

101 100

111 110

Step 2

Now encode F into UF map table using the rule:

t{0,1}n+1: UF [(t)]= [F(t)],

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2014 год

26

where  is the code map defined above. This means:

|x0 x1 y0> UF |x0 x1 y0>

|000> |001>

|010> |011>

|100> |101>

|110> |111>

|001> |000>

|011> |010>

|101> |100>

|111> |110>

Here, ket notation is used to denote basis vectors.

Step 3

Starting from the map table of UF, calculate the corresponding matrix operator. This matrix is obtained

using the rule:

  1F Fij
U U j i   .

So, UF is the following matrix:

UF |000> |001> |010> |011> |100> |101> |110> |111>

|000> 0 1 0 0 0 0 0 0

|001> 1 0 0 0 0 0 0 0

|010> 0 0 0 1 0 0 0 0

|011> 0 0 1 0 0 0 0 0

|100> 0 0 0 0 0 1 0 0

|101> 0 0 0 0 1 0 0 0

|110> 0 0 0 0 0 0 0 1

|111> 0 0 0 0 0 0 1 0

Using matrix tensor product, UF can be written as:

2
FU I I C I C    

where  is the tensor product, I is the identity matrix of order 2 and C is the NOT-matrix defined as:

0 1

1 0
C

 
  
 

. Matrix C flips a basis vector: in fact it transforms vector |0> into |1> and |1> into |0>.

If matrix UF is applied to the tensor product of three vectors of dimension 2, the resulting vector is the

tensor product of the three vectors obtained applying matrix I to the first two input vectors and matrix C to

the third.

Tensor product and entanglemen. Given m vectors v1,.., vm of dimension 2d1,.., 2dm and m matrix opera-

tors M1,.., Mm of order 2d12d1,.., 2dm 2dm the following property holds:

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2014 год

27

   1 11 1..m mn nM M v v M v M v          .

This means that, if a matrix operator can be written as the tensor product of m smaller matrix operator,

the evolutions of the m vectors the operator is applied to are independent, namely no correlation is present

among this vector. An important corollary is that if the initial state was not entangled, also the final state is

not entangled. If, for example, FU I I C   then the structure of UF is such that first two vectors in the

input tensor product are preserved (action of I), whereas the third is flipped (action of C). One can easily ver-

ify that this action corresponds to the constraints stated by UF map table.

B. Encoding a constant function with value 0. Now consider the case:

In this case f map table is defined as:

x f(x)

00 0

01 0

10 0

11 0

Step 1

F map table is:

(x0, x1, y0) F(x0, x1, y0)

000 000

010 010

100 100

110 110

001 001

011 011

101 101

111 111

Step 2

F map table is encoded into UF map table:

|x0 x1 y0> UF |x0 x1 y0>

|000> |000>

|010> |010>

|100> |100>

|110> |110>

|001> |001>

|011> |011>

|101> |101>

|111> |111>

Step 3

It is relatively easy to transform this map table into a matrix. Each vector is preserved.

Therefore, the corresponding matrix is the identity matrix of order 23.

   

2

0,1 : 0
n

n

x f x



  

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2014 год

28

UF |000> |001> |010> |011> |100> |101> |110> |111>

|000> 1 0 0 0 0 0 0 0

|001> 0 1 0 0 0 0 0 0

|010> 0 0 1 0 0 0 0 0

|011> 0 0 0 1 0 0 0 0

|100> 0 0 0 0 1 0 0 0

|101> 0 0 0 0 0 1 0 0

|110> 0 0 0 0 0 0 1 0

|111> 0 0 0 0 0 0 0 1

Using matrix tensor product, this matrix can be written as:

2 .FU I I I I I    

The structure of UF is such that all basis vectors of dimension 2 in the input tensor product evolve inde-

pendently. No vector controls any other vector.

C. Encoding a balanced function. Consider now the balanced function:

     1 1 12, , , 0,1 : , , .
n

n n nn x x f x x x x     

In this case f map table is the following:

x f(x)

00 0

01 1

10 1

11 0

Step 1

The following map table calculated in the usual way represents the injective function F (where f is en-

coded into):

(x0, x1, y0) F(x0, x1, y0)

000 000

010 011

100 101

110 110

(x0, x1, y0) F(x0, x1, y0)

001 001

011 010

101 100

111 111

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2014 год

29

Step 2

Now encode F into UF map table:

|x0 x1 y0> UF |x0 x1 y0>

|000> |000>

|010> |011>

|100> |101>

|110> |110>

|001> |001>

|011> |010>

|101> |100>

|111> |111>

Step 3

The matrix corresponding to UF is:

UF |000> |001> |010> |011> |100> |101> |110> |111>

|000> 1 0 0 0 0 0 0 0

|001> 0 1 0 0 0 0 0 0

|010> 0 0 0 1 0 0 0 0

|011> 0 0 1 0 0 0 0 0

|100> 0 0 0 0 0 1 0 0

|101> 0 0 0 0 1 0 0 0

|110> 0 0 0 0 0 0 1 0

|111> 0 0 0 0 0 0 0 1

This matrix cannot be written as the tensor product of smaller matrices.

It can be written as a block matrix as follows:

UF |00> |01> |10> |11>

|00> I 0 0 0

|01> 0 C 0 0

|10> 0 0 C 0

|11> 0 0 0 I

This means that the matrix operator acting on the third vector in the input tensor product depends on the

values of the first two vectors. If these vectors are |0> and |0>, for instance, the operator acting on the third

vector is the identity matrix, if the first two vectors are |0> and |1> then the evolution of the third is deter-

mined by matrix C.

This operator creates entanglement, namely correlation among the vectors in the tensor product. One

cannot represent such an operator as a tensor product of simpler operators such as I and C in the same man-

ner as it was possible in case of entanglement operators of constant functions presented above.

D. General case with n = 2. Consider now a general function with n = 2.

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2014 год

30

In this general case f map table is the following:

x f(x)

00 f00

01 f01

10 f10

11 f11

with fi{0,1}, i=00,01,10,11.

If f is constant then y{0,1}x{0,1}2 : f(x) = y.

If f is balanced then |{fi: fi = 0}|=|{fi: fi = 1}|.

Step 1

Injective function F (where f is encoded) is represented by the following map table calculated in the

usual way:

(x0, x1, y0) F(x0, x1, y0)

000 0 0 f00

010 0 1 f01

100 1 0 f10

110 1 1 f11

001 0 0  f00

011 0 1  f01

101 1 0  f10

111 1 1  f11

Step 2

Now encode F into UF map table:

|x0 x1 y0> UF |x0 x1 y0>

|000> |0 0 f00>

|010> |0 1 f01>

|100> |1 0 f10>

|110> |1 1 f11>

|001> |0 0  f00>

|011> |0 1  f01>

|101> |1 0  f10>

|111> |1 1  f11>

Step 3

The matrix corresponding to UF can be written as a block matrix with the following general form:

UF |00> |01> |10> |11>

|00> M00 0 0 0

|01> 0 M01 0 0

|10> 0 0 M10 0

|11> 0 0 0 M11

where Mi = I if fi = 0 and Mi = C if fi = 1, i = 00,01,10,11.

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2014 год

31

The structure of this matrix is such that, when the first two vectors are mapped into some other vectors,

the null operator is applied to the third vector, generating a null probability amplitude for this transition. This

means that the first two vectors are always left unchanged. On the contrary, operators Mi  {I, C} and they

are applied to the third vector when the first two are mapped into themselves. If all Mi coincide, operator UF

encodes a constant function.

Otherwise, it encodes a non-constant function.

If |{Mi: Mi = I}|=|{Mi: Mi = C}| then f is balanced.

E. General case. Consider now the general case n>0. Input function f map table is the following:

x{0,1}n f(x)

0..0 f0..0

0..1 f0..1

… …

1..1 f1..1

with fi{0,1}, i{0,1}n.

If f is constant then y{0,1}x{0,1}n : f(x) = y.

If f is balanced then |{fi: fi = 0}| = |{fi: fi = 1}|.

Step 1

The map table of the corresponding injective function F is:

x{0,1}n+1 F(x)

0..00 0..0 f0..0

… …

1..10 1..1 f1..1

0..01 0..0  f0..0

… …

1..11 1..1  f1..1

Step 2

Now encode F into UF map table:

|x> UF |x>

|0..00> |0..0 f0..0>

… …

|1..10> |1..1 f1..1>

|0..01> |0..0  f0..0>

… …

|1..11> |1..1  f1..1>

Step 3

The matrix corresponding to UF can be written as a block matrix with the following general form:

UF |0..0> |0..1> … |1..1>

|0..0> M0..0 0 0 0

|0..1> 0 M0..1 0 0

… … … … …

|1..1> 0 0 0 M1..1

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2014 год

32

where Mi = I if fi = 0 and Mi = C if fi = 1, i{0,1}n.

This matrix leaves the first n vectors unchanged and applies operator Mi {I, C} to the last vector. If all

Mi coincide with I or C, the matrix encodes a constant function and it can be written as nI I or nI  C. In this

case no entanglement is generated.

Otherwise, if the condition |{Mi: Mi = I}|=|{Mi: Mi = C}| is fulfilled, then f is balanced and the operator

creates quantum correlation among vectors. It means that Deutsch-Jozsa’s QA needs bound amount of en-

tanglement and can be efficiently simulated on classical computer.

Matrix tensor and dot powers. Given a matrix M denote its kth-power tensor product as:

 ...kM M M k times   . By contrast the kth-power dot product is:  ...kM M M k times  

Quantum block. Matrix UF, the output of the encoder, is now embedded into the QAG of Deutsch-

Jozsa’s algorithm. As with Deutsch’s algorithm, this gate is described using a quantum circuit in Fig. 24 (a).

Figure 24. Deutsch-Jozsa’s quantum algorithm simulation: Circuit representation and corresponding gate

design

Using Rule 3 (see Fig. 7), similar to the case of Deutsch’s QAG, compile the previous circuit into the

one presented on the Fig. 24.

Now, consider operator UF in the case of constant and balanced functions. The structure of this operator

strongly influences the structure of the whole gate. It is possible to analyze this structure in the case f is 1

everywhere, f is 0 everywhere and in the general case with n = 2.

The general form for the gate with n>0 is given below.

A. Constant function with value. 1. If f is constant and its value is 1, matrix operator UF can be written

as nI  C. This means, as it is stated by Rule 1 in Fig. 7, that UF can be decomposed into n +1 smaller opera-

tors acting concurrently on the n+1 vectors of dimension 2 in the input tensor product.

The resulting circuit representation is shown according to Fig. 24 in Fig. 25.

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2014 год

33

|1>

H H

I

|0>

INPUT STEP 1 STEP 2 STEP 3 OUTPUT

H

H |0> H

.

.

.

.

.

.
n

I

I

C

bit

bit

bit

Figure 25. Constant Function with Value 1 — First Circuit

Now use Rule number 2 from Fig. 7 and find the sub-gate acting on every vector of dimension 2 in in-

put. The result of this operation is shown in Fig. 26.

|1>

|0>

INPUT STEP OUTPUT

HIH |0>

.

.

.
n

HIH

ICH

bit

bit

bit

Figure 26. Constant Function with Value 1 — Second Circuit

Observe that every vector in input evolves independently from other vectors. This is because operator

UF doesn’t create any correlation. So, the evolution of every input vector can be analyzed separately.

This circuit can be written in a simpler way as shown in Fig. 27, observing that MI = M.

It can be show that H2 = I.

Therefore the circuit is rewritten in this way as shown in Fig. 28.

|1>

|0>

INPUT STEP OUTPUT

H
2

|0>

.

.

.
n

H
2

CH

bit

bit

bit

Figure 27. Constant Function with Value 1 — Third Circuit

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2014 год

34

|1>

|0>

INPUT STEP OUTPUT

I

|0>

.

.

.
n

I

CH

bit

bit

bit

Figure 28. Constant Function with Value 1 — Fourth Circuit

Consider now the effect of the operators acting on every vector:

0 1
0 0 , 1

2
I C H


    .

Using these results in rule number 4 of Fig. 7 and applying Rule number 3 of Fig. 7, yields following

circuit representation as shown on the Fig. 29 as the particular case of the structure shown in Fig. 24.

|1>

|0>

INPUT STEP OUTPUT



|0> 

.

.

. n

CH





Figure 29. Constant Function with Value 1 — Fifth Circuit

It is easy to see that, if f is constant with value 1, the first n vectors are preserved.

B. Constant function with value. 0. A similar analysis can be repeated for a constant function with value

0. In this situation UF can be written as nI  I and the final circuit is shown on the Fig. 3.30. Also in this case,

the first n input vectors are preserved. So, their output values after the QAG has acted are still |0>.

|1>

|0>

INPUT STEP OUTPUT



|0> 

.

.

. n

H





Figure 30. Constant Function with Value 0 — Final Circuit

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2014 год

35

C. General case (n = 2). The gate implementing Deutsch-Jozsa’s algorithm in general case is obtained

operating on the circuit of Figs 24c and 24d, with Rules 1 and 2 defined in Fig. 7. This is the circuit evolu-

tion as shown on the Figs 31and 32.

|1>

UF

|0>

INPUT STEP 1 STEP 2 STEP 3 OUTPUT

n+1
H

|0>

.

.

.
n

n
HI

bit

bit

bit

Figure 31. Evolution of the circuit in Fig. 24 (c)

If n = 2, UF has the following form:

UF |00> |01> |10> |11>

|00> M00 0 0 0

|01> 0 M01 0 0

|10> 0 0 M10 0

|11> 0 0 0 M11

where Mi{I, C}, i = 00,01,10,11.

|1>

|0>

INPUT STEP OUTPUT

(
n
H I) UF (

 n+1
H)

|0>

.

.

.
n

bit

bit

bit

Figure 32. Deutsch-Jozsa’s quantum gate

Calculate the QG G=(2H  I) UF (2+1H) in this case:
3H |00> |01> |10> |11>

|00> H/2 H/2 H/2 H/2

|01> H/2 -H/2 H/2 -H/2

|10> H/2 H/2 -H/2 -H/2

|11> H/2 -H/2 -H/2 H/2

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2014 год

36

2HI |00> |01> |10> |11>

|00> I/2 I/2 I/2 I/2

|01> I/2 -I/2 I/2 -I/2

|10> I/2 I/2 -I/2 -I/2

|11> I/2 -I/2 -I/2 I/2

UF  3H |00> |01> |10> |11>

|00> M00H/2 M00H/2 M00H/2 M00H/2

|01> M01H/2 -M01H/2 M01H/2 -M01H/2

|10> M10H/2 M10H/2 - M10H/2 - M10H/2

|11> M11H/2 - M11H/2 - M11H/2 M11H/2

G |00> |01> |10> |11>

|00>
(M00+M01+M10+M11

)H/4

(M00-M01+M10-

M11)H/4

(M00+M01-M10-

M11)H/4

(M00-M01-

M10+M11)H/4

|01>
(M00-M01+M10-

M11)H/4

(M00+M01+M10+M11

)H/4

(M00-M01-

M10+M11)H/4

(M00+M01-M10-

M11)H/4

|10>
(M00+M01-M10-

M11)H/4

(M00-M01-

M10+M11)H/4

(M00+M01+M10+M11

)H/4

(M00-M01+M10-

M11)H/4

|11>
(M00-M01-

M10+M11)H/4

(M00+M01-M10-

M11)H/4

(M00-M01+M10-

M11)H/4

(M00+M01+M10+M11)

H/4

Now, consider the application of G to vector |001>:

   

   

00 01 10 11 00 01 10 11

00 01 10 11 00 01 10 11

1 1
001 00 1 01 1

4 4

1 1
 10 1 11 1

4 4

G M M M M H M M M M H

M M M M H M M M M H

          

         

Consider the operator (M00+M01+M10+M11)H under the hypotheses of balanced functions Mi{I, C}and

|{Mi: Mi = I}| = |{Mi: Mi = C}|. Then:

M00+M01+M10+M11 |0> |1>

|0> 2 2

|1> 2 2

(M00+M01+M10+M11)H/4 |0> |1>

|0> 1/21/2 0

|1> 1/21/2 0

Thus:

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2014 год

37

 00 01 10 11

1
1 0

4
M M M M H    .

This means that the probability amplitude of vector |001> of being mapped into a vector |000> or |001>

is null.

Consider now the operators:

(M00+M01+M10+M11)H

(M00M01+M10M11)H

(M00+M01M10M11)H

(M00M01M10+M11)H

under the hypotheses i: Mi = I, which holds for constant functions with values 0:

M00+M01+M10+M11 |0> |1>

|0> 4 0

|1> 0 4

(M00+M01+M10+M11)H/4 |0> |1>

|0> 1/21/2 1/21/2

|1> 1/21/2 -1/21/2

M00M01+M10M11 |0> |1>

|0> 0 0

|1> 0 0

M00+M01M10M11 |0> |1>

|0> 0 0

|1> 0 0

M00M01M10+M11 |0> |1>

|0> 0 0

|1> 0 0

Using these calculations, the following results are obtained:

 

 

 

00 01 10 11

00 01 10 11

00 01 10 11

1
1 0,

4

1
1 0,

4

1
1 0.

4

M M M M H

M M M M H

M M M M H

   

   

   

This means that the probability amplitude of vector |001> of being mapped into a superposition of vec-

tors |010>, |011>, |100>, |101>, |110>, |111> is null. The only possible output is a superposition of vectors

|000> and |001>, as shown before using circuits. A similar analysis can be developed under the hypotheses

i: Mi = C.

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2014 год

38

It is useful to outline the evolution of the probability amplitudes of every basis vector while operator 3H,

UF and 2H I are applied in sequence, for instance when f has constant value 1. This is shown in Fig. 33.

Figure 33 (a). Input probability amplitudes

Figure 33 (b). Probability amplitudes after Step 1

Figure 33 (с). Probability amplitudes after Step 2

Figure 33 (d). Probability amplitudes after Step 3

Operator 3H in Fig. 33 (b) puts the initial canonical basis vector |001> into a superposition of all basis

vectors with the same (real) coefficients in modulus, but with positive sign if the last vector is |0>, negative

otherwise.

Operator UF in Fig. 33 (c) in this case doesn’t create correlation: it flips the third vector independently

from the values of the first two vectors.

Finally, 2H  I in Fig. 33 (d) produces constructive interference: for every basis vector |x0x1y0> it calcu-

lates its output probability amplitude ’x0x1y0 as the summation of the probability amplitudes of all basis vec-

tors in the form |x0x1y0> in the input superposition, all with the same sign if |x0x1> = |00>, otherwise changing

the sign of exactly the middle of the probability amplitudes. Since, in this case, the vectors in the form

|x0x10> have the same (negative real) probability amplitude and vectors in the form |x0x11> have the same

(positive real) probability amplitude, when |x0x1> = |00>, probability amplitudes interfere positively. Other-

wise the terms in the summation interfere destructively annihilating the result.

-1

-0,5

0

0,5

1

|000> |001> |010> |011> |100> |101> |110> |111>

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2014 год

39

D. General case (n > 0). In the general case n > 0, UF has the following form:

UF |0..0> |0..1> … |1..1>

|0..0> M0..0 0 0 0

|0..1> 0 M0..1 0 0

… … … … …

|1..1> 0 0 0 M1..1

where Mi{I, C}, i{0,1}n.

Calculate the QAG G=(nH I) UF (n+1H):
n+1H |0..0> … |j> … |1..1>

|0..0> H/2n/2 … H/2n/2
 … H/2n/2

… … … … … …

|i> H/2n/2
 … (-1)ijH/2n/2

 … (-1)i  (1..1)H/2n/2

… … … … … …

|1..1> H/2n/2 … (-1)(1..1)  jH/2n/2 … (-1)(1..1) (1..1)H/2n/2

Here the binary string operator, which represents the parity of the AND bit per bit between two strings,

is used.

Priority of bit per bit AND Given two binary strings x and y of length n, define:

1 1 2 2 ... n nx y x y x y x y       

The symbol «» used between two bits is interpreted as the logical AND operator.

It can be shown that the matrix n+1H really has the described form. It can be shown that:

 
/2

1

2

i j

n

ni j
H




   
,

The proof is by induction: n = 1:

 
   

 
   

 
   

 
   

0 0 0 1

1 1

1/2 1/2 1/2 1/20,0 0,1

1 0 1 1

1 1

1/2 1/2 1/2 1/21,0 1,1

1 11 1

2 2 2 2

1 11 1

2 2 2 2

H H

H H

 

 

 
         

 
         

n > 1:

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2014 год

40

 
 

 
   

 
 

 
   

 
 

 
   

0 0

1

1/2 1/2 /21 /20, 0 ,

0 1

1

1/2 1/2 /21 /20, 1 ,

1 0

1

1/2 1/2 /21 /21, 0 ,

1

1/21, 1 ,

1 11 1

2 2 22

1 11 1

2 2 22

1 11 1

2 2 22

1

2

i j i j

n n

nni j i j

i j i j

n n

nni j i j

i j i j

n n

nni j i j

n n

i j i j

H H

H H

H H

H H

 





 





 







 
        

 
        

 
        

       
 
 

 
   1 1

1/2 /21 /2

1 11

2 22

i j i j

nn

 



 
  

Matrix n+1H is obtained from nH by tensor product. Similarly, matrix nH  I is calculated:
nHI |0..0> … |j> … |1..1>

|0..0> I/2n/2 … I/2n/2
 … I/2n/2

… … … … … …

|i> I/2n/2
 … (-1)ijI/2n/2

 … (-1)i  (1..1)I/2n/2

… … … … … …

|1..1> I/2n/2 … (-1)(1..1) jI/2n/2 … (-1)(1..1) (1..1)I/2n/2

UF  n+1H |0..0> … |j> … |1..1>

|0..0> M0..0H/2n/2 … M0..0H/2n/2
 … M0..0H/2n/2

… … … … … …

|i> MiH /2n/2
 … (-1)ij MiH/2n/2

 … (-1)i  (1..1) MiH/2n/2

… … … … … …

|1..1> M1..1H/2n/2 … (-1)(1..1) j M1..1H/2n/2 … (-1)(1..1) (1..1) M1..1H/2n/2

Only the first column of gate G is calculated since this operator is applied exclusively to input vector

|0…01> and so only the first column is involved.

G |0..0> …

|0...0> (M0..0+..+Mi+..+M1..1)H/2n
 …

… … …

|i> (j{0,1}n (-1)ijMj)H/2n …

… … …

|1...1> ( j{0,1}n (-1)(1..1) jMj)H/2n …

Now consider the case of f constant. This means that all matrices Mi are identical.

This implies:

  1
1 0

2

i j

jn j
M H


  ,

In this summation the number of +1 equals the number of –1. Therefore, the input vector |0…01> is

mapped into a superposition of vectors |0…00> and |0…01> as shown using circuits.

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2014 год

41

If f is balanced, the number of Mi = I equals the number of Mi = C. This implies:

   1 1 1 11 1 1
2 2

1 122 2

n n
jn nj

M H I C H H   
    

 


1 1 1 1 1 01 1
.

1 1 1 1 1 02 2 2

     
      

     

And therefore:

 1
1 0

2
jn j

M H  .

This means that input vector |0…01>, in the case of balanced functions, cannot be mapped by the QAG

into a superposition containing vectors |0…00> or |0…01>.

The quantum block terminates with measurement. The above results show the possible outputs of meas-

urement and their probabilities:

Superposition of Basis Vectors

(Before Measurement)

Result of Measurement

Vector Probability

Constant functions:

G|0…01>=|0..0>(0|0>+1|1>)

|0..00>

|0..01>

||0||2

||1||2

Balanced functions:

G|0...01>=i{0,1}n  {0..00, 0..01} i |i>
i{0,1}n{0..00, 0..01}:|i> ||i||2

The set AB is given by all elements of A, unless those elements belonging to B too. This set is some-

times denoted as A/B. The quantum block is repeated only one time in Deutsch-Jozsa’s algorithm. So, the

final collection is made only by one vector.

Decoder. As in Deutsch’s algorithm, when the final basis vector has been measured, one must interpret

it in order to decide if f is constant or balanced. If the resulting vector is |0…0> it is known that the function

was constant, otherwise it is balanced. In fact gate G produces a vector such that, when it is measured, only

basis vectors |0…00> and |0…01> have a non-null probability amplitude exclusively in the case f is constant.

Besides, if f is balanced, these two vectors have null coefficients in the linear combination of basis vectors

generated by G. In this way, the resulting vector is decoded in order to answer Deutsch-Jozsa’s problem:

Resulting Vector

(after measurement)
Answer

|0…00> f is constant

|0…01> f is constant

otherwise f is balanced

Computer design process of Deutsch-Jozsa QAG (D.–J. QAG) and simulation results. Consider the de-

sign process of the Deutsch-Josa QAG according to the steps represented in Fig. 23.

For step 0 (encoding), case 3n  , examples of constant and balanced functions encoding are shown in

Figs 34 and 35.

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2014 год

42

Figure 34. Deutsch-Jozsa’s QA: Step 0. Constant functions encoding. Order n = 3

Figure 35. Deutsch-Jozsa’s QA: Step 0. Balanced functions encoding. Order n = 3

For step 1 in Fig. 23, the example of quantum operator preparation such as superposition operator in

Fig. 36 is shown.

Figure 36. Deutsch-Jozsa’s QA: Step 1.1. Preparation of quantum operators: Superposition operator

Figs 37-40 shows the step 1.2 from Fig. 23 as the preparation of entanglement operators:

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2014 год

43

For a constant function:

  3
0,1 0f   and   3

0,1 1f  

as shown in Figs 37 and 38;

For a balanced function:

  3

011 0110,1 1 0x xf    and  
 

 
3 1 010,011,110,111

0,1
0 000,001,100,101

x
f

x

  
    

,

as shown in Figs 39 and 40 respectively.

Figure 37. Deutsch-Jozsa’s QA: Step 1.2. Preparation of quantum operators: Entanglement operator

Figure 38. Deutsch-Jozsa’s QA: Step 1.2. Preparation of quantum operators: Entanglement operator

Figure 39. Deutsch-Jozsa’s QA: Step 1.2. Preparation of quantum operators: Entanglement operator

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2014 год

44

Figure 40. Deutsch-Jozsa’s QA: Step 1.2. Preparation of quantum operators: Entanglement operator

Step 1.3 in Fig. 23 shows the preparation of the interference operator and is shown in Fig. 41. Compari-

son between superposition and interference operators is shown in Fig. 42.

Figure 41. Deutsch-Jozsa’s QA: Step 1.3. Preparation of quantum operators: Interference operator

Figure 42. Deutsch-Jozsa’s QA: Superposition and interference operators

The evolution of gate design process from Fig. 23 is shown in Fig. 43.

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2014 год

45

Figure 43. Deutsch-Jozsa’s QA: Step 1.4. Quantum gate assembly

Step 1.4 from Fig. 23 as QAG assembly for design cases is shown in Fig. 44.

Figure 44. Deutsch-Jozsa’s QA: Step 1.4. Assembled quantum gates

Figs 45 and 46 show the results of algorithm gate execution for constant and balanced functions respec-

tively (corresponding to step 2 from Fig. 23).

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2014 год

46

(a)

(b)

Figure 45. Deutsch-Jozsa’s QA: Step 2. Algorithm execution: Constant functions

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2014 год

47

(a)

(b)

Figure 46. Deutsch-Jozsa’s QA: Step 2. Algorithm execution: Balanced functions

Fig. 47 shows the 3D result of amplitude probability evolution for Deutsch-Jozsa’s QA execution.

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2014 год

48

Figure 47. Deutsch-Jozsa’s QA: Step 2. Algorithm execution 3d dynamics: Probability amplitudes

Fig. 48 shows the 3D result of probability evolution of this QA.

Fig. 48. Deutsch-Jozsa’s QA: Step 2. Algorithm execution 3d dynamics: Probabilities

Result interpretation (corresponding to step 2.4 from Fig. 23) is shown in Fig. 49.

Figure 49. Deutsch-Jozsa’s QA: Step 2.4 Result interpretation

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2014 год

49

In Deutsch-Jozsa’s QA, the mathematical and physical structures of the interference operator  nH I

differ from its superposition operator  1n H . The interference operator extracts the qualitative information

about the property (constant or balanced property of function f) with operator nH , and separate this property

qualitatively with operator I. Deutsch-Jozsa’s QA is a decision making algorithm.

For the case of Deutsch-Jozsa’s QA only one iteration is needed without estimation quantitatively the

qualitative property of function f and with error probability 0.5 of successful result. It means that the Deutsch-

Jozsa QA is a robust QA.

The superposition operator organizes the quantum massive parallel computation process and robust ex-

traction of function property is provided by the entanglement operator. The next section illustrates the Si-

mon’s QA and the role of the interference operator in the searching problem.

Simon’s algorithm

Simon’s algorithm is now illustrated using circuits and pointing out the role of interference.

Simon's problem. Simon’s problem is formulated as follows:

Input f:{0,1}n {0,1}n :

s{0,1}n{0..0}:x,y{0,1}n: f(x) = f(y)  (x = y  x = ys)

Problem Find s

Encoder. As for the Deutsch-Jozsa’s algorithm, firstly consider some special cases.

A. Introductory example. Consider the case:

   2, 00 00, 01 01, 11n f f s    .

Then, the f map table is:

(x0, x1) f(x0, x1)

00 00

01 01

10 01

11 00

Step 1

Function f is encoded into the injective function F built in the usual way:

   

      0 1 1 0 1 1 0 1 1 0 1 1 0 1 1

: 0,1 0,1

, ,.., , , ,.., , ,.., , , ,.., , ,..,

n n n n

n n n n n

F such that

F x x x y y y x x x f x x x y y y

 

    



 

This is the F map table:

(x0,.., xn-1, y0,.., yn-1) F(x0,.., xn-1, y0,.., yn-1)

0000 0000

0100 0101

1000 1001

1100 1100

0001 0001

0101 0100

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2014 год

50

(x0,.., xn-1, y0,.., yn-1) F(x0,.., xn-1, y0,.., yn-1)

1001 1000

1101 1101

0010 0010

0110 0111

1010 1011

1110 1110

0011 0011

0111 0110

1011 1010

1111 1111

Step 2

Now encode F map table into UF map table. As usually, the rule is:

t{0,1}n+n: UF [(t)]= [F(t)],

where  is the code map defined by Eq. (2) above. This means:

|x0.. xn-1 y0.. yn-1> UF|x0.. xn-1 y0.. yn-1>

|0010> |0010>

|0110> |0111>

|1010> |1011>

|1110> |1110>

|0011> |0011>

|0111> |0110>

|1011> |1010>

|1111> |1111>

Step 3

Using the rule:

calculate UF as a block matrix:

UF |00> |01> |10> |11>

|00> II 0 0 0

|01> 0 IC 0 0

|10> 0 0 IC 0

|11> 0 0 0 II

This matrix preserves the first two vectors in the input tensor product vector. It preserves the last two

when the first two vectors are |0> and |0> or |1> and |1>. It preserves the third vector, but it flips the fourth,

when the first two vectors are |0> and |1> or |1> and |0>. Observe that the block matrix in cell (i, i) is identi-

cal to the block matrix in cell (is, is), where i is the binary label of the vector marking the matrix row and

column of the cell.

B. General case with n = 2. In general, if n = 2, repeating steps 1, 2 and 3 as for Deutsch-Jozsa’s algo-

rithm, the general operator UF is obtained in the following form:

  ijUU FijF 1

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2014 год

51

UF |00> |01> |10> |11>

|00> M00 0 0 0

|01> 0 M01 0 0

|10> 0 0 M10 0

|11> 0 0 0 M11

where Mi{II, IC, CI, CC} and Mi=Mj (j=ij=is).

C. General case. Generalizing the results obtained in the previous examples and reasoning like in

Deutsch-Jozsa’s algorithm, one can find the structure of UF for Simon’s algorithm too. The final matrix is:

UF |0..0> |0..1> … |1..1>

|0…0> M0...0 0 … 0

|0…1> 0 M0…1 … 0

… … … … ...

|1...1> 0 0 0 M1...1

where Mi = P1 …Pn , Pk{I, C}, k=1,…,n and Mi = Mj (j=ij=is).

Note that the column labels are basis vectors of dimension n (not 2n).

Quantum block In Fig. 50 (a) shows the circuit describing Simon’s QG.

Figure 50. Simon’s quantum algorithm simulation: Circuit representation and corresponding gate design

Using the transformation rules defined in Fig. 23 this circuit is complied into the corresponding gate.

Fig. 50 (d) shows Simon's QAG. To calculate this gate and establish what output vector it produces, it is

first useful to deal with the introductory example of Section A, passing then to the general case with n = 2.

Finally, the gate structure is described in the general situation (n > 0).

A. Introductory example. In the case considered before (n = 2, f(00) = 00, f(01) = 01, s = 11), the QAG

assumes this form:

 G=(nH nI) UF (
nHnI) (3)

where UF has been calculated in Section A, Step 2.

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2014 год

52

Start finding matrix 2H 2I, using the results about the tensor power of matrix H obtained in previous

section.
2H 2I |00> |01> |10> |11>

|00> 2I/2
2I/2 2I/2

2I/2

|01> 2I/2 - 2I/2 2I/2 - 2I/2

|10> 2I/2
2I/2 - 2I/2 - 2I/2

|11> 2I/2 - 2I/2 - 2I/2 2I/2

Recall matrix UF and calculate G:

UF |00> |01> |10> |11>

|00> 2I 0 0 0

|01> 0 IC 0 0

|10> 0 0 IC 0

|11> 0 0 0 2I

UF  (2H 2I) |00> |01> |10> |11>

|00> 2I/2
2I /2 2I/2

2I/2

|01> IC/2 - IC/2 IC/2 - IC/2

|10> IC/2 IC/2 - IC/2 - IC/2

|11> 2I/2 - 2I/2 - 2I/2 2I/2

G |00> |01> |10> |11>

|00> (2I+IC)/2 0 0 (2IIC)/2

|01> 0 (2I+IC)/2 (2IIC)/2 0

|10> 0 (2IIC)/2 (2I+IC)/2 0

|11> (2IIC)/2 0 0 (2I+IC)/2

With G from (3.2) having this structure, apply it to vector |0000> to obtain the following result:

   2 2

0000 00 00 11 00
2 2

I I C I I C
G

   
  .

This means:

   
1 1

0000 00 00 01 11 00 01
2 2

G     .

If the output vector is measured, one can obtain only 4 possible results: |0000>, |0001>, |1100> and

|1101>. Encode back into their binary labels the values of the first two basis vectors of dimension 2 in the

output tensor product: these labels are 00 or 11. Then solve the system:

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2014 год

53

 

 

1 2 1 2

1 2 1

1 2 1 2 1 2

1 2 2

1 2 1 21 2

00 () 0 0 0 0 0 0 0
0 1

11 () 0 1 1 0 0 .
0, 0 1

0, 0 0, 00, 0

t t t t
t t t

t t t t t t
t t t

t t t tt t

         
     

               
          

Since s=(11), then s=(t1 , t2). Therefore, s can be calculated as the solution of the system:

 

 

 

00 0

11 0

0,0

s

s

s

  


 




B. General case with n = 2. In the general case with n=2, matrix UF has the form:

UF |00> |01> |10> |11>

|00> M00 0 0 0

|01> 0 M01 0 0

|10> 0 0 M10 0

|11> 0 0 0 M11

where Mi{II, IC, CI, CC} and Mi = Mj  (j=i  j=is).

Using matrix 2H 2I calculated above, obtain:

UF  (2H 2I) |00> |01> |10> |11>

|00> M00/2 M00/2 M00/2 M00/2

|01> M01/2 -M01/2 M01/2 -M01/2

|10> M10/2 M10/2 -M10/2 - M10/2

|11> M11/2 -M11/2 -M11/2 M11/2

G |00> |01> |10> |11>

|00>
(M00+M01+M10+M1

1)/4

(M00-M01+M10-

M11)/4

(M00+M01-M10-

M11)/4

(M00-M01-

M10+M11)/4

|01>
(M00-M01+M10-

M11)/4

(M00+M01+M10+M1

1)/4

(M00-M01-

M10+M11)/4

(M00+M01-M10-

M11)/4

|10>
(M00+M01-M10-

M11)/4

(M00-M01-

M10+M11)/4

(M00+M01+M10+M1

1)/4

(M00-M01+M10-

M11)/4

|11>
(M00-M01-

M10+M11)/4

(M00+M01-M10-

M11)/4

(M00-M01+M10-

M11)/4

(M00+M01+M10+M

11)/4

Now, consider the following cases:

(i) s = 01; (ii) s = 10; (iii) s = 11.

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2014 год

54

In the first case M00=M01M10=M11. This means:

G01 |00> |01> |10> |11>

|00> (M00+M10)/2 0 (M00M10)/2 0

|01> 0 (M00+M10)/2 0 (M00M10)/2

|10> (M00M10)/2 0 (M00+M10)/2 0

|11> 0 (M00M10)/2 0 (M00+M10)/2

In the second case M00=M10 M01=M11. This means:

G10 |00> |01> |10> |11>

|00> (M00+M01)/2 (M00M01)/2 0 0

|01> (M00M01)/2 (M00+M01)/2 0 0

|10> 0 0 (M00+M01)/2 (M00M01)/2

|11> 0 0 (M00M01)/2 (M00+M01)/2

Finally, in the third case M00=M11M01=M10. This means:

G11 |00> |01> |10> |11>

|00> (M00+M01)/2 0 0 (M00M01)/2

|01> 0 (M00+M01)/2 (M00M01)/2 0

|10> 0 (M00M01)/2 (M00+M01)/2 0

|11> (M00M01)/2 0 0 (M00+M01)/2

Consider the application of G01, G10 and G11 to vector |0000> in the three cases:

Case s Output vector: Gs|0000>

1 01 G01|0000>=1/2 |00>(M00+M10)|00> + 1/2 |10>(M00-M10)|00>

2 10 G10|0000>=1/2 |00>(M00+M01)|00> + 1/2 |01>(M00-M01)|00>

3 11 G11|0000>=1/2 |00>(M00+M01)|00> + 1/2 |11>(M00-M01)|00>

Measure the output vector in these three cases and encode back into binary values the first two basis

vectors in the tensor product, to obtain the following result:

Case s Binary Values (FROM THE FIRST TWO VECTORS) Probabilities

1 01
(a, b)=(0,0)

(a, b)=(1,0)

0.5

0.5

2 10
(a, b)=(0,0)

(a ,b)=(0,1)

0.5

0.5

3 11
(a, b)=(0,1)

(a, b)=(1,1)

0.5

0.5

Note that (a, b)  s = 0 where a and b are the binary values from the first two vectors. The equations so

generated let us find s as the solution of the corresponding system.

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2014 год

55

C. General case (n > 0). Now consider a general positive value for number n.

The operator UF is:

UF |0..0> |0..1> … |1..1>

|0..0> M0.. 0 0 … 0

|0..1> 0 M0.. 1 … 0

… … … … …

|1..1> 0 0 0 M1.. 1

where Mi= P1..Pn , Pk{I, C}, k = 1,..,n and and Mi = Mj  (j=i  j=is).

Operator nH  nI is built from operator nH:
nH nI |0..0> |0..1> … |j> … |1..1>

|0..0> nI/2n/2 nI/2n/2 …
nI/2n/2 … nI/2n/2

|0..1> nI/2n/2 - nI/2n/2 … (-1)(0..1)  j (nI/2n/2) … - nI/2n/2

… … … … … … …

|i> nI/2n/2
(-1) i  (0..1)

(nI/2n/2)
… (-1)ij (nI/2n/2) … (-1) i(1..1) (nI/2n/2)

… … … … … … …

|1..1> nI/2n/2 - nI/2n/2 … (-1)(1..1)j (nI/2n/2) … (-1)(1..1)  (1..1) (nI/2n/2)

UF  (nH nI) |0..0> … |j> … |1..1>

|0..0> M0..0/2
n/2 … M0..0/2

n/2
 … M0..0/2

n/2

… … … … … …

|i> Mi/2
n/2

 … (-1)ij Mi/2
n/2

 … (-1)i  (1..1) Mi/2
n/2

… … … … … …

|1..1> M1..1/2
n/2 … (-1)(1..1) j M1..1/2

n/2 …
(-1)(1..1) (1..1)

M1..1/2
n/2

The first column of the final gate has the following form:

G |0..0> …

|0..0> (M0..0+..+Mi+..+M1..1)/2
n

 …

… … …

|i> (j{0,1}n (-1)ijMj)/2
n …

… … …

|1..1> ( j{0,1}n (-1)(1..1) jMj)/2
n …

The interference operator (n H  n I) creates the following term:  
 0,1

1
1

2 n

i j

jn

j

M




 .

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2014 год

56

Since Mh = Mk  (h = k  h = ks), then this term may be written as:

 
 

   
 

   
0,1

1 1 1
1 1 1 1 1 1

2 2 2n

i j i k i k s i k i s

j k kn n n
k S k Sj

M M M
     

 

           
     ,

where S is such that:

 , : , 0,1 : .
n

x y S x s y x y S x s y        

The gate can be rewritten in this way:

G |0..0> …

|0…0> kS (-1)(0..0)k[1+(-1)(0…0)s]Mk /2
n …

… … …

|i> kS (-1)ik[1+(-1)is]Mk /2
n …

… … …

|1…1> kS (-1)(1..1)k[1+(-1)(1…1)s]Mk/2
n …

The term [1+ (- 1) is] is 0 if and only if i  s = 1. So, only those cells in the column that are labeled by |i>

such that i  s = 0 are non-null. This means that:

 
1

0,1 : 0

1
0..00..0 .

2 n
n

i i s

G i


  

 

The quantum block ends with measurement, which therefore produces a basis vector |i> such that

i  s = 0. Thus, the interference operator  n nH I is created the important component of final result and

with the entanglement operator and a measurement process can extract this final result.

In this case, the interference operator  n nH I extracts the qualitative property of the function f us-

ing operator  nH and estimates quantitatively this property as a solution number with operator  nI .

With tensor product   the interference operator  n nH I joins both possibilities in one automation

operation.

Simon’s QA is the search algorithm and this property is described by specific structure of interference

operator. Operator  nH from interference operator  nH I in Deutsch-Jozsa’s QA created the distribu-

tion of probability amplitude with the same amplitude of probability 0 1

1

2
   ; the measurement with

the ancillae qubit as  
1

0 1
2

I  extracts only the qualitative information about the function f, and

gives sufficient and necessary values of probability 0.5 for the separation of solutions in decision-making

algorithm. The quantum block for this QA is repeated only one time and the final collection is made only one

basic vector.

For state vector i of Deutsch-Jozsa’s QA the estimator of amplitude of probability is:

 
 0,1

1
1

2 n

i j

jn

j

M H




 
 
 
 

 .

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2014 год

57

The operator H in this operator plays the role of the destructive interference for ancillary qubit:

1
0 1 0

2
H
 

    
 

 and realize toss and coin procedure of random measurement. The different signs

1

2

 
 
 

 of amplitude probability in ancillary qubit with identity operator I guarantee the recognition the so-

lution with toss and coin procedure of measurement that is necessary and sufficient conditions for successful

result of quantum computing.

In the case of Simon’s QA the estimator of amplitude of probability in state vector i is as follows:

     
11 1

1 1 1 1
2 2

Choice of
solution

i j i k s

j kn n
k S k S

Quantitave solution
estimator

M M
  

 

 
 
     
 
  

  ,

where S is such that include almost quantitative information about the solutions.

The estimator of amplitude probability in Simon’s QA constructively distributed the amplitude of prob-

ability: increase the amplitude for «good» solution with quantitative estimation of this solution and decrease

other amplitudes of solution probability.

In Simon’s QA the role of interference is different than in Deutsch-Jozsa’s QA while this operator ex-

tract the qualitative information about the solution and estimate quantitatively this solutions using n times

iterations in quantum block.

The quantum block is repeated enough times to get enough information to determine s. Since every vec-

tor will constitute a coefficient vector for an equation where s is the variable vector, this number depends on

how many different equations are needed in order to find s. Since s has length n, in general one will need a

number n of different equations. This requires, in general, a linear number of measurements.

Decoder. The quantum block is repeated O(n) times until a collection of n different vectors have been

generated. As for the case n = 2, for every vector in this collection, the first n basis vectors of dimension 2

composing it through tensor product are encoded back into their binary values. In this way they can be used

as coefficients for building an equation whose variables are the bits of s. By solving the system made of

these equations, one can find s.

Simon’s QA is the benchmark of the search QA family and separates this family from the decision mak-

ing QA family using the special description form of interference operator. This algorithm has a mathematical

structure similar to the superposition operator  n nH I but has different physical meaning.

References

1. Ulyanov S.V., Ghisi F., Kurawaki I., Litvintseva L.V. Simulation of quantum algorithms on classical

computer. – Note del Polo Ricerca, Università degli Studi di Milano (Polo Didattico e di Ricerca di

Crema). – Milan, 1999. – Vol. 32.

2. Ulyanov S.V., Kurawaki I., Yazenin A.V. et all. Information analysis of quantum gates for simulation of

quantum algorithms on classical computers // Proceedings of Intern. Conf. on Quantum

Communication, Measurements and Computing (QCM&C’2000). – Capri. Italy, 2000. Kluwer Acad.

/Plenum Publ. – 2001. – Pр. 207-214.

3. Ulyanov, S.V., Litvintseva V. L., Ulyanov, S.S. Quantum Information and Quantum Computational

Intelligence: Design & Classical Simulation of Quantum Algorithm Gates. – Note del Polo Ricerca,

Università degli Studi di Milano (Polo Didattico e di Ricerca di Crema). – Milan, 2003. – Vol. 80.

