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Classification and general structure of QA gates 

One of the most important issues in quantum computing is the design of QA’s. There are known very 

few of them. Apparently, we are lacking the basic principles underlying the quantum version of algorithm 

problem solving. One attempt to understand the basic principles of QA design may proceed with the compar-

ison with the known strategies of designing classical algorithms in computational science.  

Basic principles of QA design  

Many of the most popular models of quantum computation are direct quantum generalizations of well 

known classical constructs. This includes quantum Turing machine, gate arrays and walks. These models use 

unitary evolution as the basic mechanism of information processing and only at the end do we make meas-

urements, converting quantum information into classical information in order to read out classical answer. In 

the more familiar gate array model computational steps are unitary operations, developing a large entangled 

state prior to some final measurements for the output. Just two ideas from quantum computing (and some 

algorithmic ingenuity) are considered. The first of two ideas is amplitude amplification. The second idea is 

that any classical (either deterministic or probabilistic) computation can be simulated on a quantum comput-

er. More precisely, (i) in the circuit a classical model, a classical circuit with N  gates can be simulated by a 

quantum circuit with  O N  gates; (ii) in the query model (when only the number of queries is counted), a 

classical computation with queries can be simulated by a quantum computation with N  queries.  

Thus, this greatly simplifies description of quantum algorithms [1-10]. Instead of describing a quantum 

algorithm, we can describe a classical algorithm that succeeds with some small probability  . Then, we can 

transform the classical algorithm to a quantum algorithm and apply the amplitude amplification to the quan-

tum algorithm. The result is a quantum algorithm with the running time or the number of queries that is times 

the one for the classical algorithm with which we started. A similar reasoning can be applied, if instead of a 

purely classical algorithm, we started with a classical algorithm that involves quantum subroutines. Such al-

gorithms can also be transformed into quantum algorithms with the same complexity [11-35].  

Another approach in quantum computing consists in the formalism of the measurement based quantum 

computation. In this case we start with a given fixed entangled state of many q-bits and perform computation 

by applying a sequence of measurements to designated q-bits in designated bases. The choice of basis for 

later measurement may depend on earlier measurement outcomes and the final result of the computation is 

determined from the classical data of all the measurement outcomes. In contrast to unitary evolution, meas-

urements are irreversibly destructive, involving much loss of potential information about a quantum state’s 

identity.  

Thus it is interesting, and at first sight surprising, that we can perform universal quantum computation 

using only measurements as computation steps. Two principle schemes of measurement based computation 

are teleportation quantum computation and so-called cluster model of one-way quantum computer. From 

another standpoint, the appeal of hidden-variable theories is that they provide one possible solution to the 

measurement problem. For example, even if an observer were placed in coherent superposition, that observer 

would still have a sequence of definite experiences, and the probability of any such sequence could be calcu-

lated. 

For this case, hidden-variable theory is simply a way to convert a unitary matrix that maps one quantum 

state to another into a stochastic matrix that maps the initial probability distribution to the final one in some 

fixed basis. A hidden-variable theory can be based on networks flows: if we examine the entire history of a 

hidden variable, then we could efficiently solve problems that are believed to be intractable even for quan-

tum computers. By sampling histories, one could, for example, search an unordered database of N  items for 

a single «marked item» using only 

1

3O N
 
 
 

 database queries.  
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By comparison, Grover’s quantum search algorithm (QSA) requires 
1

2N
 
 
 

 queries, while classical al-

gorithms require  N  queries.  

The results are surprising i.e., giving a hidden variable, the distribution over its possible values at any 

single time is governed by standard quantum mechanics and is therefore efficiently samplable on a quantum 

computer. So if examining the variable’s history confers any extra computation power, then it can only be 

because of correlations between the variable’s values at different times.  

Remark. Quantum computation explores the possibilities of applying quantum mechanics to computer 

science. If built, quantum computers would provide speed-ups over conventional computers for a variety of 

problems. The two most famous results in this area are Shor’s quantum algorithms for factoring and finding 

discrete logarithms and Grover’s quantum search algorithm show that quantum computers can solve certain 

computation problems significantly faster than any classical computers. Shor’s and Grover’s algorithms have 

been followed by a lot of other results. Each of these algorithms has been generalized and applied to several 

other problems. New algorithms and new algorithmic paradigms (such as adiabatic computing which is the 

quantum counterpart of simulated annealing) have been discovered. Several aspects adiabatic quantum-

computational model can be explored and use a way that directly maps any arbitrary circuit in the standard 

quantum-computing model to an adiabatic algorithm of the same depth. Many quantum algorithms are de-

veloped for the so-called oracle model in which the input is given as an oracle so that the only knowledge we 

can gain about the input is asking queries to the oracle. We use the query complexity as our measure of com-

plexity.  

The query complexity of an algorithm A  computing a function F is the number of queries used by A . 

The query complexity of F  is the minimum query complexity of any algorithm computing F . We are in-

terested in proving lower bounds of the query complexity of specific functions and consider methods of 

computing such lower bounds. The two most successful methods for proving lower bounds on quantum 

computations are the following: the adversary method and the polynomial method. An alternative measure of 

complexity would be to use the time (temporal) complexity which counts the number of basic operations 

used by an algorithm.  

The temporal complexity is always at least as large as the query complexity since each query takes one 

unit step, and thus a lower bound on the query complexity is also a lower bound on the temporal complexity. 

For most existing QAs the temporal complexity is within polylogarithmic factors of the query complexity.  

The barrier to better understanding of the quantum query model is the lack of simple mathematical rep-

resentations of quantum computations. While classical query complexity (both deterministic and random-

ized) has a natural intuitive description in terms of decision trees there is no such easy description of quan-

tum query complexity. The main difference between the classical and quantum case is that classical compu-

tations branch into non-interacting subcomputations (as represented by the tree) while in quantum computa-

tions there is no obvious analog of branching because of the possibility of destructive interference between 

sub-computations. The bounded-error model is both relevant to understanding powerful explicit non-query 

quantum algorithms (such as Shor’s factoring algorithm) and is theoretically important as the quantum ana-

logue of the classical decision tree model.  

We are interested in studying classical and quantum complexities because an oracle sometimes gives a 

separation between them. For example, there was shown one problem where we need exponentially many 

queries in the bounded error classical case but only a single query is needed in the quantum case. Another 

occasion to study a query complexity is when a temporal complexity is hard. In such case the number of que-

ries we make gives a lower bound for the temporal complexity. In fact, currently there is no lower bound 

method for quantum temporal complexity that gives super-linear bounding and we get lower bounds heuris-

tic on quantum temporal complexity by studying quantum query complexity.  

One of the powers of quantum computation comes from the fact that we can query in superposition. It 

means that if we are given a set of n  elements from 1 to n  we can query an oracle in parallel once to obtain 

a superposition of  1f  through  f n . However, we can in a sense only learn one of the  f i ’s from such 

a query. The real power of quantum computation comes from interference. I.e., the information in the state 
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e.g.,  f i ’s can be combined by means of unitary quantum gates in non-trivial way and we can extract a 

global property of the input. 

Implementation of a QA is based on a quantum algorithmic gates (QAG). In the language of classical 

computing a quantum computer is programmed by QAG designing. In this section we report relatively few 

such gates because the basic principles underlying the quantum version of programming are in their infancy 

and QAs have been programmed by ad-hoc techniques. This is suggested by the relationships between fun-

damentals of classical and quantum computations. In connection with it we need to distinguish between fun-

damentals for designing algorithms. The fact that we can understand is that the fundamentals of quantum 

computation do not mean that we know keys to set-up QA although it can be of great help.  

Classification and general structure of QA’s  

One way to understand the basic principles of QA design is by comparison with the known strategies of 

designing classical algorithms in computational science.  

1. On the classification of QA’s: design strategies of classical algorithms and quantum computation  

Let us come to the point of analyzing the classical strategies of algorithm design from the point of view 

of quantum computation. We shall consider the classification which is introduced by Levitin (1999) who has 

done a reformulation which includes and categorizes in a nice fashion other classifications schemes in a nice 

fashion: there are four classical general design techniques which we shall describe briefly by its definition 

and with a simple example to illustrate them. 

This is suggested by the relationships between fundamentals of classical and quantum computation. In 

connection with it, it is useful to distinguish between fundamentals for designing algorithms. It is instructive 

to consider the classical strategies of algorithm design from the quantum computation point of view.  

There are four classical general design techniques shown in Table 1.  

Table 1.Generic types of algorithms 

N Algorithm Type Algorithm Meaning 

 

1 

 

Brute Force 

Algorithm 

It amounts to solving a problem by directly applying its crude formula-

tion. 

 Example. na a a a  , n times. 

 

 

2 

 

Divide-and-

Conquer 

Algorithms 

The original problem is partitioned into a number of smaller problems, 

usually of the same kind. These in turn are solved and their solutions are 

combined to get a solution of the bigger problem. This strategy is usually 

applied recursively in order to obtain a greater profit. 

Example. 
/2 /2 2 /2n n n nna a a a

             . 

 

 

3 

 

Decrease-and-

Conquer 

Algorithms 

The original problem is reduced to a smaller one, which is usually solved 

by recursion and the solution obtained is applied to find a solution of the 

original problem.  

 Example. 1) 1n na a a   (decrease-by-one variety); 

 2)  
2

/2nn
a a

    if n even,  
2

/2nn
a a a

     if n odd (decrease-by-half 

variety) 

 

4 

Transform-and-

Conquer 

Algorithms 

The original problem is transformed into another equivalent problem, 

which is more amenable to solution with simpler techniques.  

Example. na  is computed by exploiting the binary representation of n. 
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These techniques are described below using, as an example, the problem of computing, modna p  

which is of great importance in public-key encryption algorithms.  

Table 2 lists these classical strategies with some-known and less trivial examples of representative algo-

rithms.  

There are important algorithms built upon a mixture of these basic techniques; for example, the Fast 

Fourier Transform (FFT) employs both Divide-and-Conquer and Transform-and-Conquer techniques.  

Table 3 presents the quantum version of Table 2 by classifying the most useful of the known QA’s.  

Table 2. Classification of classical algorithms 

Classical Technique Algorithm Example 

Brute Force Searching the Largest 

Divide-and-Conquer Quick sort 

Decrease-and-Conquer Euclid’s Algorithm 

Transform-and-Conquer Gaussian Elimination 

Table 3. Classification of QAs 

Quantum Technique Algorithm Example 

 

Brute Force 

Grover’s Algorithm 

Deutsch-Jozsa’ Algorithm 

Simon’s Algorithm 

Divide-and-Conquer   

Decrease-and-Conquer   

Transform-and-Conquer Shor’s Algorithm 

 

Remark. Firstly, Grover’s QSA algorithms have placed (the Object is missing) in the category of Brute 

Force algorithms. The strategy is similar to its classical counterpart which is of Brute Force type. The differ-

ence lies in the fact that the quantum operation is realized through a unitary operator which implements the 

reversible quantum computation. Although the Brute Force technique gives usually low efficient algorithms 

it is very important for several reasons. One is that there are important cases like searching problem where 

the Brute Force method outperforms more sophisticated strategies like Divide-and-Conquer. We find 

Grover’s algorithm as a realization of the Brute Force technique at the quantum level and for general pur-

pose at the same time. 

Remark. Secondly, Shor’s algorithm have included in the category of Transform-and-Conquer algo-

rithms. Shor solves the factorization problem by reducing it to the problem of finding the period of a certain 

function in number theory, which in turn is solved with the aid of the fundamentals of quantum computing. 

Having realized this, we point out that the classical version of Transform-and-Conquer algorithms is very 

rare. This may explain why Shor’s algorithm, although power than Grover’s, it has a more reduced range of 

applications. 

Remark. Thirdly, the most notorious aspect of Table 2 is the absence of QA’s based on the Divide-and-

Conquer technique, which is by far the most general and used strategy in classical computation. This may 

partly account for the list of QA’s being so short. Moreover, if we resort to the basic features of quantum 

computation we may explain somehow why this entry is empty in Table 1.4. We know that a quantum regis-

ter supports the superposition of many states at the same time. This implies that the q-bits of the quantum 

registers are strongly correlated (entangled) and their joint state is not separable into a product of states of 
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smaller sub-registers. Thus quantum parallelism and entanglement renders unnaturally any try to implement 

the strategy of Divide-and-Conquer in a quantum register at least in a straightforward and naive fashion. A 

quantum computer is a quantum system time evolution of which can be thought of as a computation. Quantum-

mechanical systems can be used (in principle) to implement a wide variety of computational algorithms with en-

hanced efficiency. The principle of superposition in quantum mechanics, according to which a system can be in a 

linearly superposed state of more than one eigenstate, is the key to this increased efficiency.  

It is useful to consider also a physical role in quantum computation process of two non-classical (quan-

tum) phenomena: quantum interference and quantum entanglement. Entanglement allows to encode data into 

non-trivial multi-particle superpositions of some pre-selected basis states. Quantum interference, which is a 

dynamical process, allows to evolve initial states (inputs) into some prescribed way. Unlike single-particle 

interference multi-particle quantum interference does not have any classical analogue and can be viewed as 

an inherently quantum process. Quantum computing uses the quantum interference of different computation-

al paths to enhance correct outcomes and suppress erroneous outcomes of computations. A common pattern 

underpinning QA’s can be identified when quantum computation is viewed as multi-particle interference.  

From the quantum mechanics standpoint, QAs typically fall into two categories: (i) superposition-driven 

algorithms; and (ii) entanglement-driven algorithms. 

In the superposition-driven algorithm the QA tends to amplify the amplitudes of a set of «good» states 

to a certain extent, e.g., states that are specified by a predicate given in the form of a quantum circuit shrink 

the amplitude of the «bad» states. The Grover QSA for searching an unordered list is an example of such an 

algorithm. 

The entanglement-driven algorithm can be described as follows. Assume a function :f X Y  from a 

(finite) domain X  to a co-domain Y . This function does not have to be injective; however, for a quantum 

computing to be able to perform f  with respect to a suitable encoded X  and Y , the function f  has to be 

embedded into a unitary matrix fU . Compute simultaneously the image of all inputs x X  using 

 0x x f x  for all x X  by preparing an equal superposition 
x X

x


  in the X  register and the 

ground state 0  in the Y register first, and then applying the quantum circuit fU  to obtain  
x X

x f x


 . 

This entangled state can then be written as: 
  Im :y f x f x y

x y
 

 
  
 

  , corresponding to a separation of the pre-

images of f . Measurement of the second register yields one of these pre-images. The algorithm of Shor, 

described below (see, in details Chapter 4) is an example of such an algorithm. In this case, the function f  

is given by   modxf x a N , where N  is the number to be factored and a  is a random element in 
NZ .  

Global properties of functions that can be determined by such a QA’s are said to be Computable by 

Quantum Parallelism (QPC). At least in the case of two-valued functions, the QPC properties that can be 

determined by means of a single computation are an exponentially small fraction of all the possible global 

properties. 

2. Quantum algorithms and their classification  

QAs consist of a fixed number of computational steps, represented by quantum gates which are compa-

rable to single, elementary instructions in classical computer programming. More complex programming 

instructions and constructs known from classical programming languages like while-loops which lead to a 

variable number of steps, are not implementable in the (non-uniform) quantum circuit model. Hybrid algo-

rithms remedy they are made of a classical program, with quantum subprograms, built by elementary quan-

tum operations. Most of the quantum algorithms (relevant in practice) are hybrid. However, this chapter fo-

cuses mainly on quantum subprograms.  

It is the aim of this chapter to provide a summary of QAs which give an advantage over known classical 

algorithms and which are based on the quantum circuit model of computation. Although there are not many 

different QAs or quantum subprograms respectively, there is no claim to completeness because no all im-

provements and implementations by means of using other gate sets are mentioned. Furthermore, one must 
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distinguish between the QAs and the problems they are applied to since some algorithms (subprograms) 

solve more than just one problem or even class of problems.  

Finally, it cannot be ruled out that there are some more insignificant QAs which escaped through inves-

tigation as it stands at the mid-year of 2005. It should be noted that all these QAs were exclusively developed 

by hand.  

Since there exist only a few QAs, classifying them may tend to be arbitrary. However, there are charac-

teristics which can lead to partitions of QAs. One possible classification depends on the technique that the 

algorithm uses: The first class consists of algorithms which are based on determining a common property of 

all the output values. A representative of this class is Shor’s algorithm, where the period of the function 

  modxf x a N  is calculated. 

Remark. The period of a function : 0,1 0,1n mf   is the value   modxf x a N , with

   f x f x rm  , where m  is an integer, such that , 0,1,...,2 1nx x rm   .  

The second class contains those algorithms which use amplitude amplification, like Grover’s algorithm. 

The third class contains algorithms which derive benefit from both methods characterizing the previous two 

groups, such as the approximate counting algorithm.  

In a slightly different way, Nielsen and Chuang divide quantum algorithms into three classes. The first 

class consists of those algorithms based on quantum versions of the Fourier transform. Examples are the 

Deutsch-Jozsa algorithm as well as Shor’s algorithms for factoring and the discrete logarithm. Most of these 

problems are instances of the hidden subgroup problem in group theory. They second class of quantum algo-

rithms are the quantum search algorithms. At last, the third class of algorithms includes quantum simula-

tions, i.e. algorithms, which simulate a quantum physical system on a quantum computer.  

A classifications based on the programming technique seems tempting. However, the preparation of an 

equally weighted superposition which can be also regarded as an application of the quantum Fourier trans-

form (QFT), seems to be an imperative step in any QA and cannot serve as a distinguishing mark. Whether 

this can be interpreted as a Fourier transform depends on the problem. The best example is Grover’s algo-

rithm, where there are no reasons to read the superpositioning as a QFT. Deutsch’s problem, however, can be 

also regarded as a group theoretic hidden subgroup problem. Therefore, the interpretation of the superposi-

tion step as a QFT might be appropriate.  

Amplitude amplification means to increase the amplitudes of solution states while decreasing the ampli-

tudes of non-solution states by using a generalization of Grover’s iteration. This characterizes many quantum 

search algorithms. Hogg’s algorithm for structured combinatorial search problems, such as highly con-

strained k-SAT, is an exception, since it is also a quantum search algorithm, but it does not use Grover’s 

technique. Instead, its power seems to come from a claver exploitation of the hidden problem structure. The 

algorithm is described in more detail below. Another algorithm, which does not seem to be integrable into 

these classifications mentioned above is the route finding algorithm. It finds routes between specified start 

and end nodes in an undirected, weighted graph which contains no edges, connecting a node to itself, and no 

multiple edges between the same two nodes. It is mainly based on the idea of superpositional graphs and the 

realization of a special quantum AND operator, which is iteratively applied until an entangled state is gener-

ated, which, when measured, collapses to a state representing a path from start to end. A detailed description 

is omitted.  

General structure of QA’s  

A QA calculates the qualitative properties of the function f . From a mathematical standpoint, a func-

tion f  is the map of one logical state into another.  

The problems solved by a QA can be stated as follows:  

A  function f
 
is given:    0,1 0,1

n m
 ; find a certain property of the function f . 

Or in the symbolic form as:  
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Input A function f: {0,1}n {0,1}m 

Problem Find a certain property of  f 

Fig. 1 is a block diagram showing a gate approach for simulation of a QA using classical computers. In 

Fig. 1, an input is provided to a QA and the QA produces an output. However, the QA can be transformed to 

produce a QAG such that an input vector (corresponding to the QA input) is provided to the QAG to produce 

an output vector (corresponding to the QA output).  

 

Figure 1. The gate approach for simulation of quantum algorithms using classical computers 

Fig. 2 shows classification tree of QA’s for quantum soft computing and control engineering applica-

tions. QA’s are either decision-making or searching as described above. As shown, as example, in Fig. 2, 

Quantum Genetic Search Algorithms (QGSA) follows from Grover’s and Shor’s algorithms, and background for 

Robust KB design of Fuzzy Controllers follows from Deutch’s, Deutch-Josa’s, Grover’s and/or Shor’s algo-

rithms. 

 

Figure 2. Classification of quantum algorithms 

Fig. 3 is a block diagram showing the design process of the QAG. Let us briefly consider the design 

process of QAG.  

In Fig. 3 an input block of the QA is a function f  that maps binary strings into binary strings. This 

function f  is represented as a map table, defined for every string its image. The function is first encoded 

into a unitary matrix operator 
FU  depending on the properties of f . In a certain sense, this operator calcu-

lates f  when its input and output strings are encoded into canonical basis vectors of a complex Hilbert 

Space. The operator 
FU  maps the vector code of every string into the vector code of its image by f . The 

quantum block operates on basis vectors in a complex Hilbert space. The vectors operated on by the quantum 

block are provided to a decoder, which decodes the vectors to produce an answer. 

 

Quantum Algorithms 

Decision Making 
Searching 

Deutsch’s 
Deutsch-Jozsa’s 

Grover’s Shor’s 

Quantum Genetic 
Search Algorithm 

Robust Knowledge Base 

Design for Fuzzy Controllers 



Электронный журнал «Системный анализ в науке и образовании»                      Выпуск №3, 2014 год 

9 

 

Once generated, the matrix operator UF is embedded into a quantum gate G. The quantum gate G is a 

unitary matrix whose structure depends on the form of matrix UF and on the problem to be solved. The quan-

tum gate is a unitary operator built from the dot composition of other more specific operators. The specific 

operators are described as tensor products of smaller matrices.  

 

Figure 3. Schematic diagram of QA 

Fig. 4 shows the general structure of a quantum circuit for a QAG.  

 

Figure 4. A quantum circuit 

The quantum circuit is a high-level description of how these smaller matrices are composed using tensor 

and dot products in order to generate the final quantum gate as shown in Fig. 4.  

Thus, the mathematical background of this approach is based on mappings between the quantum block 

operations in the complex Hilbert space. The encoder and decoder operate in a map table and interpretation 

space, and input/output occurs on a binary string level. The Clifford and Pauli groups are the background for 

universal QAG design for simulation of a QA’s on classical computers. 

As shown in Fig. 4, the general structure of the QAG is based on three quantum operators (superposi-

tion, entanglement, and interference) and measurement. The QAG acts on an initial canonical basis vector to 

generate a complex linear combination (called a superposition) of basis vectors as an output. This superposi-
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tion contains the full information to answer the initial problem. After the superposition has been created, 

measurement takes place in order to extract the answer information. In quantum mechanics, a measurement 

is a non-deterministic operation that produces as output only one of the basis vectors in the entering superpo-

sition. The probability of every basis vector of being the output of measurement depends on its complex co-

efficient (probability amplitude) in the entering complex linear combination. 

Therefore, the segmental action of the quantum gate and of measurement makes up a quantum block 

(see Fig. 3). The quantum block is repeated k times in order to produce a collection of k basis vectors. Since 

measurement is a non-deterministic operation, these basis vectors will not necessarily be identical, and each 

basis vector encodes a peace of the information needed to solve the problem. The last part of the algorithm 

involves interpretation of the collected basis vectors in order to get the final answer for the initial problem 

with some probability. 

Fig. 5 shows the general structure of QA that includes almost all of described peculiarities. 

 

Figure 5. General structure of QA 

Let us discuss briefly any mathematical backgrounds and its physical peculiarities for quantum compu-

ting based on QAG. 

Basic programming techniques and simple quantum algorithms 

It is assumed that certain computational problems can be solved on a quantum computer with a lower 

complexity than possible on classical computers since there are problems which are efficiently solvable by 

quantum algorithms but not classically up to now. In doing so, quantum algorithms take advantage of basic 

computational techniques, namely superpositioning, quantum parallelism and quantum interference. Addi-

tionally, entanglement seems to be a source of computational power which quantum algorithm can benefit 

from.  

In this item fundamental programming techniques are discussed on the basic of the simple quantum al-

gorithm for Deutsch’s problem or its generalization, the Deutsch-Jozsa problem. Also, a quantum algorithm 

for quantum teleportation is explained, demonstrating the power of quantum entanglement. Both problems, 

quantum teleportation and Deutsch-Jozsa, were already used as test problems for quantum circuit evolutions.  
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Decision-making QA models: Deutsch’s, Deutsch-Jozsa’s, Simon’s and Berstein-Vazirani 
benchmarks QA  

Classical computer science relies on the concept of Turing machines as a unifying model of universal 

computation. According to the modern Church-Turing Thesis, this concept is interpreted in the form that 

every physical reasonable model of computation can be efficiently simulated on a probabilistic Turing ma-

chine. Recently this understanding, which was taken for granted for a long time, has required a severe reori-

entation because of the emergence of new computers that do not rely on classical physics but, rather, use ef-

fects predicted by quantum mechanics.  

Remark. It has been realized that, by using the principle of quantum mechanics, there are problems for 

which a putative quantum computer could outperform any classical computer. QA’s are benefit from the ap-

plication of the superposition principle to the internal states of the quantum computer, which are considered 

to be states in a (finite-dimensional) Hilbert space. As a result, these algorithms lad to a new theory of com-

putation and might be of central importance to physics and computer science. Striking examples of QA’s are 

Shor’s factoring algorithm, Grover’s QSA and QA’s for quantum error-correcting codes.  

The goal of the QA is to learn some property of the function f . The QA’s presented in this item exploit 

the fundamental principles of quantum mechanics: interference, superposition and entanglement that quan-

tum physics offer (see Fig. 5).  

We have explored these principles in various QA’s (see below).  

Main quantum operation in quantum computing. Quantum computing can manipulate quantum infor-

mation by means of unitary transformations. In particular, they can work with superpositions. 

Superposition operator. For instance, a single-q-bit Walsh-Hadamard operation H  transforms a q-bit 

from 0  to   and from 1  to  . When H  is applied to a superposition such as  , it follows by the 

linearity of quantum mechanics that the resulting state is  

    
1

0 1 0 1 0
2

    . 

This illustrates the phenomenon of destructive interference, by which component 1
 
of the state is 

erased. Consider now an n -q-bit quantum register initialized to 0n . Applying a Walsh-Hadamard trans-

form to each of these q-bits yields an equal superposition of all n -bit classical states: 
2 1

0

1
0

2

n

Hn

n
x

x




  . 

Unitary operation fU : Quantum oracle. Consider now a function    : 0,1 0,1
n

f  , that maps n -bit 

strings to a single bit. On a quantum computer, because unitary transformations are reversible, it is natural to 

implement it as a unitary transformation fU  that maps x b  to  x b f x , where x  is an n -bit string, 

b  is a single bit, and « » denotes the Exclusive – OR (XOR). Schematically,  fU
x b x b f x  . 

Remark. Much of current interest in quantum computation was spurred by Peter Shor’s momentous dis-

covery that quantum computers can in principle factor large numbers and extract discrete logarithms in poly-

nomial time and thus break much of contemporary cryptography such as the RSA cryptosystem and the Dif-

fie-Hellman public-key exchange. However, this does not provide advantage of quantum computation be-

cause nobody knows for sure that these problems genuinely hard for classical computers. On the other hand, 

it has been demonstrated that quantum computers can solve some problems exponentially faster than any 

classical computer provided the input is given as an oracle, and even if we allow bounded errors. In this 

model, some function    : 0,1 0,1
n

f 
 
is given as a black-box, which means that the only way to obtain 

knowledge about f  
is to query the black-box on chosen inputs. In the corresponding quantum oracle model, 

a function f  
is provided by a black-box that applies unitary transformation fU

 
to any chosen quantum 

state, as described by:  fU
x b x b f x  . 
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Action effects of quantum computing operations. The linearity of quantum mechanics gives rise to two 

important phenomena. 

1. Quantum parallelism: We can compute f  
on arbitrary many classical inputs by a single application of 

fU
 
to a suitable superposition:  fU

x x

x x

x b x f x b    . When this is done, the addition-

al output q-bit may become entangled with the input register;  

2. Phase kick-back: The outcome of f  
can be recorded in the phase of the input register rather than being 

XOR-ed to the additional output q-bit: 

 
 

 
 

1 ; 1f ff x f xU U

x x

x x

x x x x          . 

The fundamental questions in quantum computing are following:  

(1). Where does the surprising computational advantage provided by quantum mechanics come from? 

(2). What is the non-local property of quantum mechanics that leads to such an advantage? 

(3). Do superposition and interference provide the quantum advantage? 

Probably the most often heard answer is that the power of quantum computing comes from the use of 

entanglement, and indeed there are very strong arguments in favor of this believe.  

For our purposes it will suffice to model the quantum system as a «block box» and focus our attention 

on two discrete observables out of a complete set, which we shall call the input and output register. Follow-

ing the standard notation from quantum computing, we shall indicate the computation of a function 

:f A B  as  0x x f x , the first is ket describing the state of the input register and the second is 

the state of the output register. Kets are labeled according to the elements of A  and B  they represent.  

As mentioned above  one of the most powerful features of quantum computation is quantum parallel-

ism. The superposition principle of quantum mechanics allows us to prepare the computing in a coherent 

superposition of a set I A  of input states. After a single run, all of the corresponding outputs  f x  appear 

in the final state, according to the temporal evolution 

 0
x I x I

x x f x
 

    . 

Remark. Unfortunately, this is no «pay one, take N ». In fact, the result is an entangled state of the input 

and output registers, and there is no single measurement allowing us to extract from it all the computed val-

ues of  f x . However, it may well be possible to distil from this final state some global property of the 

function, thus exploiting quantum parallelism. One of the most famous examples presented by D. Deutsch, 

who showed that a single quantum computation may suffice to state whether a two-valued function of a two-

valued variable is constant or not. D. Deutsch and R. Jozsa generalized this result showing that the problem 

of classifying a given function :f    0, ,2 1 0,1N  
 
as «not constant» or «not balanced» can be solved 

in polynomial time by means of a quantum computing (the time required by a classical solution is exponen-

tial). Also D.R. Simon showed that the problem of determining if a function is invariant under a so-called 

XOR mask, while it is classically intractable, admits an efficient quantum solution. All of the algorithms cit-

ed above (apart from the last, for which Simon also considered a fully probabilistic generalization) are char-

acterized by a variable running time and zero error probability. They consist of a non-classical computation 

like  0
x I x I

x x f x
 

     followed by a measurement of the final state of the computing, as a result 

of which either the correct answer is obtained or the relevant information is destroyed and an explicitly in-

conclusive result is returned. In the latter case one has to go through the whole procedure again, so that only 

an average running time for the QA can be estimated.  

Remark. Global properties of functions that can be determined by such an algorithm are said to be 

Computable by Quantum Parallelism (QPC). This definition was put forward by Jozsa who also demon-
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strates that, at least in the case of two-valued functions, the QPC properties that can be determined by means 

of a single computation are an exponentially small fraction of all the possible global properties. 

The Deutsch’s quantum decision-making algorithm  

The Deutsch’s QA is the simplest QA, nevertheless it is important because it shows us the computing 

power of a quantum computation.  

Qualitative computational model of Deutsch’s Problem. Let us consider a Boolean function f  
that 

maps    0,1 0,1 . There are exactly four functions of this type: 

Two constant functions: 
   

   

1 1

2 2

0 1 0,

0 1 1;

f f

f f

 

 
 and,  

two balanced functions: 
   

   

3 3

4 4

0 0, 1 1,

0 1, 1 0.

f f

f f

 

 
 

Problem: Is it possible, by computing f  only once, to find out whether the binary numbers  0f  and 

 1f  are the same or different? 

Remark. Classical intuition tells us that we have to evaluate both  0f  and  1f , i.e., to compute f  

twice, to give a conclusive answer to the previous question. This is so when one resort to quantum mechanics 

and to its most peculiar features, such as entanglement and superposition.  

In this, one would like to determine whether a function    : 0,1 0,1f   is constant or balanced, i.e., 

whether    0 1f f
 
or    0 1f f   is using a quantum computing technology.  

The four possible outcomes of f  are 

     

     

     

     

0 1 0

0 1 1

0 0, 1 1

0 1, 1 0

f f constant

f f constant

f f balanced

f f balanced

 

 

 

 

 

Ordinarily, one has to determine both  0f  and  1f  to infer the nature of the function, since the 

knowledge of one does not shed light on the value of the other. However, it was shown that by applying a 

certain sequence of unitary operators (gates) on a given initial quantum-mechanical state, and then making 

just one measurement on the basis final state, the nature of the function f  can be determined. 

Mathematical model and computational steps in Deutsch’s QA. Deutsch’s problem, as abovementioned, 

in its simplest form concerns the analysis of single binary functions   :f x B B , where  0,1B   is the 

set of possible values for a single bit.  

Clearly there are exactly four such functions, which may be described by their truth tables, as shown 

in Table 4. 

According to qualitative model description of Deutsch’s problem, these four functions can be divided 

into groups: the two «constant» functions, for which  f x  is independent of x  (
00f  and 

11f ), and the two 

«balanced» functions, for which  f x  is zero for one value of x  and unity for the other (
01f  and 

10f ). 

Table 4. The four possible binary functions mapping one bit to another 
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       00 01 10 11

0 0 0 1 1

1 0 1 0 1

x f x f x f x f x

 

Some unknown function is given f  (known to be one of these four functions), it is possible to deter-

mine which of the four functions it is by applying f  to two known inputs: 0 and 1. This procedure also pro-

vides enough information to determine whether the function is constant or balanced.  

However, knowing whether the function is constant or balanced corresponds to only one bit of infor-

mation, and so it might be possible to answer this question using only one evaluation of the function f . 

Equivalently, it might be possible to determine the value of    0 1f f  using only one evaluation of f . 

(The symbol   indicates addition mod2, and for two one bit numbers, a  and b , a b  equals 0 if a  and b

are the same, and 1 if they are different.)  

In fact this can be achieved as long as the calculation is performed using a quantum computing rather 

than a classical one. 

Quantum operator (entanglement) for quantitative description of function property. Quantum compu-

ting of necessity use reversible logic, and so it is not possible to implement the binary function f  directly. It 

is, however, possible to design a propagator fU , which captures f  within a reversible transformation by 

using a system with two input q-bits and two output q-bits as follows:  
fU

x y x y f x  . The two 

input bits are preserved ( x  is preserved directly, while y  is preserved by combining it with  f x , the de-

sired result), and so fU  corresponds to a reversible transformation.  

Remark. Note that for any one bit number , 0a a a  , and so values of  f x  can be determined by 

setting the second input bit to 0.  

Using this propagator and appropriate input states it is possible to evaluate both  0f  and  1f
 
using 

as following:  0 0 0 0fU
f  and  1 0 1 1fU

f . 

Quantum circuit for Deutsch’s QA. The approach outlined above, in which the state of a quantum com-

puting is described explicitly, swiftly becomes unwieldy, and it is useful to use more compact notations. One 

particularly simple approach is to use quantum circuits, which may be drawn by analogy with classical elec-

tronic circuits. In this approach lines are used to represent «wires» down which q-bits «flow», while boxes 

represent quantum gates, which perform appropriate unitary transformations. For example, the analysis of f

can be summarized using the circuit shown in Fig. 6.  

 

Figure 6. Deutsch's QA circuit 

Quantum computation parallelism in Deutsch QA. According to the Deutsch’s algorithm (Fig. 6), we 

should simply perform the following operations: 

 we take two q-bits and prepare them in the product state 0 1 ;  

 we apply (step 1 in Fig. 6) to each q-bit the unitary Hadamard transformation H , that produces the 

superposition states as following:  
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    
1 1

0 0 1 , 1 0 1
2 2

     

 ; 

 we evaluate (step 2 in Fig. 6) the unknown function on the first gubit and then store the result in the 

second q-bit in the following way:  
fU

x y x y f x  ;  

 we apply (step 3 in Fig. 6) again the transformation H  to each q-bit; and  

 we perform (step 4 in Fig. 6) a measurement on the first q-bit.  

 We are using the following physical interpretation of measurement results: If the first q-bit is in state 

0 , the function is constant; if it is in the state 1 , the function is balanced. 

Describing the algorithm in detail, the application of the Hadamard transforms H  to each q-bit of the 

initial state realizes   
1

0 1 0 1 0 1 .
2

    Then the evaluation of the unknown function produces  

           
1 1

0 1 0 1 0 0 1 0 1 1 1 1 .
2 2

f f f f               

At this stage, depending on which function we consider, we have four possible outcomes. Finally, by 

applying once again the Hadamard transform H  to each q-bit, we obtain 

 

 

 

 

1

2

3

4

1
0 0 1 1 0 1 0 1

2

1
0 1 0 1 1 0 0 1

2

1
0 0 1 1 1 0 1 1

2

1
0 1 0 1 0 1 1 1

2

for f

for f

for f

for f

         

          

         

          

 

We emphasize, that, regardless the specific Boolean function implemented, the second q-bit always 

ends up in state 1 . However, even though it does not convey any information on the parity properties of the 

function, it may turn our to be useful to check eventual errors taking place in a real experiment.  

We shall briefly recall abovementioned example before confronting the problem of its generalization. 

Example. Suppose the calculation begins with the second q-bit in the superposition  
1

0 1
2

 . Then  

   

 

 

 
 

0 10 1

2 2

0 1
0,

2

1 0
1

2

0 1
1

2

fU

f x

f x f x
x x

x if f x

x if f x

x

    
     

   

  
   
  
  

 
  
  
 
 

 
   

 
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Remark. We have used the fact that 0 a a  , as before, while 1 1a   if 0a   and 0 if 1a  . The 

value of  f x  is now encoded in the overall phase of the result, with the q-bits left otherwise unchanged. 

While this is not particularly useful, suppose the calculation begins with the first q-bit also in a superposition 

of states, namely  
1

0 1
2

 . Then  

 

with the first q-bit ending up in the superposition  
1

0 1
2

 , with desired answer (    0 1f f ) encoded 

as the relative phase of the two states contributing to the superposition. This relative phase can be measured, 

and so the value of    0 1f f  (that is, whether  f x  is constant or balanced) has been determined using 

only one application of the propagator fU , that is only one evaluation of the function  f x .  

This approach can be easily implemented using also a quantum circuit. This circuit starts off from ei-

genstates, uses Hadamard transformations to convert these into superpositions, applies the propagator fU  to 

these superpositions, and finally use another pair of Hadamard transforms to convert the superpositions back 

into eigenstates which encode the desired result. So far this is simply using a quantum computing to simulate 

a classical computing implementing classical algorithms. With a quantum computing, however, it is not nec-

essary to start with the system in some eigenstate; instead it is possible to begin with a superposition of 

states.  

Qualitative analysis of Deutsch’s QA. Suppose we are given a function    : 0,1 0,1f   and we are in-

terested to know whether f  is constant or not. Of course there are only four such functions (i.e., four in-

stance of the problem), namely  

 

 

 

 

 

 

 

 
1 2 3 4

1 2 3 1

0 0 0 1 0 0 0 1
.

1 0 1 1 1 1 1 0

f f f f

f f f f

          
   

         
 

If all we can use a classical computing, there is only one-way to do the job: we must compute both 

 0f  and  1f , and compare them to check if they are equal. On the contrary, since in this simple case the 

property « f  is constant» is QPC, a quantum computing gives us a fair chance of finding the solution at the 

cost of the single computation as follows:  

      
1 1

0 1 0 0 0 1 1
2 2

f f    . 

After the computation, the calculator halts with its input and output registers in one of four possible 

states, corresponding to the four possible functions: 

1 2

3 4

1 1
0 0 1 0 0 1 1 1

2 2

1 1
0 0 1 1 0 1 1 0

2 2

f f

f f

         

         

 

Since the above states are linearly dependent, they cannot be distinguished with certainty. This means 

that no measurement can establish which function was actually computed, or, which is the same, it’s impos-

sible to extract from the final state both the values of  0f  and  1f . However, we need only discriminate 

1f  and 2f , the final states yielded by the constant functions, from 3f  and 4f . This case actually can 

     
 

 
    

 
 

 
      

0 1

0

0 1

1 1 1 1
0 1 0 1 1 0 1 1 0 1

2 2 2 2

1
0 1 1 0 1

2

fU
f f

f

f f

      


   
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be done by measuring on the final state of the two registers on observable with the following non-degenerate 

eigenstates: 

     

     

1 1
0 1 0 1 0 1 0 1

2 2

1 1
0 1 0 1 0 1 0 1

2 2

Same Different

Fail Error

     

     

 

These four states can be thought of as «flags» indicating the result of the computation and have been 

named according to their meaning. This becomes clearer as soon as we rewrite the final states on the basis of 

the above eigenvectors: 

1 2

3 4

1 1

2 2

1 1

2 2

f Fail Same f Fail Different

f Fail Same f Fail Different

         

         

 

It is now evident that 

 

1 
Projection along the eigenvector Same  can only take place if the state of the computing is 

either 1f  or 2f , i.e., when f  is constant 

 

2 
Likewise, projection along the eigenvector Different  can only occur if f  is not a constant 

function 

 

3 
Regardless the final state if  of the two registers after the computation, the measurement 

can yield a Fail  state with probability 
1

2
 

 

4 
State Error  is orthogonal to the four final states listed above, therefore, it should show up 

only as a consequence of noise-induced errors 

Remark. According to the definition of the QPC class, the QA can either give us the correct answer or 

no answer at all: as long as every thought works properly, we’ll never get a wrong result. This comes in 

handy when we are asked to solve a decision-making problem in which simply waiting has a much higher 

utility than taking a wrong action. In this case we can discard the Fail  results and base our decisions upon 

the meaningful answers, that we know to be correct. 

Role of computational basis in Deutsch’s problem. We will write  0,1B   for the additive group of in-

tegers mod2 and denote by  the Hilbert space of one q-bit (i.e., a two-dimensional Hilbert space) equipped 

with a standard basis denoted by  0 , 1 . n  will denote the Hilbert space of n  q-bits. The dual basis of 

 denoted by  0 , 1   is defined by  
1

0 0 1
2

   ,  
1

1 0 1
2

   . Hadamard transformation 

H  interchanges the standard and dual basis.  

Remark. In terms of real geometry, the dual basis lies on the 045  lines between the orthogonal direc-

tions 0  and 1  and H  is the transformation given by reflection in a line at angle 
1

8
  to the 0  direction. 

Thus the eigenvectors of H  (parallel and perpendicular to the mirror line) are cos 0 sin 1
8 8

 
  belonging 

to 1   , respectively. We will see that H  is also the Fourier transform on the group B . The elements of 
n  are n  bit strings.  

If  1, , nx x x  and  1, , ny y y  are in n , then we write  1 1, , n

n nx y x y x y     , 

 1 1 n nx y x y x y     . The operations on the right-hand sides in last equations are being the addition 
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and the multiplication mod2 in . Note that x y  is the parity of the number of places where x  and y  both 

have a bit value of 1. 

We are given a «black-box» or oracle that computes a function : nf   and we are required to de-

cide whether a certain «global» property (i.e., a joint property of all the function values) holds of f . For 

quantum computation, the black-box is given as a unitary transformation fU  on 1n  q-bits given in stand-

ard basis by  

 1 2 1 2 1 2, ,

1 2

: ,f n n n

input Register Register

U x x x y x x x y f x x x  . 

We will often abbreviate 1 2 nx x x  as x  for nx . Thus if y  is initially set to zero, the value of 

f  may be read from the last q-bit.  

For the problem, referred to as Deutsch’s XOR problem, we have 1n   so that f  is one of the four 

possible functions :f  . We are to decide whether    0 1f f  is 0 or 1. Equivalently, we wish to 

decide whether is f a constant function or a balanced function is.  

Remark. It is clear, as we know any classical computer requires evaluating f  twice to decide this. Ac-

cording to Deutsch’s original method, the problem may be solved on a quantum computer after running fU  

only once, but QA succeeds only with probability 
1

2
 (and we know when it has been successful). The meth-

od is simply to run fU  on the input superposition  
1

0 1
2

 , yielding the state 

    
1

0 0 1 1
2

f f . Writing this state in the dual basis we have the four possibilities given as the 

following: 

by two constant functions 

    
   

   

1 1
0 0 1 0 0 0 0 1

1 2 2
0 0 1 1

1 12
0 1 1 1 0 0 0 1

2 2

f f


     


  

      


 

and  

 two balanced functions 

    
   

   

1 1
0 0 1 1 0 0 1 1

1 2 2
0 0 1 1

1 12
0 1 1 0 0 0 1 1

2 2

f f


     


  

      


. 

Physical interpretation of measurement results in dual basis. Now measure the second q-bit in the dual 

basis. If the result is 0  (which occurs with probability 
1

2
 in every case), then we have lost all the infor-

mation about the function f . If the result is 1 , then measurement of the first q-bit will reliably distinguish 

between constant and balanced functions. 

Role of interference quantum operator in Deutsch’s QA. Quantum computing is used the quantum inter-

ference operator of different computational paths to enhance correct outcomes and suppress erroneous out-

come of computations. In effect, they follow the same logical paradigm as (multi-particle) interferometers. 

We can show how QA’s may be cast in this manner using as example the Deutsch’s problem solution.  
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Let us consider the Boolean function f  that maps  0,1  to  0,1 . There are exactly four such func-

tions: two constant functions     [ 0 1 0f f 
 

and     0 1 1f f  ] and two balanced functions 

    [ 0 0, 1 1f f 
 
and     0 1, 1 0f f  ]. It turns out that it is possible to construct a controlled func-

tion evaluation such that two possible eigenvalues are produced which may be used to determine whether the 

function is constant or balanced. This is done in the following way. 

A controlled-U  transformation can be used to produce a particular phase shift on the control q-bit cor-

responding to its eigenvalue on the auxiliary q-bit. If two eigenvalues of the controlled-U  transformation 

lead to different orthogonal states in the control q-bit, a single measurement on this q-bit will suffice to dis-

tinguish the two cases. 

Let us formally define the operation of «evaluating» f  in term of the f -controlled-NOT operation on 

two bits: the first contains the input value and the second contains the output value. If the second bit is ini-

tialized to 0, the f -controlled-NOT operation maps  ,0x  to   ,x f x . This is clearly just a formalization 

of the operation of computing f . In order to make the operation reversible, the mapping is defined for all 

initial settings of the two bits, taking  ,x y  to   ,x y f x . A single evaluation of the f -controlled-NOT 

operation on quantum superpositions suffices to classify f  as constant or balanced. This is the real ad-

vantage of the quantum method over classical.  

Classically if the f -controlled-NOT operation may be performed only once then it is impossible to dis-

tinguish between balanced and constant functions. Whatever the outcome is both possibilities (balanced and 

constant) remain for f . This corresponds to our classical intuition about the problem since it involves deter-

mining not particular values of  0f  and  1f , but a global property of f . Classically to determine this 

global property of f , we have to evaluate both  0f  and  1f , that as we known involves evaluating 

 0f  and  1f , twice. Deutsch’s QA has the same mathematical structure as the Mach-Zehnder interfer-

ometer, with the two phases settings 0,  .  

It is best represented as the quantum network, where the middle operation is the f -controlled-NOT op-

eration that can be defined as the following:  

 
f c N

x y x y f x
 

  . 

The initial state of the q-bits in the network is  0 0 1  (apart from a normalization factor that will 

be omitted in the following). After the first Hadamard transform, the state of the two q-bits has the form 

  0 1 0 1  . To determine the effect of the f -controlled-NOT operation on this state first of all note 

that for each  0,1x , 

        
   0 1 0 1 1 0 1

f c N
f x

x x f x f x x
 

        . 

Therefore, the state after the f -controlled-NOT operation is  

 
 

 
   

0 1
1 0 1 1 0 1

f f
    . 

It means that for each x , the x  term acquires a phase factor of  
 

1
f x

 , that corresponds to the eigen-

value of the state of the auxiliary q-bit under the action of the operator that sends y  to  y f x . As we 

known this state can be also written as  
 

 
     

0 0 1
1 0 1 1 0 1

f f f
     that after applying the second 

Hadamard transform to the first q-bit, becomes  

 
 

     
0

1 0 1 0 1
f

f f   . 
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Therefore, the first q-bit is finally in state 0  if the function f  is constant and in state 1  if the func-

tion is balanced, and a measurement of this q-bit distinguishes these cases with certainty. 

By a suitable choice of a time-dependent Hamiltonian, Deutsch’s QA can be implemented by an adia-

batic quantum computing.  

Deutsch-Jozsa quantum problem 

In the second algorithm (Deutsch and Jozsa, 1992), referred as Deutsch- Jozsa’s algorithm, we are given 

n  and a function : nf B B . It is promised that f  is either constant or balanced (where balanced means 

that f  takes values of 0 and 1 an equal number of times, i.e., 
12n
 times each). The problem is to decide 

whether f  is balanced or constant. The method, described in detail in Deutsch and Jozsa (1992), involves 

running fU  twice (and using Hadamard transform H   O n  times) to construct the state  

  
 1

1
2 n

f x

n
x B

f x


  . (1) 

Then f  for any constant function is orthogonal to the corresponding state for any balanced function 

and thus we can solve the decision problem with certainty by a suitable measurement on the resulting state. 

The QA always runs in time  2nO , at least in some cases.  

Remark. Deutsch’s XOR problem is the 1n   case of the above decision problem. However, the above 

algorithm, running fU  twice, offers no advantage over the obvious classical algorithm for 1n  . Another 

distinction between the above two algorithms is that the XOR problem is solved only with probability 
1

2
, 

whereas the second algorithm is always successful. An interesting recent innovation (see in details below) 

fully unifies and considerably improves the above two algorithms: the XOR problem may be solved with 

certainty and the state in Eq. (1) may be constructed by running fU  only once. The improved XOR algo-

rithm is then more precise than 1n   case of the improved Deutsch’s algorithm. The basic idea was to set the 

output register to the state  
1

0 1
2

  before applying fU . Note that  

 
   

   

0 1 , 0
: 0 1

1 0 , 1
f

x if f x
U x

x if f x

  
 

 

. 

Thus    
   

1 1 1 1
: 0 1 1 0 1

2 22 2n n

f x

f
n n

x B x B

U x x
 

 
    

 
  , giving the state f  in the 

first n  q-bits after only one application of fU . The last q-bit plays a curiously passive role in the fact that its 

state is unchanged in the process. This is reminiscent of the similarly passive role of the second register in 

Shor’s QA.  

The explicit description of the measurement on f  that distinguishes balanced from constant functions 

is significant for subsequent developments. Firstly, apply the operation H  to each of the n  q-bits of .f  

Denoting the resulting n -q-bit operation by 
nH , we have, for each nx B ,  

1
: 1

2 n

x y

n
n

y B

H x y




  . 

Note that 
1

0 0
2 n

n
n

y B

H y


   is the equal superposition of all the standard basis states and that up to an 

overall sign this coincides with f  for f  constant. Since 
n nH H I  it follows that 0 0nH f   for f  
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to be constant. Thus if f  is balanced then nH f  must be orthogonal to 0 0 , i.e., f  lies in the span 

of  : 0 0x x  . Hence to distinguish balanced from constant functions we apply 
nH  to f  and then 

read the bits to see whether they are all zero or not.  

The above measurement has 2n
 natural outcomes (i.e., all n -bit strings) and we may ask if there are 

special balanced functions that yield the other outcomes nx B  with certainty in the same way that constant 

functions lead to the outcome 0 0 . For each nk B  consider the function : n

kf B B  given by 

 kf x k x  . It can be easily verified that each 
kf  is a balanced function for 0 0k   (giving a small sub-

set of all possible balanced functions). We will see that the operation 
nH  is the Fourier transform on the ad-

ditive group 
nB  (also known as the Walsh or Hadamard transform) and the functions 

kf  are the Fourier 

(Walsh or Hadamard) basis functions. For these functions we have n kH f k  that follows readily by 

comparing last expressions and the fact that 
n nH H I . Thus this QA can reliably distinguish the 2n

 func-

tions 
kf  after evaluating the function only once.  

However, this finer use of the measurement outcomes does not represent an exponential advantage over 

classical computation since the classical evaluation of just n  values of 
kf  on the inputs 10 0 , 010 0 , up 

to 0 01  will successively reveal the n  bits of k .  

Assume that for one of Boolean functions    : 0,1 0,1
n

f  , it is «promised» that it is either constant or 

balanced (i.e., it has an equal number of 0 outputs), and consider the goal of determining which of the two 

properties the function actually has.  

How many evaluations of f  are required to do this? Any classical algorithm for this problem would 

require 
12 1n   evaluations of f  before determining the answer with certainty in the worst case. There is a 

QA that solves this problem with a single evaluation of f . The algorithm is presented in Fig. 1.19, where 

the control register is now composed of n  q-bits, all initially in state 0 . It denotes as 00 0  and as in QA 

for Deutsch’s problem, an auxiliary q-bit is employed, that is initially set to the state 0 1  and is not al-

tered during the computation.  

 

Figure 7. The quantum circuit for the Deutsch–Jozsa algorithm 

Also, the n -q-bit Hadamard transform H  is defined as  
 0,1

1
n

x yH

y

x y




  , for all  0,1
n

x , 

where  1 1x y x y      n nx y   (i.e. the scalar product modulo 2). This is equivalent to performing a 

one-q-bit Hadamard transform on each of the n-q-bits individually. The actual computation of the function 

f  is by means of an f-controlled-NOT (the middle gate in Fig. 7) that acts as 

 f c N
x y x y f x

 
  . 

This is similar to the above expression, except one that now  0,1 .
n

x  

Stepping through the execution of the network, the state after the first n-q-bit Hadamard transform is 

applied as
 

 
0,1

0 1
n

x

x


  that after the f-controlled-NOT gate, is  
 

 

 
0,1

1 0 1
n

f x

x

x


  . 
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Finally, after the last Hadamard transform, the state is: 

 
   

 

 
, 0,1

1 0 1
n

f x x y

x y

x
 



  . 

Remark. The amplitude of 00 0  is  
 

 0,1

1
1

2 n

f x

n

x

 , so if f  is balanced then, for the state of the 

first n  q-bits, the amplitude of 00 0  is zero. Therefore, by measuring of the first n  q-bits, it can be de-

termined with certainty whether f  is constant or balanced. Note that, as in Deutsch’s example, this entails a 

single f -controlled-NOT operation. (This is a slight improvement of Deutsch-Jozsa original QA that in-

volves two f -controlled-NOT operations.) Now let us summarize the computational steps of Deutsch-Jozsa 

QA.  

Mathematical model of the Deutsch-Jozsa QA. Consider the subset of Boolean functions .
.
 with the 

property that f  is either constant or balanced (i.e. it has an equal number of 0 outputs as 1 outputs). The 

Deutsch-Jozsa QA determines, for a given unknown function f , whether the function is constant or bal-

anced. With a classical algorithm, this problem would require 
12 1N    evaluations of f  in the worst case 

whereas the QA solves it with a single evaluation by means of the following steps. 

 

 

(i) 
All q-bits are prepared in the initial state 0 ; therefore for the n -q-bit register is in the state 

00 0  

 

 

(ii) 

Perform an n -q-bit Hadamard transformation H : 

 
 

 
0,1

1 , 0,1
n

x y nH

y

x y x




   , 

where    1 1 n nx y x y x y       the scalar product modulo 2. This is equivalent to per-

form a one-bit Hadamard transformation to each q-bit individually 

(iii) 
Apply the f -controlled phase shift  

 
 : 1 , 0,1

fU
f x n

fU x x x    

(iv) Perform another Hadamard transformation H  

 

 

(v) 

Measure the final state of the register. If the result is 00 0 , the function f  is constant; 

however, if the amplitude 
00 0

a  of the state 00 0  is zero, the function f  is balanced. This 

is because  
 

 
00 0

0,1

1
1

2 n

f x

n

x

a


  . 

Remark. It is reasonable to identify the functions f  whose outputs can be mapped into each other by a 

bitwise NOT. For these functions, the gate operations in equation  
 

1
fU

f x
x x   differ merely by a 

global phase factor  1 . We shall use the convention  00 0 0f  . This reduces the number of gates that 

need to be implemented, by a factor of two and does not affect the exponential speed-up. It is interesting to 

note that the Deutsch-Jozsa QA does not involve entanglement for 2n   that is the 2n   version can be 

realized with uncoupled q-bits. On the other hand, the implementation of the algorithm, for 2n  , involves 

entanglement (see in details Chapter 3) and therefore requires a set-up of coupled q-bits. 

Example. To summarize, generalized by Deutsch and Jozsa, in its simplest form, the problem is stated 

as follows: «For an unknown given Boolean function  f x ,      : 0,1 0,1
n

f x 
 
determines whether it is 

constant or balanced by evaluating it only once», where «balanced» means equal number of variables for all 

function values. The original Deutsch problem corresponds to the case of 1n  . 
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Thus, to evaluate  f x  on a quantum computer, some unitary transformation  f x
U  is necessary, and 

the Deutsch-Jozsa QA uses an f -controlled-NOT operations that is defined by  

 

 

     

,

0,1 0,1, ,2 1; , 0,1 0,1, ,2 1,

f xU

Control Target

n mn m

x y x y f x

x y f x

 

     

 

where the first q-bits (quantum register) are the control and the second q-bits are the target. If we set the tar-

get q-bit to a one-q-bit superposition state,  
1

0 1
2

 , we have 

 
 

 
   

1 1
0 1 1 0 1

2 2

f xU
f x

x x    . 

Using this Deutsch-Jozsa QA and the Hadamard transformation H , we obtain  

 

 
 

   
2 2

0
0 1 1 0 1 1

f xUH H
f

Control

f f      

This transformations show that stating from the state 0 1 , only one function evaluation suffices to ob-

tain the state    0 1f f  for the control that is  0 1  when  f x  is constant (balanced) function solv-

ing the 1n   Deutsch problem. This may be the simplest example of quantum parallelism, an important as-

pect of the power of quantum computation.  

Remark. Recently, Collins et all (1998) showed, for f -controlled-NOT transformation, that if the tar-

get register in the input is restricted to the subspace spanned by  
1

0 1
2

 , then there is no entanglement 

between the control and the target registers in the output, the state of the target does not change; therefore, 

the target can be redundant. In this refined QA, the transformation  f x
U  is simply given by 

 

 
 

1
f xU

f x
x x  . Of course, this algorithm is experimentally applicable when we can directly create 

the phase  
 

1 1
f x

    for the state x .  

We will now give an algorithm to create arbitrary phase  i x
e

 
, rather than only 1 , and to apply this 

algorithm to solve an extended Deutsch problem where the function maps  

     : 0,1 0,1
n m

f x  . 

Generalized Deutsch problem: Phase-creation algorithm. Recalling that the input states for the target q-

bit of the Deutsch-Jozsa QA is the Hadamard transform of 1 , and that the Hadamard transform is the sim-

plest (modulo 2) case of a QFT (see Appendix 1), we will replace this q-bit (the target) by an m -q-bit quan-

tum register, u  that is the QFT modulo 2m
 of 00 01 :  

 

2

0,1

1 2
00 01 exp

22

m

m

F

mm
y

m

i y
u y





 
   

 
 . 

Note that u  is in fact unentangled, and is given by  

2

2 22

2 2 2
1

0 1 0 1 0 1
2

m

i ii

m
u e e e

      
              

     
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Next, extending the definition of f -controlled-NOT transformation, we will define a unitary transfor-

mation  x
U


 by a state-shift operation on each state y  of the target register u ; y  is shifted by an integer 

value  12m x
 that is determined by the state x  of the control register: 

 

 

   

1

1 1 1

2 mod 2

1
0,1

2

1 2 2 1
0, , , ,

2 2 2

xU

m m

m

m

m

m m m

x y x y x

x









  

 






,    0,1 , 0,1 .
n m

x y   

Using abovementioned expressions, we obtain 

 
 

 

   
 

  

 
 

 

  

0,1

1

0,1

1

0,1

1 2
exp

22

1 2
exp 2 mod 2

22

1
exp

2

exp 2 2 mod 2
2 2

exp

m

x

m

m

mm
y

U

m m

mm
y

m

m m

m

y

i y
x u x y

i y
x y x

i x x

xy
i y x

i x x u











 



















 





  
  

  







 

that shows that state-shift operations on states y  of the target register u  result in the creation of a phase 

  exp i x  for the control register x , because of the property of the Fourier-transformed state of the tar-

get. This is an explicit expression of what Cleve et all (1998) proposed for the creation of arbitrary interfer-

ence patterns.  

If we put 1m   in the abovementioned expressions, we obtain the Deutsch-Jozsa QA, and if we put 

2,n  and 2,m   we obtain four phases, 1, , 1,i   and i , for x  corresponding to  
1

0, ,1,
2

x   and 
3

2
, re-

spectively.  

Remark. Note that since  12m x
 is an integer, the smallest phase created is 

1
exp

2
m

i



 
 
 

. We see that 

in the output the target register u  does not entangle with the control register x , and that the state of the 

target register does not change by the transformation  x
U


. Therefore, just as in the Collins QA, the target 

register can also be redundant in this phase-creation algorithm. If we experimentally create the phase 

  exp i x  for the state x , this algorithm is simply described as 
 

 
xU

i x
x e x



 
 . 

Extended Deutsch problem. Here we will return to an extension of the Deutsch’s problem: «For an un-

known given 2m
-valued function        

1

1
, : 0,1 0,1 ,

2

n m

m
x x n m 


  , determine whether it is constant 

or balanced by evaluating it only once». In this problem, the numbers of constant and balanced functions are 

2m
 and 

 
2

2

2
m

n

n m

, respectively. Following the procedure given by Deutsch and Jozsa to solve the Deutsch’s 
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problem, where 2n  , we can prove that this extended problem, where 2n m  , can also be solved if we 

use the phase-creation algorithm, as follows. Walsh transformation for an n -q-bit state v  is given by 

 
 0,1

1
1

2 n

W
v w

n
w

v w




  , 

where v w  is the sum modulo 2 of the bitwise products of v  and w . This transformation is equivalent to 

performing a one-q-bit Hadamard transformation on each of the n q-bits individually. When we apply the 

phase-creation transformation to an equally weighted superposition state x  that is produced by the 

Walsh transformation, we obtain  

 

   

 

 

 

0,1

0,1

, 0,1

1
00 0

2

1

2

1

2

n

x

n

n

W

n
x

n

U i x

n
x

i x x wW

n

x w

x

e x

e w

  

 





   















 

The amplitude of the state 00 0  in the output is  

 0,1

1

2 n

i x

n

x

e
 



  that is nonzero (either 1, , 1,i   or 1  

for the case of 2m  ) if  x  is constant, whereas it is zero if  x  is balanced.  

Remark. When we solve the extended Deutsch problem, we create phases  i x
e


 for equally weighted 

superposition states x . Experimentally this process can be carried out either indirectly using an additional 

register u , or, if possible, directly without using it.  

Example. For extended Deutsch’s problem where the phases are arbitrary, let us consider the simplest 

case of 2n m  , where four functions are constant and 24 functions are balanced. Two typical examples of 

the balanced functions are  

       

       

1 1 1 1

2 2 2 2

1 3
00 0 01 10 1 11

2 2

1 3
00 0 01 10 11 1

2 2

   

   

   

   

 

When we apply the transformation  x
U


 of these functions to the superposition state that is the Walsh 

transform of 00 , we obtain either an entangled state or a superposition state: 

   
1

2

0 1 0 1

00 01 01 11

i for U

i i for U





  

  
 

The matrices for these transformations are given by 

1

1 0 0 0

0 0 0 1 0 1 0

0 0 1 0 0 1 0

0 0 0

i
U

i

i



 
 

              
 

 

, 
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1

1 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 1 0
.

0 0 0 0 0 0 0 1 0 1

0 0 0 1 0 0 0 1

i i
U

i i


   
   

                      
   

   

 

If we note that: 

1 0

0 1

yxz
i Ii Ii I

ie ie e
  

  
 

, 2 2 2 2
1 0 1 1

0 2 2

z x y xi I i I i I i Ii i
e e e e

i

          
         
       

   
  

 
, 

and  

1 0 0 0

0 0 0 1

0 0 0 2

0 0 0 1

z zi I S
i i

e
i



 
 

  
 
 
 

, 

where I  and S  are spin operators for the two-spin system, we see that these transformations (and also all 

other transformations) consists of terms of the forms    exp ,exp ,
2

i I i I x y 


 

 
   

 
, and 

 exp zi I S  (up to the overall phases).  

This can be compared to the case of the Deutsch’s problem ( 2, 1n m  ), where transformations  f x
U  

consist of terms of the forms  exp i I
 
and  exp 2 zi I S . In the case of 3n  , if we denote the third 

spin by K , the terms of  f x
U  are of the forms  exp ,exp

2
z zi I i I




 
  

 
 and  exp 2 z z zi I S K , where 

the last one is equivalent to the following expression: 2 2 2 2
x y y x

z z z z z z

i I i I i I i I
i I K i I S i I K

e e e e e e e

   

  

       
                 , and, con-

sequently, the terms of  x
U


 are of the forms as small as exp

2
m

i I
 

 
 

 and 
1

exp
2

z zm
i I S



 
 
 

. In NMR, 

it is possible to create directly the phase   exp i x  for the states x  that are in equally weighted super-

positions. This means that indirect phase creation for use of an additional target register u  in practice is 

unnecessary.  

Quantum computational algorithm for generalized Deutsch-Jozsa problem. A more general formulation 

of the Deutsch-Jozsa problem consists in summations of the M th roots of unity that allow to distinguish 

constant functions from functions that are many to one and onto evenly spaced ranges. Mathematically, the 

Deutsch-Jozsa problem is to determine whether a Boolean function 22
: nf   is non-constant or non-

balanced where f is said to be balanced if   0f x   for exactly half of the input values. The Deutsch-Jozsa’s 

QA can solve this problem by a single evaluation of f  on quantum computer efficiently without error but 

that requires exhaustive search to solve it deterministically without error in a classical setting.  

From quantum computing standpoint, this QA consists of the successive application of the operators 

,n fW I U  and 
nI W  to two quantum registers with their initial state being 

10 1n W  where jW  is the 

j -q-bit Walsh-Hadamard operator and fU  is the function-evaluation operator defined by 

 x y x y f x    .  

Remark. Actually the original Deutsch-Jozsa QA can solve the generalized Deutsch-Jozsa problem by 

slightly modifying the initial state of the second register. For simplicity, we are assuming that N , K and M  

are powers of 2, i.e., 2 , 2n kN K   and 2mM   for some positive integers ,n k  and m . 
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Remark. The required generalization is obtained by modifying the unitary transformation 

 
 

1
f x

x x   to 
 

:
f x

f MU x x  written in terms of the M -th roots of unity denoted  

2
expM

i

M




 
  

 
. 

The general algorithm then becomes 

  

   

1

0

1

0

1 1

0 0

1
0

1

1
1

N
n

n f n n f

x

N
f x

n M

x

N N
x y f x

M

y x

W U W W U x
N

W x
N

y
N













 


 





 
  

 





 

 (2) 

The resulting state becomes  
 

1

1

, 0

1
1 1

N
x y f x

x y

y W
N


 



   where x y  stands for the scalar product 

modulo 2 in 
2n , i.e.,  

1

0

mod 2
n

j j

j

x y x y




   for 
1

0

2
n

j

j

j

x x




  and 
1

0

2
n

j

j

j

y y




  with 2,j jx y  . At this 

stage discarding the second one-q-bit register we perform a measurement on the first n -q-bit register and 

conclude that f  is non-balanced if the outcome is 0n  and that f  is non-constant otherwise.  

Example. Let yS  be the inner summation in the final state (2) of the last expression: 

   
1

0

1
1

N
x y f x

y M

x

S
N








  . If f  is constant, then we obtain:  

     

1
0

0
0

0 01
1

0

N
x yf

y M f
x M

when y
S

N when y










   


  

If f  is evenly distributed, then for 0y   we have: 
1 1

0

0 0

1 1
0

K K
j t t j

M M M

j j

S
K K

  
 



 

    . Thus if the out-

come of the measurement is 0n  then f  is not evenly distributed and otherwise f  is non-constant. Here, 

the properties of summations of the roots of unity allow a generalization of the Deutsch-Jozsa algorithm to 

distinguish between functions promised to be either constant or evenly distributed. Further, this algorithm 

requires only a single evaluation of f . When we employ a multi-q-bit oracle that performs a functional 

evaluation by  :fU x y x y f x    , by slightly modifying the initial state of the auxiliary regis-

ter in the original Deutsch-Jozsa algorithm we can solve the generalized Deutsch-Jozsa evenly distributed 

problem.  
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