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Bmopas (keanmogvle sviuuciumenvuvie ancopummvl u HW-komnviomepvl) u mpemvs KEAHMOGbLE
(xe6anmogoe npocpammuposanue u SW- umocenepus u K8AHMOBBIUL «MOWHBILY Gvluuciumenvuviii HH)
pesomoyul npugeau K Heobdxooumocmu pazpabomku unmeniexmyanvnou SW/HW niamgopmut (cunvhuiil
K6anmogwlll gviyucaumenviuviil MH) npomvluuienHbix K8aHMOBHIX MEXHON02U 051 Me2A-HAYYHbIX NPOEKMO8
«Hnoycmpus 5.0 [ 6.0». Dmo, 6 csoro ouepeds, nocmasusio 6OIbULYIO 3a0a4y HOO20MOBKU HOB020 NOKOAEHUS
KAOpo8 K6AHMOBOU UHIICEHepUU 8 001ACU K8AHMOBLIX CKE03HbIX UT, K8aHMOBOU NPOSPAMMHOU UHIHCEHEPUU
U KBAHMOB02O  UHMENLIeKMYaibHo2o  ynpaeienus. Cosoanue  COOMEEMCMEYIOWE  NPOSPAMMHO-
ANOPUMMUYECKOU NIAMMOPMbl U ANNAPAMHO20 0becnedeHuss ¢ Y4emom KEaHMO08020 Komnvlomepa O
NPOMBIUIEHHO20 PA36UMUsL NOMPebO8al0 PAOUKATLHO20 NEPECMOMPA OCHO8 00PA308AMENbHBIX NPOYECCO8
no K6AHMOBOU uMdICEHEpUU, co30anus HOB01l MEXHON0SUYECKOL CMpYKMypbl u
MamemMamuieckol/puzuneckoi/mexnuieckol. 6azvl 8 OUHAMUYHO DA3GUBAIOWUXCS 0OAACMAX NPUMEHEeHUs
K6anmogwvix ckeo3uvix UT. Hexeamka npenooasamenbcko2o cocmasa u 00beKmugHblX OYeHoK NompeoHocmu
NPOMBIULEHHOCIU U HAYKU 8 KAOPAX KEAHMOBOU UHICEHEePUl TObKO YEEIUUUIy mpyoHOCMuU 8 pa3eumuu
K6AHMOBOU UuHceHepuu. [[is NOHUMAHUS KE8AHMOBOU MEXAHUKU KOHEYHOMEPHbIX CUCmeM mpedyemcs.
onpedenennas MamemMamuieckas 3perocms. 30ecb Mbl pAcCMOMPUM MOALKO OCHOBbL, U MO COENAHO
2NAGHbIM 00pazom 0L mMo2o, 4moObl NOZHAKOMUMb HAYUHAIOWe20 uYumamens ¢ 0003HAYEHUAMU U
pe3yrpmamamul, UCROIb3YeMbIMU 8 OCIMABULENICSL HACTU 9020 B8EOCHUSL.

KiroueBble ci10oBa: KBAaHTOBBIC BBIYHMCJICHUS, KBAHTOBBLIC CKBO3HBIC I/IH(bOpMaL[I/IOHHLIe TCXHOJIOI'UH,
KBAaHTOBAas NHKCHCPH.
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OCHOBBI oOmuCaHusi MoOfENeH KBaHTOBOTO OMNTHMAILHOTO YIPABICHUS — KBAaHTOBBIC CTOXaCTHYECKUE
KMHETHYECCKUE ypaBHCHMs: BBeacHUEe U nemaroruueckue npumepsl / P. FO. Kankor, C. B. Vibsuos, C. A.
[lerpenko [u ap.] // CucTeMHbIi aHaIU3 B HayKe U 00pa30BaHUU: CeTeBOe HayuHoe u3nanue. 2025. Ne 3. C.
52-100. EDN: XVLMBU. URL: https://sanse.ru/index.php/sanse/article/view/681.
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Introduction

The results obtained in the field of quantum technologies and quantum information technologies clearly
demonstrate the high technological potential of quantum technologies for solving a number of problems, much
more efficiently than any modern “traditional” computer.

Despite the fact that the era of noisy intermediate-scale quantum (NISQ) devices is currently on going,
guantum information science as a whole is already a new, rapidly developing branch of science associated with
the use of quantum systems to implement fundamentally new methods of transmitting messages, computing
and technologies (quantum communication channels, quantum cryptography, quantum computer) [1].

Periodically, there are reports of achieving “quantum supremacy”4, that is, the creation of a quan tum
computer capable of solving problems significantly more efficiently than any modern “traditional” computer
(modern von Neumann supercomputers are also considered “traditional” tools in this ap proach) or even
impossible to solve using “traditional” computing tools [1, 2].

The second (quantum computing algorithms and HW-computers) and third quantum (quantum
programming and SW-engineering and quantum “powerful” computing AI) revolutions have led to the
necessity in developing of intelligent SW/HW platform (strong quantum computational Al) of industrial
quantum technologies for mega - science projects “Industry 5.0 / 6.0”.

This fact, in turn, has raised the big challenge of training a new generation of quantum engineering staff
in the fields of quantum end-to-end IT, quantum software engineering and quantum intelligent control.

The creation of an appropriate software-algorithmic platform and hardware support in view of a quantum
computer for industrial development required a radical revision of the foundations of educational processes
for quantum engineering, the creation of a new technological structure and mathematical / physical / technical
background in dynamically developing areas of application of quantum end-to-end IT.

The lack of teaching staff and objective assessments of the necessity of industry and science for quantum
engineering personnel only increased the difficulties in the development of quantum engineering. There is a
certain mathematical maturity required to understand the quantum mechanics of finite dimensional systems.
Here we will look at only the basics, and this is mainly to familiarize the reader with the notation used in the
field of quantum computing and quantum information technology.

1. Mathematical objects of quantum mechanical control (simplified
introduction)

Vector in Hilbert space. A Hilbert space is a vector space over [ with a complete inner product structure.
By complete, we mean that all Cauchy sequences in the Hilbert space will converge to a point in the Hilbert
space. For the purpose of this Introduction, all Hilbert spaces will be finite dimensional and we need not worry
about the many complications which arise in infinite dimensional systems. Vectors in Hilbert space will be

denoted using Dirac notation |1//> and will denote an element in Hilbert space. The inner product between
ly) and |¢#) will be (y|#) and adjoints will be denoted by Dirac bras (i | =|(//>T. Linear maps will either
be denoted as matrices or as products of states and adjoints Ajy) = > a; | i(k|w)).

j.k

Pure State Quantum Mechanics. To describe a physical system as an information processor, we must
discuss three components. First, we must specify the quantities observable via some measurement process
called observables. We also must determine how these observables change with time. We finally must discuss
how we can interact with these systems to bias the outcomes of observations. In order to fully describe the
observation model in quantum mechanics, we first introduce a higher level of abstraction. We model the
internal states of the system as vectors in a Hilbert space. This inner product structure induces a norm on the

Hilbert space as ||| = , /(1//|1//> . We take the set of all accessible states to be the set of vectors with norm one.

The state of a quantum system evolves in time according to the Schrodinger equation
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where H is a Hermitian operator called the Hamiltonian of the system and 7 =1.

We can now describe the observation model. We want to describe an interaction such that when the system
is in the state |n> , the measurement apparatus is in a state ‘ m (n)> . We set up a large Hilbert space, H, ® H,

, where Hg is the Hilbert space of the system we wish to observe and H, is the Hilbert space of the
measurement apparatus we are using to observe the system. The interaction of the system with the apparatus
is given by a Hamiltonian Hg, .

The dynamics are governed by the Schrodinger equation

dly .
(|Zit > =—lIH;g, |‘//>

Let us suppose the system and the apparatus begin their interaction in the state |l//S > | 04 > where the state

|O A) represents the initialized state of the apparatus. We postulate that the measurement corresponds to a set

of projection operators Py, that sum to the identity, and a projection on the apparatus Hilbert space My
corresponding to measuring the quantity “k.” In this model, we have by the Schrédinger equation that the

system will be in the state |ns>‘m(n)>A

That is, the apparatus reads “the system is in state n” and a quantum system must also be in the state | Ng >

. In turn, we assign |0(k|2 to be the probability of measuring the state |k). Note that this measurement
corresponds to a discontinuity in the dynamics of evolution.

The density matrix. While the pure state theory is fully consistent, it does not really help us to fully
describe the quantum world. For example, we are unable to describe how a quantum system can interact with
a macroscopic system such as a measurement apparatus. We can resolve all of these issues by remembering
that our formulation only tells us how to predict measurement outcomes. The state of a quantum system is a
convenient mathematical model only insofar as it predicts the results of experiments. It makes sense that the
state should represent “what we know” about a quantum system at any particular time.

In this section, we will introduce a new object called the density matrix to describe our knowledge of a
guantum system. We will also see how the density matrix gives us a powerful tool for describing how a
quantum system interacts with much larger thermal systems.

Take a state |y) € H and write the matrix | o) =|y)(y|. This object is called the density matrix of the

state |1//> The density matrix is an element of H ® H™. It has trace one, is positive semidefinite and is
Hermitian. The Schrédinger equation now becomes

dp_d
dt dt

)0 1= 22 ) L i i)

dt :
==(IH[y ) [+|w)([iH)=—i[H, ]

Similarly, we can calculate the expectation values of observables with respect to the density matrix
(A ={w[Alw) =Tr (Alw){y[)=Tr(Ap).

Unit vectors like |l//> are called pure states. A pure state contains all the available physical information
about the system, such as the expectation value of an observable A associated with hermitian operator A,
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So, we can formulate quantum mechanics in terms of the density matrix instead of in terms of the state
vector. This seems like too much work, as carrying matrices around for computation is more cumbersome than
just using vectors, but the utility becomes clear when we allow any positive semidefinite Hermitian matrix
with trace one to be a density matrix. Now, not only are there are more states available than we had before, but
we can start to discuss the concepts of quantum ensembles and irreversible quantum processes.

Mixed states. Let H be a quantum system of dimension N with basis {|l//k>} Let { pk} be a probability

N
distribution over these N basis vectors. Define the density matrix p=Y_ p, |y, )(w, | then this is a classical
k=1

mixture of the states |1//k> . Any measurement of this state is now biased by a classical probability distribution.
Note that if all of the p are equal to zero except for one, the density matrix of the system is |y ) (| and this

corresponds to a state in Hilbert space. We will call such a state a pure state, and note that a state is pure if and
only if Trp” =1. Otherwise, we say that the state is mixed. Let's explore these two cases. Given any density

N
matrix p we can always diagonalize it into the form of equation o= p.|w,){w,|. The pc are the

k=1
eigenvalues of p. Since p is Hermitian, the |1,//k> are all orthogonal, and hence we conclude that a state is

pure if and only if it has 1 as an eigenvalue. Clearly, this also means that p =|y)(y| for a unique |y/)

Density operator can represent both pure and mixed states, and can be expressed in any basis B = {| ) >}id:1

of the Hilbert space H as

Pu P 7 P

d Yo, Yo, SEE)
pzzpii|¢'><¢i‘= :21 :22 . :2d ’

¥ : : .o

Par Paz " Pud

where p; is the associated matrix element with row i and column j. The diagonal elements p, of the
density matrix are known as populations and they denote the probabilities of finding the system in the
respective basis states |¢i ) The off-diagonal elements p;; are known as coherences, and provide information

about the coherent superposition of the basis states |¢,> and ‘¢5J— > .

What is a mixed state then? Its eigenvalues, {pk}, are not all ones and zeros. In this case, p is a

probabilistic mixture of pure states. In this way, the density matrix quantifies our knowledge of a quantum
state.

The density matrix allows us to consider component parts of quantum systems. If we have a state p in
large quantum system with Hilbert space H, ® H, and we are only interested in the component in H,, then if

we let |ek> be a basis for H,, we can define the partial trace over H, as

0= Z(l® (e|)o (1® (e])=Tr, (). One can readily check that this definition of partial trace is invariant
k

under choice of the |e, ) and that for any |y), |@) in H,

(T (P)lv)=2.(¢ ®ecloly ).

Returning to the discussion of measurement, consider a system-apparatus Hilbert space Hg ® H, . The

operators, {Ajk}, which perform measurement on an ensemble in Hg form a projection operator valued
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measurement (POVM). The set of operators must satisfy Zi ) A;kAj'k =1 and measurement corresponding

to this POVM gives the result j with probability p; = Z Ajk,oS AJTk .
j.k

. . o 1 :
In this case the system density matrix is in the state p; = — Z Ay Ps A].k :
P Tk

Again, we break down measurement into a set of probabilities and projection operators, but this is only a
formal pair. A measurement still corresponds to the evolution of a Schrédinger equation corresponds to the

state of the system after tracing out the measurement apparatus; p; represents our knowledge of the system
after a measurement.

Example. Let us consider the following bipartite pure state ‘1//(6’)) =c0s(6)|00) +sin(6)[11) , where
|00) =|0), ®|0),, |11) =|1), ®|1),, and its associated density operator is given by p(6) =\w(0)> <l//(9)‘
. The state p(¢9) is separable for =0, = /2, and entangled otherwise, being maximally entangled for

O=rl4. Asaresult, for =Kk /2 the partial state of each subsystem p, (6)=Tr, [p(ﬁ)] is not pure,
and is therefore an improper mixture.

To measure the degree of mixedness of a density operator we can use the purity P ,
d
Plo]=Tr[p*]=> 0],
=
which is bounded between 1, for pure states p(6) = ‘ l//(l9)> <l//(9)‘ ,and 1/d, for maximally mixed states
p =1/d.

The PYTHON script calculates the marginal state of the first subsystem, p, (6) =Tr, (&) showing that

its purity P [pl(e)] <1 for @k /2. Notice that p,(6) is maximally mixed when p(6) is maximally
entangled, i.e., Tr[p1(7/4)] = 1/2, as shown in Fig.1.
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Fig. 1. Purity of the marginal state p1(6)

It is easy to prove that the Hamiltonian dynamics does not change the purity of a system,

d ) dp? . .
—Tr =Tr| —— [=Tr|2pp|=-2iTr Hp—pH)|=0,
el { " [200] [P(Hp—pH)]

where we have used the cyclic property of the trace. This result illustrates that the mixing rate of a state
does not change due to the quantum evolution.

Remark. The evolution of an open quantum system is more complex. Suppose a system interacts with
some other external system that has infinitely many degrees of freedom, which is essentially a classical system.
This system is known as a bath or environment. In this case the system no longer evolves according to a
Schrodinger equation. Instead, we now use a density matrix o to describe the system and its evolution is given
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by a master equation. Assuming Markovianity, the master equation is Lindbladian. The ensemble
representation allows us to further model measurement without projection at all. By a weak measurement, we
mean a measurement of a quantum ensemble that only perturbs the density matrix by a small amount. If this
perturbation is small enough, we can approximate the density matrix after the measurement to be identical to
the density matrix before the measurement. An important feature of open quantum systems is the ability to
alter these decay channels with feedback. This will be used extensively in this work. Typical quantum optical
systems, such as optical cavities and two-level atoms can be modelled with relative ease due to their simple
Markovian dynamics and hence their dynamics are well known.

A way of making these systems more complex is to introduce quantum feedback. This process has been
used for a variety of tasks. Most notably in the literature, feedback is used for the stabilisation and control of
guantum systems, usually for quantum information purposes. In this work, we shall see feedback used for a
different purpose. In effect, the feedback used in the work acts to destabilise the system, inducing far more
complex behavior in previously simple quantum optical systems. We also consider the unravelling of these
master equations, allowing for the study of individual quantum trajectories.

We first consider a general quantum system that interacts with a surrounding bath. This bath is assumed
to also interact with an external environment, which causes it to thermalise continuously. More concretely, the
environment constantly resets the bath into its environmentally preferred state - its so-called pointer state.
Hence, the resulting effective time evolution of the open quantum system is approximately Markovian and its

density matrix pg obeys a master equation in Lindblad form. This master equation can be unravelled into an

infinite set of physically-meaningful quantum trajectories. An unravelling involves splitting the overall
average evolution into its individual components and looking at a possible evolution along such a path.
Considering such an unravelling and assuming that any instantaneous quantum feedback is triggered by sudden
changes of the state of the quantum system, it becomes clear how to incorporate instantaneous feedback into
the master equation.

2. The Lindblad equation — density operator master equations

Master equations are differential equations used to model the dynamics of systems that can be described
as a probabilistic combination of some states. We can interpret p; as the probability of being in state i and can
generalize this idea to formulate master equations as first-order differential equations to the vector of
probabilities p = (p1, ..., pn) Of being in one of the n states of some system of interest. As a result, the dynamics

of the state’s probabilities are prescribed by the master equation p=F ( p,t) with F often being a linear
function of p represented by some generating matrix A, as in p = Ap. However, when dealing with quantum
systems we must take into account that coherent superpositions of states participate in the evolution, as

prescribed by Schrédinger’s equation %|y/(t)> = —% H |w (t)), where H is the Hamiltonian of the system,

and ‘y/(t)> =Z::lcj (t)‘¢j> is its state at time t, expressed as a coherent superposition of the eigenstates
B, ={|¢,>|¢n>} of the Hamiltonian, via the normalised complex coefficients ¢, (t) satisfying

zi‘ci (t)‘2 =1. In this case, a vector of probabilities p, with p, = |Ci|2 , IS no longer sufficient to completely

describe the dynamics of the system, since different phases of c¢; will lead to different solutions. Master
equations for the dynamics of quantum systems can then be expressed by employing another representation of
the state of the system, known as the density operator o . As discussed in details below, the density operator

contains all the information regarding the probabilities (known as populations) of being in each state i, given
by p, =(4|p|4) . aswell as the phases (known as coherences) ¢; = (4 |p‘¢j> associated with the coherent

superpositions between basis states |¢ ) and ‘¢j >

Quantum master equations (QMEs) are then formulated by generalisation of Eqg.
p=F(p,t),asfirst-order differential equations to the density operator, o =F (p,t). One of the key aspects
of QMEs is that they provide a coarse-grained stochastic description of the effect of unknown and
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uncontrollable agents on a system of interest, leading to a computationally inexpensive ensemble-averaged
picture of the dynamics of quantum systems. QMEs can be phenomenological or derived, using first principles,
from a microscopic model of the system-environment interactions. They can be used to derive qualitative
trends or make quantitatively accurate predictions. They are just as suitable for the derivation of analytical
results as they are for the numerical simulation of complex systems with a large number of degrees of freedom.

For these reasons, QMEs, illustrated in Fig. 2, have become a standard approach to model the dynamics
of quantum systems, and they have become a starting point for the formulation of more sophisticated
descriptions.

Quantum master equation |

N LA : f:si:nance
systan p(t) = L(t)[p(t)] [l kbt

(/) © ¢ optical
03) ‘JL spectroscopy
Solution A
T plt) = Ar(tito)lpto)] | | 7H e
: _G processing

&
Mvironment

Fig. 2. QMEs provide a coarse-grained prescription for the dynamics of a quantum system (blue) that
interacts weakly with its environment (red) [3]

The state p of the quantum system, represented by the density operator, evolves according to some master
equation p(t)=L; [p (t)] , where the Liouville superoperator L (t) generating the evolution may depend

on time t and on the temperature T of the environment. The solution p(t) = A; (t,to)[p(O)] (and the master

equation itself) can be used to study the steady-state and nonequilibrium properties of the system. QMEs are a
staple tool for modeling spin resonance, optical spectra, and quantum information processing, and their use is
certainly not limited to these fields and applications.

The power of master equations resides in the choice of ignoring the environment’s dynamics, often
uncontrollable and inaccessible. By neglecting the environment’s degrees of freedom, we can limit the scaling

of the computational requirements to a polynomial of d =dimH, where Hg is the system’s Hilbert space.

In this section we introduce quantum master equations and focus on their numerical implementation and
solution, providing direction for further readings. We briefly review the mathematical description of the state
of a quantum system, focusing on the numerical implementation of state vectors and density operators.

3. Quantum Information

Let us consider examples of quantum information that in context of textbook are used.

3.1 Quantum entropy and information amount

Defining the entropy of a density matrix as S () =—Tr(pIn p) it is straightforward to show that

S(0)=Tr(p1og.2) ==Te| 30l v Joa| 30w | =T S o ) s
=-2.plogp,

The meaning of this derivation is that quantum entropy measures the classical entropy of the probability
distribution { pk} . It should be clear from this definition that a state is pure if and only if its entropy is zero.

Remark. The usual definition of entropy in quantum mechanics is von Neumann entropy (von Neumann,
1932), which is the natural analog to Shannon entropy. One can likewise define a quantum analog to Renyi
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entropy. These definitions are for the standard representation of quantum mechanics. The question in this
section is what are the natural definitions of Shannon and Renyi entropy in phase-space representations of
guantum mechanics (Wigner, 1932; Feynman, 1987; Wootters, 1987; Gibbons, Hoffman, and Wootters, 2004).
The issue is the negativity of phase-space probabilities — what are often called quasi-probabilities. Since both
Shannon and Renyi entropies involve log terms, they can both become complex-valued in this case, which
does not admit an obvious interpretation in terms of the amount of uncertainty about a system. and modify the
axioms so that entropy retains its natural meaning in the presence of negative probabilities. In fact, it is possible
axiomatize what was called signed Shannon and signed Renyi entropies for all signed measures, not just those
normalized to sum to 1, to increase the scope of application of developed theory. Interestingly, the usual
relationship between Shannon entropy and Renyi entropy — namely, that Shannon entropy is the limit of Renyi
entropy as the free parameter a in Renyi entropy tends to 1 — no longer holds in this case. Renyi entropy and
Shannon entropy are no longer nested (in the sense of a limit) once signed measures are admitted.

That is, we can obtain two quite distinct notions of entropy for signed measures.

Definition 1. Given a signed measure Q with W(Q) # 0 (the quantity w(Q):Z:in:lqi is called the
weight of Q), the signed Shannon entropy of Q is defined by:

~ 2laillog,[a
‘Zin:l|qi|

Definition 2. Given a signed measure Q with w(Q) = 0, the signed Renyi entropy of Q is defined, for a
>0 with a #1, by:

HSh (Q) =

H, (Q)=-1—log, ‘ZZ:JT"'” -

1o a
Remark. In their extension of Renyi entropy to signed probabilities, Koukouledikis and Jennings (2022)
assume that a = 2a/(2b — 1), where a, b are positive integers with a > b, so that . is non-negative real-valued

and the usual Renyi formula remains real-valued. Of course, in this same case, we can drop the absolute-value
operations. Moreover, if Q is a signed probability measure, then, again in this case, further reduces to the usual
definition of Renyi entropy, and the definition coincides with the Koukouledikis-Jennings one.

Example. While signed Renyi entropy is non-decreasing, signed Shannon entropy may not be. Let the
matrix of transition rates be given by:

-1 1/2 1/2
A=1/2 -1 1/2},
1/2 1/2 -1

and choose the initial signed probability measure: Q(0) = (—1/7, 3/7, 5/7).

Figure 3 (generated by ChatGPT 40) shows the evolution of signed Renyi 2-entropy H.(t) and signed
Shannon entropy Hsn(t). While signed Shannon entropy converges to the same limit log2 3 ~ 1.585 as does
signed Renyi 2-entropy, we see that it is transiently non-monotonic.

We can also use arguments about entropy to characterize the state of a quantum system based only on the
information that we have about it. For example, suppose we have a quantum system with Hamiltonian H and

we know that the total energy of the system is E. Let |l//k> be the eigenstates of H with the eigenvalues Ex.

Given no other information, we can assign a state to this system by imposing the maximum entropy principle.
This principles states that we should assign the state with the largest entropy satisfying the constraint equations
for the system.
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Fig. 3. Evolution of signed Renyi and signed Shannon entropies [4].

That is, the quantum state we assign only represents the information that we have about the
2 P (=BE)wi)(wi]
Zk exp(_ﬂEk)

called the Boltzmann distribution. The quantity g =Kk,T is the familiar function of temperature from

system. Such a state can be found using variational methods p; = and is

thermodynamics and Z = Zkexp(—ﬁEk) is called the partition function of the system. Extending

these definitions of quantum information, we can introduce a measure of quantum correlations called
entanglement, which definitively distinguishes between quantum and classical distributions.

3.2. Entanglement

Entanglement is what makes quantum mechanics quantum. The odd behaviors and correlations that we
don't typically see in the macroscopic world arise from parts of the density matrix that are not classical. Indeed,
to show that unitary correction schemes can preserve inherently quantum in-formation, it suffices to show that
entangled states can be preserved for an arbitrarily long time.

First, we can quantify the entanglement of a pure quantum system. Given two coupled quantum systems
with Hilbert Space H, ® H;, we say that a state |1//> is entangled if it cannot be expressed as a product

|l//l> A|‘/’2>B' We can measure the entanglement of identical systems as follows. First, we note that any pure

quantum state can be written as |y) = >, |k), |k), where the |k), and |k)_ are an orthonormal set of
k

states for A and B respectively and the ¢, , called the Schmidt coefficients of |1//> , are positive real numbers.
The Schmidt coefficients are unique for agiven |y) and hence the measure E () =S (e ) =—> ey l0g &,

is well defined. It is called the entanglement of |1//> and ranges between 0 and 1.

Now what about for mixed states? We can define the entanglement of formation as
E(p)=min> pE(w).
k

where the minimum is taken over all ensembles of pure states satisfying p=>_ P, [v, ) (v, |.

It is called the entanglement of formation as it is the minimum entanglement required to produce a
particular mixed state from pure states. Whenever E ( p) >0, we can say that the density matrix describes a
state which is allowed by the laws of quantum mechanics but not by the classical laws of probability.

4. Open Quantum Systems
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We will generalize the notion of unitary evolution to a new concept of quantum dynamical semigroups
and show that these dynamics are generated by a differential equation called the Lindblad equation. This
equation describes the dynamics of all decoherence processes.

4.1 Kraus Operators

Let's return to the evolution of a quantum system coupled to an environment that we initially discussed in
the pure state case. Let the system of interest have Hilbert space Hg and the environment have Hilbert space

H¢ . Their joint Hilbert space is Hg ® H, . We'll use the word “environment” as an umbrella term to describe

any quantum system which interacts with Hg, but whose dynamics are not of interest themselves. The

environment could be a measurement apparatus, a thermal heat bath, or even another microscopic quantum
system. The goal will be to find the state of the quantum system after it interacts with an environment. Assume

that we begin initially uncorrelated in the state p; ® p,. The system and environment will then evolve
according to unitary dynamics U, ps ® pAUf. The resulting state of our system can be found by tracing out

the environment p(t)=Tr, (UtpS ®pAUtT) . What if we want to ignore the environment altogether? If we

are only interested in a particular mode of interaction and not the environment itself, can we find a class of
dynamics which describes all possible interactions with all possible environments? These questions are
intentionally leading.

We can, in fact, describe all physically allow-able transformations on density matrices in a compact form.
The key insight is to introduce a basis {|¢)} for the Hilbert space H such that p, =Y 4 |e/)(e | and a

basis {‘W1>} for Ms such that ps=2..P, |v;){w;| - The unitary evolution can be written in this basis as
U ‘1//].>|e|> =Y U, m|¥n)le,) and acting on the state pg ® p, , we find

UtpS ®pAU: = Z ijUjl,mn |l//m>|en><l//r |<es |Grs,jl '
j,I,mn,r,s
The partial trace can now be written by setting r = s and removing the |eI ) 's
TrE (Utps ®pAUtT) = Z pkﬂIU jl,mn |Wm>|l//r >ljrn,jl

j,L,m,n;r
Zz pj (Z\/ZU jl,mn |V/m>j(z<lﬂr |\/ZU jl,mn |V/m>j = z Ekz pj ‘V/J><V/J ‘Elj = z Ekps Elj
In j m r k j k
where the Ey are operators on Hg and are defined by summing over I and n. It is straightforward to check

that (Z EIZ Ekj = z &Url,anu sl,an = Z/Lé‘rs = §rs .
k

rs I,n,a |

That is Z E/E, =1. The operators E are called Kraus operators, named for their discoverer Karl Kraus.
k

The map in last equation is called a quantum operation.

The reduced map is given by the Kraus operators we started with. Indeed, when the environment begins
in the state p. =|e,)(e;| we have

Tre (Ups ®pEUT)=TrE (Zk:EjpSEHej><ek |J: ;EJPSEJ<EI ‘ej><ek|el>:Zk:EkpsE;'
i ik,
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So, we have found that the most general form of quantum dynamics is the set of all maps of the form
p= ZEk o5 E! where Z E/E, =1. Many different unitary processes can give rise to the same Kraus
k k

operators. Similarly, there is a large freedom in the representation of the Ex.
4.2. The Lindblad equation

Let E be a quantum process which satisfies EE, =E . That is, if the operation acts for time s and then
for time t then this is equivalent to the operation acting for time t + s. The dynamics of such a system would
be Markovian, and a map satisfying EE, =E . is called a quantum dynamical semigroup. It is only “semi” as

the inverses of the maps E are not necessarily defined. Indeed, only in the case where E is unitary is a
guantum process reversible (i.e., invertible). Just as in the case of unitary dynamics, a quantum dynamical

semigroup is completely characterized by its generator, or its derivative at t = 0. This is because the maps E
are linear, and hence there exists a linear map L satisfying E = exp (Lt).

d .
The generator must satisfy % =LE (p) and is the Lindblad Equation. We can derive the form of

the Lindblad equation as follows. Let Fx be a basis for M with Fo = 1. Then

ZEK'DE Z(rkl()E)p(ﬁm(t)Fr:):Zrm()rkm FoF, Zcm RO,

k,lI,m k,I,m
where ¢, =>" 1, (t)T, (t). Note that ¢, =T, and coo(0) = 1 and cin(0) = 0 for all I, m.

The time derivative is easily evaluated:

E-1 Co (5)_1 Cio Crno i Cim i
L(p)=I —lim e )2 S G0 5 5 0 5
(p)=lim=—(p) =lim=-= p+Z|‘,g.p+;gpm+|Zn}g|pm.

=Ap+pA'+> o, FpF!
I,m

Bear with us for a second, we will simplify these calculations into a much more compact form.

First note that the dynamics must preserve the trace of p and, subsequently, Tr(L(0)) =0.

This means that for all

p: Tr[Ap+pA*+Za,m|:|pFnj]=TrqA+ AT+Za,mF|an}p]=O
Im Im
using the cyclic property of the trace. But this in turn means that A+ A" = —Za,mF, Fr.
|
Performing some rearranging yields
Ap+ pA' = %(Aer Ap+ pA—pA+pA'+pAT+ Al p— ATp)
=%(Ap— A%p—pA+pAT)+%(Ap+ ATp+pA+pAT)

:[E(A—AT),,}}%(M AT)p+%p(A+ A')

2
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and forany A, A— A" is skew symmetric. This means that H = IE(A— AT) Is Hermitian. Plugging these

results into L(p) gives Lp:—i[H,p]—%Zalm(anFlp+panF| —2F|pan) or, breaking the second
I,m

term into commutators

Lp:—i[H,p]+%Zalm([Flp, FrJ+[F.oF! ).

This fully describes all possible quantum dynamical semigroups.

Once we have chosen a basis Fi, we need only specify a Hermitian matrix H and a positive semidefinite
operator A = (ay). Of course, this structure is dependent on the basis Fi, and the form of equation Lo is not

unique.
Note that in the case A = 0, the Lindblad equation reduces to the Schrédinger equation and the dynamics
are unitary. The term —i[H, p] is the Hermitian part of the Lindblad equation. On the other hand, all of the

dissipative non-unitary dynamics can be found in the double commutator terms. These are called the dissipative
part of the Lindblad equation.

Note that if we diagonalize the matrix A, we are left with the Lindblad equation

Lp:—i[H,p]-l—%Zk:([Lkpf '—Hﬁ{'—k,ﬂl—ﬂ)

in the form originally discovered by Lindblad (see, Preface).

Finally, by definition of the coefficients, «; can be arranged to form a Hermitian, and therefore

diagonalizable, matrix. By diagonalizing it, we obtain the diagonal form of the Lindblad master equation. We
can also derive the Lindblad equation from the old unitary picture as following:

p==3 M1+ X1 Lo -3 L1 p(0) o

where p is the system’s density operator, H is the Hamiltonian of the system, and {L.} are the Lindblad
operators representing some nonunitary processes such as relaxation or decoherence that occur at some rates

{I', }. The operators [.,.] and {.,.} denote the commutator and anticommutator of the operands. From now on,
H represents the Hamiltonian of the system, unless specified otherwise.

Example: Solving the dynamics of the system. Let us discuss how to solve Eq. (1) in order to obtain the
state of the system p(t) at any time t from a given initial condition po = p(to). We can represent the solution

with the dynamical map p(t)=A(t,t,)p,. For linear, time-independent generators L, the solution to
p =L p can be obtained by calculating the following matrix exponential: p(t)= exp[L (t—t, )]p(to) ; the
operator P (t,t,)=exp[ L (t—t,)] is called the “propagator” of the evolution.

We have implicitly represented the propagator P(t,to) as a matrix, i.e., by applying the same reshaping

function that we used to vectorize p — p to both of its index pairs. Then one can represent the solution as a
density operator p(t) just by applying the inverse reshaping on p(t).

Example. Let us study the eff ect of temperature on a physical implementation of a quantum logic gate.
We consider the Hadamard—controlled NOT (CNOT) gate, given by the sequential composition of the
Hadamard gate H on the first qubit
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1(1 1
U =H®l=—"r ®1,

21

and the CNOT gate
1 000
0100
U, =CNOT:=
0 0 01
0 010

In practice, the gate is implemented by means of two time-independent Hamiltonians Hi and Ha,

H, =1(1— % +ij®1, H, :1—%@)1—@

2 J2 2

that act on some initial state for some time z=r.

The resulting gate, shown in Fig. 4, can be used to obtain the (maximally entangled) Bell state

_[00)+ 1)
0,)= 2022

starting from the fiducial input state |00> :

=U,U,|00),

The purity of the output state P [pout]:Tr[pfut] shows that as the temperature increases, the
implemented gate is no longer unitary, and instead maps an initially pure state to a mixed state.

A temperature-dependent decoherence process aff ects the performance of the gate implementation via
dephasing and relaxation rates {y«(T)}, which are greater as the thermal energy ksT increases with respect to

the energy gap 7a, between ground |0) and excited |1) states, with ks being. As a result, the output state
Po =Ny (7)[ Ay (7)[ 2 ]] differs from the target state |, ) =U,U, |00).
In practice, decoherence processes, such as dephasing and relaxation, prevent us from implementing ideal

unitary gates as U; and U, As a result, the output state is, in general, a mixed state,
Lot =N, (T)[Al(r)[po]:l. In this example, the effect of temperature is modeled via some temperature-

dependent transition rates y(T), which are greater as the temperature increases, as prescribed by Bloch-
Redfield theory.

H, Hs Pin = |00)00] Pout = Aa(7)[A1(7)pin]
_1_ II ) 1.0 1 —— Fidelity
i . Purity
g PR
i NI i 0.6
;'"T""/—"T'"-, 0.4 - 1
(D)} ()} 024,
| i 102 107 100 10! 102 10° 104

Thermal energy kg T/iw,

Fig. 4. Left: A Hadamard-CNOT gate is implemented with two time-independent Hamiltonians Hi and Hs.
2
Right: The difference is measured here with use of the fidelity [3]; F (p, o) = (Tr [1/\/;0\//? D which is

equal to 1 when p = gi.e., when p,, =|®, ) (D, |
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Remark. Like the Hamiltonian generates coherent dynamics, the Lindblad operators generate incoherent
transitions in the space of states. Unlike the Hamiltonian, they do not need to be Hermitian. For example, a

decay transition from some excited state |e> to some ground state |g> is mediated by the Lindblad operator
L, =|g)(e|. Indeed, when we apply L, to |e), we obtain |g) =L, |e). Note that L] =|e){(g|=L,. Eq. (1)

is used to approximate the evolution of the density operator of a system S with Hamiltonian H that is weakly
coupled to a Markovian (memoryless stochastic process) environment. The GKSL master equation is the
general form for a completely positive and trace-preserving Markovian and time-homogeneous map for the
evolution of the system’s density operator p.

Example: Time dependency of the two-level system with decay. Continuing example of a two-level atom,
we can make it more realistic by including the possibility of atom decay by the emission of a photon. This
emission happens due to the interaction of the atom with the surrounding vacuum state. (This is why atoms
decay.) The complete quantum system would be in this case the “atom + vacuum” system, and its time
evolution should be given by the von Neumann equation, where H represents the total “atom + vacuum”
Hamiltonian. This system belongs to an infinite-dimension Hilbert space, as the radiation field has infinite
modes. If we are interested only in the time dependence of the state of the atom, we can derive a Markovian
master equation for the reduced density matrix of the atom. The master equation we will study is

d
at”

where T is the coupling between the atom and the vacuum.

(t)=-i[H, p]+r(a-pa—-%{a-a—, p}j, @

We show some results of solving Eq. (2) and calculating the density matrix as a function of time. A
Mathematica notebook solving this problem. To illustrate the time behavior of this system, we calculate the
evolution for different state parameters. In all cases, we start with an initial state that represents the state being
excited p11 = 1, with no coherence between different states, meaning po1 = p10 = 0. If the decay parameter T is
equal to zero, the problem reduces to solve the von Neumann equation, and the result is displayed in Fig. 5.

Population

1.0
081
0.6

041

0.2

LA PR TR S S R L Time
5

Fig. 5. Population dynamics under a quantum dynamic (parameters are Q = I and E = 1) [5]. [The blue line
represents p11 and the orange one poo.]

In this case the evolution of our isolated two-level system is described by its Hamiltonian,
Heee = Eo[0)(0]+ E;|1)(1]. As the system was already in an eigenvector of the Hamiltonian, its time-

evolution consists only in adding a phase to the state, without changing its physical properties. (If an excited
state does not change, why do atoms decay?)

Free

Without losing any generality, we can fix the energy of the ground state as zero, obtaining
Hr.. = E|1)(1] with E = E1. To make the model more interesting, we can include a driving that coherently

switches between both states. The total Hamiltonian would be then H = E|1)(1| + Q (10){1] + |1){0l), where Q
is the frequency of driving. The system is then driven between the states, and the populations present Rabi
oscillations, as it is shown in Fig. 6.
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The other extreme case would be a system with no coherent dynamics (Q = 0) but with decay. In this
case, as shown in Fig. 6, we observe an exponential decay of the population of the excited state. Finally, we
can calculate the dynamics of a system with both coherent driving and decay. This is displayed in Fig. 7.

Population

1.0
0.8
0.6
0.4
0.2

L~ Time

Fig. 6. Population dynamics under a pure incoherent dynamic (' = 0.1, n = 1, Q = 0, and E = 1). [The blue
line represents p11 and the orange one poo.]
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Fig. 7. Population dynamics under a pure incoherent dynamic ("= 0.2, n = 1, Q = 0, and E = 1). [The blue
line represents p11 and the orange one poo.]

In this case, both behaviors coexist and there are oscillations and decay.

4.3. Reduced Hamiltonian control

Open Markovian quantum systems with fast and full Hamiltonian control can be reduced to an equivalent
control system on the standard simplex modelling the dynamics of the eigenvalues of the density matrix
describing the quantum state. In practice of quantum control it explore this reduced control system for
answering questions on reachability and stabilizability with immediate applications to the cooling of
Markovian quantum systems. For certain tasks of interest, the control Hamiltonian can be chosen time-
independent. The reduction picture is an example of dissipative interconversion between equivalence classes
of states, where the classes are induced by fast controls. Often a major obstacle towards realizing quantum
technologies roots in uncontrolled or unmitigated noise. Hence systematic effort is being put into achieving
significant progress in reducing noise in current hardware (see, e.g., the [6-8] and refs. therein) on one hand.
On the other hand, quantum optimal control [9-14] lends itself to complement these efforts to further mitigate
noise on the ‘software’ side, or in other cases to modulate noise in order to even exploit it as additional control
resource beyond coherent controls (see, e.g., the quantum control roadmap [7] and refs. therein). A practical
instance is quantum error correction with noise-assisted quantum feedback. In any case, every quantum system
that can be externally controlled must interact with its environment and hence is also subject to decoherence.
Thus, we accept noise as natural ‘part of the game” when studying what can be achieved in spite of (or even
thanks to) such noise.
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The main tool used here is a reduction of a full bilinear control system X (t) = (A+Z:j u;B; ) X (t)

evolving on the space of Hermitian matrices X(t), to a reduced one A= —Luﬂ,(t) describing the dynamics of

the eigenvalues of X(t). The reduced system is obtained by factoring out the unitary action, which is possible
as soon as one has fast unitary controllability. In the finite-dimensional quantum dynamical systems treated
here, henceforth X(t) = p(t) is a density matrix representing the state of the system, and so its eigenvalues sum
up to 1. Thus A(t) lives in the standard simplex, which then forms the reduced state space. Obviously, such a
reduced system is easier to analyze (and visualize) than the full set of density matrices. See Fig. 8 for an
illustration of this approach.

“émua(t);/ p(t) )

pl)

-\.\_~“‘.{de'{] (n) (P ( U) )

Fig. 8. Relationship between the time evolutions of a bilinear control system (B) on density matrices p(t) and
the reduced control system (R) governing the dynamics of the eigenvalues of p(?), where “the” vector A(t) of

eigenvalues is depicted by the respective diagonal matrix diag(A(t)). The derivative ,o'(t) can always be split

into a part orthogonal to the orbit (using the orthogonal projection 77,1 onto the commutant of p(t)), and a
part tangent to the orbit (using the complementary projection H;(t)) [15]

The general idea of reducing control systems admitting fast control on a Lie group action has been
addressed. However, under two simplifying assumptions: (i) commuting controls and (ii) that the reduced state
space has no singularities. (In this work, the singularities are exactly the collisions of eigenvalues of the density
matrix).

4.4. Properties of the Lindblad master equation

Some interesting properties of the Lindblad equation are the following [3, 5, 16-20]:
- Under a Lindblad dynamics, if all the jump operators are Hermitian, the purity of a system fulfills

d 2
a(Tr[ p*])<0.
- The Lindblad master equation is invariant under unitary transformations of the jump operators,

\jﬁl_i —>\/1“_i’L’:Zuij \/EL, with o representing a unitary matrix. It is also invariant under
J

inhomogeneous transformations in the form
: 1 N .
L—->L+a; U>H'=H +52Fi(ajAj —ajAj)+b,
J

where a ell,bell ;

- Thanks to the previous properties, it is possible to find traceless jump operators without loss of
generality.
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Remark. We are looking for maps that transform density matrices into density matrices. We define p(H
) as the space of all density matrices in the Hilbert space H . Therefore, we are looking for a map of this space

onto itself, V: p(H)— p(H). To ensure that the out-put of the map is a density matrix, this should fulfill
the following properties:

- Trace preserving. Tr[V A] = Tr[A], VA € O(H );

- Completely positive (see below).

Any map that fulfills these two properties is called a completely positive and trace-preserving map (CPT-
maps). The first property is quite apparent, and it does not require more thinking. The second one is a little
more complicated, and it requires an intermediate definition.

Definition 1. Amap V is positive iff YAe B (H )st. A>0=> VA>0.

This definition is based on the idea that, as density matrices are positive, any physical map should
transform positive matrices into positive matrices. One could naively think that this condition must be
sufficient to guarantee the physical validity of a map; it is not.

As we know, there exist composite systems, and the density matrix could be the partial trace of a more
complicated state. Because of that, we need to impose a more general condition.

Definition 2. A map V is completely positive iff vne [1 , V ® 1, is positive.
To prove that not all positive maps are completely positive, we need a counterexample.
Example: A canonical example of an operation that is positive but fails to be completely positive is the

1
NA
expressed as pB=(|O><O|®|1><1|+|1><1|®|0><O|+|0><1|®|1><0|+|1><0|®|0><1|), with a matrix
representation

36 TR O T D R HE 26 2

0
1
1

matrix transposition. If we have a Bell state in the form [yg) = (101) + |10)), its density matrix can be

o o o
=)

A little algebra shows that the full form of this matrix is pg = and it is positive.

0

o

0

o

It is easy to check that the transformation 1 @ T, meaning that we transpose the matrix of the second
subsystem leads to a nonpositive matrix

sstyn-3{(5 o0 (6 el S o= o1 e o)}

The total matrix is

(1®T2)pB =

O O O
o O +—» O
o b O O
o O O -

with (—1) as an eigenvalue.
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This example illustrates how the non-separability of quantum mechanics restricts the operations we can
perform in a subsystem. By imposing these two conditions, we can derive a unique master equation as the
generator of any possible Markovian CPT-map.

Example. Given a system environment interaction Hamiltonian Hix, we can expand the unitary dynamics
to second order

U, (ps ® pe )U, =exp(=iH;,t)(ps ® pe )exp(iH,t)

(1 |H,mt+;H,mt j(ps®pE)[l+lett+;Hmtt j

. 1 1
(ps ®pE)_I[Hint1pS ®pE]t+(_§Hi2nt(pS ®pE)_E(pS ®pE)Hlit + HlntpSHintjtz

We can write Hix as a sum of tensored operators Zk HS ® H/. When we trace over the environment,
the first order terms become

Tr [ HS @ HE ps ® o | =Tr [ HE o @ Hope = pgHE ® peHY' |
=H? pTr(HE pe )= psHETr (peHE ) =[ HY L ps | Tr(peHY)
The last term follows from the cyclic property of the trace.

These first order terms, called Lamb Shifts, are perturbations on the system Hamiltonian due to an

environmental coupling. We can also trace out the environment on the second order terms to recover the full
Lindblad equation.

This derivation from a unitary process is a more physically intuitive version of the Lindblad equation. If
we know the specific mode of interaction between the environment and the system, then this form of the
Lindblad equation is probably the better to work with.

On the other hand, if we want to concoct an arbitrary quantum dynamical semigroup without mention of
the coupling to an external environment, equation

Lp=—i Za.m([ 0.5 ]+[FopFL])

is more appropriate.

Example: Coherence vectors presentation of Lindblad equation. Now let F¢ be a basis for su(N) with
Tr( FF; ) = ¢; - Note that any density matrix can be written in the form

NZ-1
:1+Zk:1 rF
N

r= (rk) is the coherence vector. T is a real vector and is the analog of the Bloch vector for single spins
(see, Chapter 2). Consider the trace norm of o given by

)1 (1+Z r.F, +Z rrFF] 1

el =Tr(pp'
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Since the density matrix is positive semidefinite and has trace one, all of the eigenvalues of o lie between

zero and one. It follows that —— < |l <1 which means that 0 < |[F| <+/N*—N .

N

Hence any map on a quantum system cannot increase the lengths of coherence vectors. In other words,
the dynamics of the coherence vector have eigenvalues with real parts strictly less than one. Note that it is only
a necessary, not a sufficient, condition for the length of a coherence vector.

In particular it does not imply that the density matrices form a sphere. Indeed, we can define three
operators on a 4-level Hilbert space as

100 0 100 O 1 0 0 0
0 -10 0 010 0 0 -1 0 0
M, = M, = M, = .
0010 00 -1 0 00 -10
00 0 -1 00 0 -1 00 0 1

These matrices are trace orthogonal and can be extended to a basis for the coherence vectors.

The state p = (1+M1+M2+M3)/4 is a pure state and has coherence vector length «/5 But the matrix p

bad = (1 + 3M1)/4 has eigenvalues 1/2, — 1/4 and is not positive semidefinite. So, we must be careful. We can
bound the length of the coherence vector, but the intrinsic geometry of density matrices does not necessarily
form a nice sphere except in the special case of su(2).

Let's reformulate some of the last sections results in terms of this coherence vector. First, consider
commutation with H =>" h F, as:

. D IRALEA NEED I (A T SN T
-ilHp]= N - N - N !

where gin are the structure constants of su(N). Evidently, we can define the matrix C,_, = z 0, N and
k

then in  this  representation Fi>Cr under H. We have F=AF+b with
1 _ 1 .
A, = 2 > (2 Fum * Zu Fiim P :NZajk fim - Here z, = f +id_, where fo and dm are the
ikl jk

symmetric and antisymmetric structure constants of su(N).

The computations involving structure constants are often difficult in practice, but the form of equation
A describes all of the possible transformations on density matrices in an intuitive way. We see that the only

admissible maps are a subset of the linear affine transformations of the coherence vectors. Hence the general
Lindblad equation is rewritten in a much more familiar form

d—r=Ar+6+cr.
dt

Unfortunately, we cannot impose any symmetry conditions on the matrix A except when
N = 2. But we can still analyze the properties of this ODE to determine what it tells us about open system
evolution. Using this notation to analyze the structure of the Lindblad equation, first consider when A =0 and

b = 0. Then we are left with an ODE ‘;—E = Cr , where C is skew-symmetric. Then exp (Ct) is an orthogonal

matrix for all t and hence the dynamics are orthogonal. It is not surprising that the coherence vector doesn't
change length under these dynamics as we know the dynamics under a Schrodinger equation are unitary.

When C=0and b =0, science the dynamics of the Lindblad equation must not increase the length of
coherence vectors, the real parts of the eigenvalues of A must be less than or equal to zero. Unfortunately,
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again we have to reiterate that this is all we can say about the structure of A. Remember, that A is not usually
diagonalizable when N > 2.

We will close this section with two definitions. A quantum operation is called relaxing or a relaxation

process if b = 0. In this case, all density matrices damp exponentially to a unique fixed point. If b =0andA
has negative eigenvalues, we say that the process is dephasing. The distinction between these two types of
decoherence is essential for what follows as the main result of this section is that relaxation processes can be
corrected by unitary operations while dephasing processes cannot.

Example: the Bloch sphere. Defining the array of matrices 6 = (X Y, Z) allows any density matrix over

1+r-o

su(N) to be written as p = where I s the coherence vector. In this case we call it the Bloch vector in

] 0 1 0 i 10 )
honor of Felix Bloch and X = Y= , L= . Under the relabeling
10 -1 0 0 1

o, =X, o0,=Y, o,=72,we get the algebraic relations

I:O'i,O'j]: 1260, 0,07 =0;1+2¢,0,.

The Bloch vectors are now the set of all vectors in [1° with norms less than or equal to one. Hence, the
set of all Bloch vectors hence forms a 3-dimensional sphere with radius one. We call this sphere the Bloch
Sphere. It is useful to link the thermodynamics of a density matrix to the geometry of the Bloch vector. Given

l1+r,  r+ir

a density matrix p :[ ] . It is easy to compute the characteristic polynomial

ro—ir,  1-r,
1—r2—r2_r? C#2
C, (2) =22 ~Tr(p)A+det(p)= 27—+t 0l gz 52 !{”
1|r]

The eigenvalues of the density matrix are then given by A, = . We recall that for any two Hermitian

matrices M and N, there exists a unitary matrix U satisfying M =UNU ' if and only if M and N have the same
eigenvalues. We see from equation for 4, that any two Bloch vectors with the same norm have corresponding
density matrices with the same eigenvalues.

Furthermore, we can compute the entropy of a density matrix

1+||r 1+ 1-|r 1-|r
()=~ 1037, == iog 2111

showing that the entropy only depends on the length of the Bloch vector.

The geometry of the Bloch vector is simple and aesthetically pleasing because the Lie Algebras su(2) and
so(3) are isomorphic. Thus, there is a perfect correspondence between the transformations of 2 x 2 density

matrices and the geometry of [] °.

For any initial density matrix described by a nonzero Bloch vector T, the norm of the density matrix is
strictly decreasing and S(p)<S (E(p)) In the Bloch Sphere picture, the x and y components of the Bloch

vector are dissipated leaving the projection of the Bloch vector on the z-axis. If quantum process acts for time
t, then we can try, for example, to push the spin system back to where it started. If our pushes are unitary then
we cannot change the length of the Bloch vector. Though in general quantum processes are free to change the
Bloch vector length, but there is no reason why they must do so. We can correct the quantum process with a
unitary operation only when the Bloch vector hasn't changed length under its evolution. We formulate this as
following:
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a quantum state is stabilizable under a quantum process E, if there is a unitary operation U such that
E (p)=UpU" and it follows immediately that a quantum state is stabilizable under E, if and only if the

corresponding Bloch vector at time t has the same norm as at time 0. A quantum operation E, can be corrected
by unitary operations if the manifold of stabilizable states has dimension 2.

A large class of open quantum systems can be described by Lindblad equations for the dynamics of density
operators. In many atomic physics and quantum optics applications, this is an accurate description of physical
phenomena. Lindblad dynamics can be viewed as an ensemble average over stochastic pure-state trajectories.
The stochastic trajectories may be interpreted as the state of an individual experimental quantum system
conditioned on a measurement record. The nature of the measurement record determines the types of
trajectories in the ensemble, and intriguingly can lead to strikingly different microscopic dynamics and
behaviors, while averaging to the same Lindblad dynamics.

This section presents a novel approach to simulating the Lindblad equation. The method leverages the
intimate relationship between Lindblad dynamics, stochastic diff erential equations (SDESs), and Hamiltonian
simulations. By adding extra ancilla qubits, the Lindblad dynamics can be incorporated into a unitary dynamic
in a larger Hilbert space. Moreover, the unitary dynamics can be simulated using a quantum circuit that only
involves Hamiltonian simulation and tracing out the ancilla qubits (see Fig. 9).

: . q : 1
Lindblad equation = = - lH.p01 + X, VeV -3 X, {¥sot0)
. i i

12
n=E () (v]) "
& -

Numerical SDE **.,

J J
-it-3 2% )+ 2 o) o
j=l j=l

Kraus form  Prs1 = ZKan jf
. J

Datard Asymptotic analxs:iéﬂ
|0“‘)E |0‘1t)... ymp Y ‘a
exp (_i gm) D P T LT LT Hamiltonian simulation and trace-out
Quantum circuit " .
) = S =T (20 (-/57) 0] . 157
method

Fig. 9. A flowchart illustrating the derivation of the numerical scheme and the quantum circuit (one step) for
simulating the time-independent Lindbladian dynamics [21]

Algorithm using the following steps: (1) unraveling of the Lindblad equation into stochastic diff erential
equations (SDEs); (2) expressing classical numerical SDE schemes as the Kraus-representation form for the
density operator; (3) mapping the Kraus form to the dilated Hamiltonian in the Stinespring form.

A sequence of unitary dynamics in an enlarged Hilbert space that can approximate the Lindblad dynamics
up to an arbitrarily high order. This unitary representation can then be simulated using a quantum circuit that
involves only Hamiltonian simulation and tracing out the ancilla qubits. There is no need for additional
postselection in measurement outcomes, ensuring a success probability of one at each stage. The method can
be directly generalized to the time-dependent setting. Numerical examples provide that simulate both time-
independent and time-dependent Lindbladian dynamics with accuracy up to the third order. The simulation on
the circuit advances a Hamiltonian simulation for a time duration of x/ﬂ after which the ancilla qubits are
measured. The outcomes of these measurements on the ancilla qubit are disregarded and the ancilla qubits are

subsequently reset to the state ‘Oak> in preparation for the next iteration. The inherent unitary and trace-out

design ensures that the algorithm achieves a success probability of one, eliminating the need for any additional
amplitude-amplification steps.

5. Lindblad open quantum systems with quantum feedback
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As abovementioned two of the most important unravellings [3, 5, 16, 17, 19] are given by stochastic
Schrodinger equations (SSES) and quantum-jump trajectories, respectively. The SSE dynamics is a good
description, for example, of certain homodyne and heterodyne detection schemes in quantum optics arising
from constant weak continuous measurements. Quantum-jump dynamics, on the other hand, may arise in
photodetection experiments and is theoretically described by periods of deterministic evolution under an
effective non-Hermitian Hamiltonian, stochastically interrupted by discrete measurements. In both SSE and
guantum-jump scenarios, if the measurement channel is not recorded, then the best estimate for the state is
obtained by averaging over all possibilities, resulting in Lindblad dynamics. There are other interpretations of
the unravellings of the Lindblad equation, viewing them as candidate laws of nature in an effort to explain the
wavefunction collapse in quantum measurement [19].

Stochastic Schrodinger equation. In this section an introduction to the theory of stochastic quantum
molecular dynamics (SQMD) is given. For completeness, this includes general aspects of open quantum
systems as well as the basic theorem of SQMD. For simplicity, we will consider only a single bath (an electron-
ion many-body system coupled to a bosonic bath), but the formulation is trivially extended to the case of

several environments. The total Hamiltonian of the entire system is then H = I—]S ® fB + fs ® I—A|B +/1I—A|SB :
The system of interest is described by the many-body Hamiltonian H s and the environment degrees of
freedom are given in terms of HB. The interaction of the system with the environment is given by the

Hamiltonian I-A|SB and is assumed to be weak in the sense that a perturbation expansion in terms of this

coupling can be performed. With 4 we denote the corresponding coupling parameter for the system-bath
interaction. The total system described by the Hamiltonian H follows a unitary time-evolution, which can be
formulated for pure states either in terms of the time-dependent Schrédinger equation (TDSE), with 7 = 1:
iy (t)= H (t)w(t), or, alternatively for mixed states, in terms of the Liouville-von Neumann equation

g,b(t) =—i [H (t),,ﬁ(t)] , Where b(t) is the statistical operator. We are only interested in the dynamics

dt

of the system degrees of freedom. It is therefore desirable to find an effective description for the system only.
To accomplish this, we may trace out the bath degrees of freedom at the level of the statistical operator,

namely we perform the operation pg =Tr, ( [)) , where p; is called the reduced statistical operator of system

S . It is worth pointing out here that this procedure does not generally lead to a closed equation of motion for

the reduced statistical operator and one needs further approximations. Depending on the approximations

involved, one may arrive at an effective quantum master equation for the reduced density operator p . This

approach has some drawbacks when used within a density-functional formulation, both fundamental - in view
of the theorems of DFT - and practical, since solving for the density matrix is computationally more demanding
than solving directly for state vectors. We therefore take here a different route. Instead of working with a
derived/composite quantity like the statistical operator, we summarize briefly how the bath degrees of freedom
can be traced out directly at the level of the wavefunction. The derivation that follows has been reported
elsewhere in the literature. We repeat some steps here for completeness and to clarify starting point. To this

end let us consider the set of eigenfunctions {;(n (Xg )} of the bath Hamiltonian Hgy, (X5 )= &,%, (%)
with Xg the bath's coordinates (including possibly spin), and expand the total wavefunction of TDSE in the

complete set of orthonormal states formed by {;(n (Xg )} ,namely w (Xs,Xg,t) =D ¢ (Xs,t) 7, (X5 ) - with
n
o, (xS ,t) some functions (not necessarily normalized) in the Hilbert space of the system S .

Let us define the following projection operators: P, = I ®| 7, ){( .|, Q. =1s ®> | ) (x| The

k=n

rationale behind the choice of the above operators is to obtain the equation of motion of a representative
coefficient ¢, (XS ,t) . By acting with these projection operators on the many-body TDSE for the combined

system and bath in i (t) = H (t)w(t) we arrive at
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A A

i6,Py (t) = PHPPy (1) + PHQe "2 Qy (0) —|j PHQe ™ IQHPPy (7 )d7 3)

where we have omitted the index n for brevity. The first term on the right-hand side of Eq. (3) contains
only projections on the system manifold, and describes the coherent evolution of the system degrees of

freedom. The second term is a source term that carries a dependence on initial conditions ((31/1(0) are the

initial conditions of all system's states except the one we are considering), and the third term on the right-hand
side is a memory term that is recording the history of the time evolution. The time evolution given by Eq. (3)
is still fully coherent.

Remark. The solution of Eq. (3) is very involved [22, 23] and, apart from model systems, not feasible in
practice. Furthermore, a solution would require the initial conditions for all the microscopic degrees of freedom
of the bath. These cannot all be determined simultaneously by a measurement. In practice, one rather has only
knowledge about macroscopic thermodynamic properties of the bath, like temperature and pressure. It is
therefore common to perform the following additional approximations which are motivated by the form of the
system - bath interaction and the thermodynamic properties of the bath: (i) due to the assumed weak coupling
between system and bath the source and memory terms are expanded up to second order in the system-bath
coupling parameter A, (ii) the bath and subsystem S are assumed to be uncorrelated at the initial time, (iii) a
random phase approximation is performed for the phases in the source and memory terms, and (iv) it is
assumed that the bath degrees of freedom form a dense energy spectrum and are in local thermal equilibrium

_ 1
Tr(e’ﬁ”B)
the derivation of the Markovian stochastic Schrodinger equation might seem at first sight surprising. The
derivation of the Lindblad equation from the Markovian stochastic Schrédinger equation on the other hand

shows, that both describe the exact same dynamics if the Hamiltonian does not depend on internal degrees of
freedom or any time-dependent or stochastic field.

characterized by p, = e e where S =1/k,T . The random phase approximation invoked in

Let us then write the interaction Hamiltonian as Hgg =ZS B, , where S and B are - in the most

a~“a’

general case - many-body operators that act on the Hilbert spaces of the system and bath, respectively. In the
following we will also assume that the average of the operators B, vanishes on the n-th eigenstate of the bath,

namely > S, (x.|B, | z,)=0.Theterm {4, |B,|z,) contributes to the unitary evolution of the system by
renormalizing its eigenvalues (a typical example of this is the Lamb shift). With these approximations in place,
the source term can be regarded as a stochastic driving term.

This is because, the system's state we have singled out now interacts with a (practically infinite) large set
of bath states densely distributed in energy. The previously coherent Eg. (3) then has to be regarded as a non-
Markovian stochastic Schrédinger equation for the general state vector

w(t)=4, (xS,t)/<¢n (Xs,t)| &, (Xs t)> as

i04(t)=Hgy (t +/12|a8a1// —WZ]C (t-7)Sle ™S y(r)dr+0 (1), @

af 0

where |, (t) are stochastic processes with zero ensemble average, <Ia (t)> =0, and correlation functions

(LOLE)=0. (L, (1)) =C,, (t-1).

Eqg. (4) is a general non-Markovian stochastic Schrodinger equation.

Indeed, it still contains a time-integral over the past dynamics which is originating from the memory term
of Eq. (3). Even though the theorem of SQMD could be formulated with non-Markovian baths we will focus

in the following only on the Markovian limit C_, (t—t")=35,,6(t—t"), namely, we consider baths that are
o0 -correlated.
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Remark. Physically, this means that the bath does not retain memory of the interaction with the system
which is valid when the typical thermalization time-scales inside the bath are much faster than the
thermalization time-scales of the system. This approximation is well justified for a large number of bath
degrees of freedom. If this assumption does not hold, one has to resort to the solution of the more involved Eqg.

(4).
By inserting the Markov approximation, C_, (t—t")=46,,5(t—t'), into Eq. (4) we then arrive at the
stochastic Schraodinger equation in the Born-Markov limit

o (t)=Hq (t)y/(t)—%2§l§ay/(t)+ZIa ()S,w (1) 5)

where the parameter A has been absorbed in the operators §a. The first term on the right-hand side of

Eqg. (5) is the usual unitary evolution of the system under the action of the system Hamiltonian H s » the second
term describes the dissipation effects introduced by the bath and would indeed make the probability density
generated by v (t) decay in time. The last term, however, introduces fluctuations so that the norm of the state
vector i (t) averaged over the ensemble is conserved, namely <<1//(t)|¢//(t)>> =1+0 (14). Due to the

stochastic nature of this equation, the stochastic process described by Eqg. (5) has to be simulated in terms of
an ensemble of state vectors i (t). Each member i (t) of the ensemble evolves differently in time due to the

random variables I, (t) in the third term on the rhs of Eq. (5).

It is possible to derive the Lindblad equation from the stochastic Schrédinger Eq. (5).
Derivation of the Lindblad equation and stochastic Hamiltonians. Let us denote in the following
discussion with l//(t) a single member of the stochastic ensemble {‘wk‘ >} If we consider for simplicity the

case of a single bath operator in Eq. (3), and observe that in the Markovian limit W (t) :J:I(t')dt’ is a
Wiener process with properties <W (t)> =0 and <dWTdW> =dt, we can formulate the stochastic
Schrodinger Eq. (5) for a single bath in differential form according to
. 12z .4
d|¢//>:{—|HS|¢//>—ESTS|W>}dt—|S|W>dW. ©)

Next, we employ Ito stochastic calculus in order to compute the following differential

dly){w|=(dw){w|+lw)(d {w])+(d]y)(d (w])- ()

Unlike in normal calculus, we also have to keep the third term in the product rule above. This becomes

necessary, since a statistical average over the Wiener increment dw 'dW is proportional to dt, which will
cause terms quadratic in dW to contribute to first order in dt. Inserting Eq. (6) and its Hermitian conjugate into
Eq. (7) we arrive after elementary algebra at

dlw )| ==i8|v ) |aW +he.—i[ Fg o) Jot -2 {878,

w){yl}dt

+S|y ) (w|STdw fdw +s”|gy><://|ﬁdedt+h.c.+i5§|y/><y/|§*§dvvdt+h.c. (8)

+Hie [y )y | Fsdt + 3818y )y |$1800 +2 (g o) ]SS e

In order to construct the statistical operator from the state vectors of the statistical ensemble {‘ij >} , we

perform in the next step the statistical average over all members in the ensemble, i.e. d p =d <| ) <(//|> . Taking
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the properties (dW ) =(dWdt) =0 and <dW"'dW> =dt of the stochastic process I(t) into account, we see
that only

(—i[HS,|y/><y/|]dt—%{§*§,|y/><y/|}dt) and (S|y)(v| ﬁdedt+%§|W><y/|§*det)

terms in Eq. (8) contribute to first order in dt and we arrive at
d,sz_i<[ﬁs |y/><1//|]>dt—%{§T§,<|1//><y/|>}dt+§<|1//><y/|>§Tdt+O(dt2). )

At this point, note that this equation of motion is not necessarily closed for p = <|r//> <1//|> because the
first term on the right-hand side of Eq. (9) is not equal to the commutator —i [I—AIS ,/33] unless
I—AIS # I—AIS [{‘ij >}] or I-AIS does not depend on any stochastic field, or the system is in a pure state at all

times - which would amount to the case S = 0.

However, if the Hamiltonian is stochastic, one has to deal with an ensemble of Hamiltonians, and the
statistical average of the first term on the right-hand side of Eq. (9) involves also a statistical average over
these Hamiltonians.

A

For the moment being, let us assume that I—AIS # I—AIS [{‘ij >}] and furthermore that the Hamiltonian Hg

does not depend on some external stochastic field. In this case we find
~ T4 A 1igic - 2 &t
dp_—u[HS,ps]—E{s S, A5 |+$5sS (10)

which is the well-known quantum master equation in Born-Markov limit (or Lindblad equation if the bath
operators and the Hamiltonian, do not depend on time) [24].

We have thus shown that the stochastic Schrodinger equation of Eq. (5) and the master equation (10) lead
to the same statistical operator, if and only if the Hamiltonian is not stochastic. However, in order to prove any
DFT theorem one is led to consider the dynamics of the actual many-body system and that of any auxiliary
one (including the Kohn-Sham system) with different interaction potentials, but reproducing the exact many-
body density or current density. It is then at this stage that a choice has to be made - in the case of a many-
body system open to one or more environments - regarding the basic equation of motion to work with. If we
choose to work with a quantum master equation of the type (10), then we are assuming from the outset that the
Kohn-Sham Hamiltonian is not stochastic. But this is a hypothesis that constitutes part of the final description,
namely we have to prove that this statement is correct, not assume it a priori. This issue does not arise with the
stochastic Schrodinger equation (5), because in that case we can consider all possible Hamiltonians, including
those that are stochastic.

The construction of the statistical operator from stochastic trajectories effectively selects only the physical
solutions of the associated quantum master equation while the latter also permits non-physical solutions.
Therefore, the above issues make the equation of motion of the statistical operator a less solid starting point
for a DFT theory of open quantum systems.

The dynamics of Gaussian states for open quantum systems described by Lindblad equations can be
solved analytically for systems with quadratic Hamiltonians and linear Lindbladians, showing the familiar
phenomena of dissipation and decoherence. It is well known that the Lindblad dynamics can be expressed as
an ensemble average over stochastic pure-state dynamics, which can be interpreted as individual experimental
implementations, where the form of the stochastic dynamics depends on the measurement setup. Here we
consider quantum-jump and stochastic Schrodinger dynamics for initially Gaussian states. While both
unravellings converge to the same Lindblad dynamics when averaged, the individual dynamics can differ
gualitatively.

For the stochastic Schrodinger equation, Gaussian states remain Gaussian during the evolution, with
stochastic differential equations governing the evolution of the phase-space centre and a deterministic
evolution of the covariance matrix. In contrast to this, individual pure-state dynamics arising from the
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guantum-jump evolution do not remain Gaussian in general. Applying results developed in the non-Hermitian
context for Hagedorn wavepackets, we formulate a method to generate quantum-jump trajectories that is
described entirely in terms of the evolution of an underlying Gaussian state. To illustrate the behaviours of the
different unravellings in comparison to the Lindblad dynamics, we consider two examples in detail, which can
be largely treated analytically, a harmonic oscillator subject to position measurement and a damped harmonic
oscillator. In both cases, we highlight the differences as well as the similarities of the stochastic Schrodinger
and the quantum-jump dynamics.

C. Posssible unravellings of the Lindblad equation. The Lindblad equation was initially derived as the
most general Markovian dynamical equation that preserves the trace, Hermiticity and positivity of the density
matrix. Physically, it can be used to describe certain quantum systems that are weakly coupled to a memoryless
environment. In this spirit, dynamics of Lindblad form can be obtained for the reduced density matrix by
averaging over the effect of a bath of quantum harmonic oscillators [24]. Any linear and Markovian (local in
time) master equation that preserves the Hermiticity and trace of the density matrix may be expressed in
Lindblad form (1),

A A

in s p(0)=[H, p]+.z( 00 _%{ﬁkﬁ;,p(t)}j, (L0, A0} =LA+ AL

Here H is a Hamiltonian and I:k are general Lindblad operators, the properties of which are system-
specific. For simplicity in what follows we shall confine the discussion to a single Lindblad operator.

Much like the deterministic Fokker—Planck equation for the dynamics of probability distributions in
classical physics admits unravellings in terms of single trajectories of the stochastic Langevin equation, the
deterministic Lindblad equation for the dynamics of the density operator may be unravelled in terms of
stochastic pure-state trajectories. There are infinitely many such unravellings that differ from each other in the
stochastic driving processes. The two types of unravellings most commonly considered in the literature are
SSE trajectories driven with continuous Gaussian distributed noise, and quantum-jump trajectories driven by
discrete Poissonian distributed noise [25].

Example. The SSE we consider here is given by

) =8-S0 (S0 (E) ot () o) 0 i),

where d&r and d¢& are independent (E [d&rd&] = 0) Ito stochastic processes with mean zero
(E [d&] = E [d&] = 0) and normalisation d«fé = dé,z = 0. The SSE trajectories are driven with a continuous

stochastic process and are often used to model systems undergoing weak continuous measurement such as
heterodyne detection in quantum optics or quantum Brownian motion.

In the quantum-jump description, on the other hand, the pure-state trajectories deterministically evolve
. o I U R - i .
under an effective non-Hermitian Hamiltonian H —iI" with I" = > L'L , periodically interrupted by stochastic

guantum jumps. These jumps may be used to represent random discrete measurements of quantum systems
such as photodetection from a microwave cavity. The cumulative effect of these jumps when averaged over

many trajectories induces the “jump term” contribution I:k ,b(t) I:T( in the density operator dynamics.
Concretely, quantum-jump pure-state dynamics can be described by the dynamical equation

|dy) = h( H—EU j|y/)1 dN)dt + ﬁl |w)dN

Here dN is a Poisson process, taking the values 0 (no jump) or 1 (jump) with expectation value
E[dN] = <I:TI:> dt. Considering quantum-jump trajectories of a Markovian open system described by the
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Lindblad master equation and post-selecting only trajectories in which no jumps have occurred, thus leads to
effective non-Hermitian Hamiltonian dynamics.

Quantum dynamics generated by non-Hermitian Hamiltonians is an active area of research on its own,
and we will make use of some techniques developed in this context. It should be noted that 'L isa positive

. N L T .
operator and thus non-Hermitian Hamiltonians, H _E L'L, arising in the context of post-selection of

Lindblad/quantum-jump dynamics may only describe loss (but not gain).

Remark. Despite converging to the same ensemble dynamics, the SSE and quantum-jump trajectories
can differ not just quantitatively but qualitatively. We will analyse these differences in detail for quadratic
Hamiltonians and linear Lindbladians with initially Gaussian states. While for Lindblad and SSE dynamics the
state remains Gaussian for all times for quadratic Hamiltonians and linear Lindbladians, this is in general not
the case for quantum-jump dynamics, even though averaging over quantum-jump trajectories recovers the
Gaussian Lindblad results. For Hermitian Lindbladians, the Lindblad term in the central dynamics vanishes,
leaving only Hamiltonian dynamics, as expected for these purely decohering systems. In general, non-
Hermitian Lindbladians lead to both decoherence (that may be characterised by the evolution and dissipation
that leads to non-Hamiltonian dynamics of the centre of the Gaussian.

Example: Non-Hermitian evolution. The propagation of a coherent state under a time evolution generated
by a non-Hermitian operator and the special case of quadratic Hamiltonians in the context of Hagedorn wave
packets has been studied in [3]. In order to apply these results we need first to rewrite the Hamiltonian

H _IE L' slightly; since we assume that L is linear, we have (CeLl)(z)=L(2) L(z)+%{[, L} and the

term {[, L} =VL-QVL is constant. This gives us 'L = LL +%{ L, L} , and we obtain

I

U (t)= eig( 2 L)t :(a_zvmvue_zhx/a2 +b* where K (z)=H (z)—12|L(z)|2.

The dynamics of a Gaussian wavepacket under a non-Hermitian Hamiltonian can be derived following a
similar procedure to the one we have outlined for the Lindblad and SSE cases. Substituting the effective non-
Hermitian Hamiltonian K(z) yields the parameter dynamics

9 _ HvH ~G'Re(LVL), aG _ ~GQH"+H"QG + Re(vEVLT)+GQ Re(vEVLT )QG ,
dt dt

where the evolution equation for G is the same as the one for the SSE case. As expected, this fulfils

%detG =0 for detG =1, and an initially pure state remains pure.

The dissipative part of the central motion of the non-Hermitian dynamics can appear either quite different
or very similar to that of the Lindblad case, depending on the structure of the Lindblad operator. For a Lindblad

operator that is an analytic function of & or &', for example, the dissipative term in the central dynamics,
given by QIm(LVI:) can be rewritten as —Re(I:VL), which is very similar to the non-Hermitian

dissipation, with the difference that the latter is modulated by the changing covariance metric G.

An example for which Lindblad and non-Hermitian central dynamics are very different, are Hermitian
Lindbladians, for which the dissipative term in the Lindblad dynamics vanishes entirely. The quantum-jump
evolution turns the non-Hermitian behaviour into the Lindblad one, by averaging over different quantum jumps
that in general do not leave an initially Gaussian state Gaussian.

We will return to this issue after considering the Gaussian Lindblad and SSE dynamics.

6. Gaussian dynamics
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Gaussian states are well suited for the analysis of quantum dynamics, since they are localised in phase
space on order A (in appropriate coordinates they are minimum uncertainty states), and are the only states with
a completely positive Wigner function. In this regard, they may be thought of as the most ‘classical’ of quantum
states, and Gaussian approximations of the full quantum dynamics lead to simple phase-space dynamics. As
has been observed by Schrédinger already in the early days of quantum mechanics, Gaussian wavepackets
remain Gaussian in the dynamics of quantum harmonic oscillators and follow classical trajectories.

For open systems described by Lindblad equations or Schrodinger dynamics generated by non-Hermitian
Hamiltonians, a similar statement holds, which allows one to reduce the full quantum Hilbert space dynamics
to a simple phase-space dynamics described by a handful of parameters for Gaussian states for quadratic
Hamiltonians and linear Lindbladians. Gaussian evolution for stochastic Schrodinger equations with quadratic
Hamiltonian and linear Lindbladians in position representation has been considered and here too, an initially
Gaussian state remains Gaussian.

In what follows we shall provide a brief review of the derivation and result for Lindblad dynamics, and
then extend the idea to stochastic Schrodinger dynamics in quantum phase space, where we use the Wigner—
Weyl formalism that illuminates the underlying phase-space geometry and allows for a better direct
comparison with the Lindblad dynamics. At the heart of the Wigner—Weyl scheme is the Weyl transformation,
a bijective map that maps observables on Hilbert spaces to their corresponding Weyl symbols. The Weyl

symbol corresponding to an observable (5()2, F3) is a distribution on classical phase space and is given by

0(xp)=] ds<x—%)é()2,|5) X+§>e‘?f

The Weyl symbol corresponding to the density operator is known as the Wigner function. We will
consider Gaussian states with Wigner functions of the form

i 1Goz X—(X
W (2) = YOG 57 it o7 - ) (11)
rh p—(p)
with a real symmetric matrix G, that encodes the phase-space covariance matrix of the system as
2 h 4
Zij:A(zizj) ZEGU : (12)

This describes a pure state if and only if det (G) = 1. Inserting an ansatz of the form W (Z) with time-

dependent (and in the SSE case stochastic) parameters G and Z into the evolution equation for the Wigner
function yields dynamical equations for the parameters.

6.1. Gaussian dynamics of the Lindblad equation

The Lindblad equation in Weyl representation takes the form

MW I (HeW-WeH)+LeWel-1Celew-2Welel
dt 7 2 2

with the Moyal (star) product of Weyl symbols given by

(AeB)(ap)=A(s, P)e* “'B(a.p).

Since we are considering only quadratic Hamiltonians and linear Lindbladians, the Moyal products in this
equation can be fully expanded to yield

dd—VtV =—iVL-QVLW +VH -QVW +Im(LVL)-QVW —g Re(VL-QVW"QVL), (13)
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0 1) . I . .
where Q = 10 is the symplectic matrix. It is useful to rewrite H and L as polynomials in 6z

H(z):H(Z)+VH|Z=Z-52+%52-H”

207,  L(2)=L(2)+VL|_, 62 (14)

An initial Gaussian state remains Gaussian for all times. We can obtain the dynamical equations for
parameters in the Wigner function (13) as

?:QVH +QIm(LVL),
dG , , _ _
e (H +Im(VLVL' ))QG—GQ(H —|m(V|_VLT))+2GQRe(V|_VLT)QG

for the dynamics of the Gaussian parameters. The first order differential equation describing the central
motion is linear and can be trivially integrated. The dynamical equation for the covariance matrix G decouples
from the central motion as the Hamiltonian and Lindbladian dependent terms become constant.

For Hermitian Lindbladians, the Lindblad term in the central dynamics vanishes, leaving only
Hamiltonian dynamics, as expected for these purely decohering systems. In general, non-Hermitian
Lindbladians lead to both decoherence (that may be characterised by the evolution of G in this case) and
dissipation that leads to non-Hamiltonian dynamics of the center of the Gaussian.

6.2. Gaussian Stochastic Schrodinger dynamics

Let us now use the same approach to derive parameter dynamics for the SSE. We begin by writing the
SSE in projector form as

A (1) =10 o+ o e+ [ (o = 8 =S ()£ 2 () )
+%(£p+,§ﬁ-<£+ﬁ> )ng J_( Lp-pl—(C-C)p )olgI (15)

The deterministic (dt) part of Eg. (1.15) is the same as that of the Lindblad, which can evolve pure states
into mixed states. In the SSE case, however, the state remains pure for all times, since the stochastic terms
conspire to conserve the purity of the state.

We can translate Eq. (15) into the Wigner-Weyl representation to obtain
i i = 1 1 —
dW=—% HeW-WeH+i LeWeL—ELeLeW—EWeLeL dt

[LeW +W e L-iH —(C+ ﬁ}w}ng + (L eW-WeL-iH —<|Z—|Z*>W)d§,

1 i
+_ [
NET J2n

Since the deterministic part is the same as that of the Lindblad system Eq. (13), we need only calculate
the stochastic terms. As result we have

dw :{{H,W}+ Im(L{CW})-i{C,Ljw +§Re{L,{E,W}}}dt

+(\/%(LR —(L))w + g{w L'}]dch —(\/%(L' (L)) —\/g{W, LR}de.

After algebraic transformations we can obtain the (stochastic) dynamical equations
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dZ =(QVH +QIm(LVL))dt +\/§(61VLR ~QVL')dé&,,

9 _GOH"+H"G + Re(VLVL")+GQRe(VLVL)QG
dt

for the Gaussian parameters.

We notice that the deterministic part of the dynamics of the centre Z is the same as that of the Lindblad
equation; however, the SSE dynamics have an additional stochastic component as expected. This stochastic
component contains covariance dependent terms and unlike in the Lindblad case, we can no longer simulate
the centre trajectories without calculating the covariance dynamics. For quadratic systems the evolution of the
covariance matrix G is deterministic and independent of the motion of the centre but different from that of the
Lindblad evolution. This difference is not surprising considering that the G matrix in the SSE describes the
covariances of the individual pure-state trajectories, while the G matrix of the Lindblad evolution describes
that of the total density matrix arising from the ensemble average. In fact, the dynamics of G for the SSE are
the same as those arising from deterministic non-Hermitian Hamiltonian dynamics, which we shall briefly
review in the next section as the first phase of quantum-jump dynamics.

6.3. Quantum-jump dynamics

Quantum-jump dynamics do not preserve Gaussian states for arbitrary linear Lindbladians. As an
example, consider the Lindblad operator L=a". The first jump maps a state ‘y/g> to é*‘y/g> and thus

transforms a Gaussian state into a non-Gaussian one. We will show in what follows, that it is still possible to
calculate the quantum-jump dynamics building on the propagation of Gaussian states, leading again to just a
handful of time-dependent parameters. In the quantum jump unravelling of the Lindblad dynamics, we

propagate the initial state |1//O> with the time evolution generated by the non-Hermitian Hamiltonian

(PPN . . . .
H- 2 L'L, and intersperse it with jumps at discrete times t;,

L]y
) = 2 .
(w|UL|w)
A Atk
The non-Hermitian nature of time evolution U (t) —e ™ ? will lead to a decreasing norm of the

propagated state, and the quantum jumps reset the norm to one due to the inclusion of the denominator. After
k quantum jumps at times ta,tz,....t, i.e, t €[t ,t,.,) , the state will be of the form

|'//( H I:Lj (tk _tk—l)l:u (tkfl_tkfz)li"'Lj (tz_tl)I:Lj (t1)|'//o>'

HIW

To compute this expression, we will introduce a basis which is moving with the state U (t)| z//0> , the so-

called Hagedorn basis. An example for which Lindblad and non-Hermitian central dynamics are very different,
are Hermitian Lindbladians, for which the dissipative term in the Lindblad dynamics vanishes entirely. The
guantum-jump evolution turns the non-Hermitian behaviour into the Lindblad one, by averaging over different
guantum jumps that in general do not leave an initially Gaussian state Gaussian.

7. Examples

Let us consider the Lindblad dynamics and the two unravellings for a harmonic oscillator Hamiltonian

H = %( p® + )22) with two different Lindblad operators, one Hermitian and one non-Hermitian. Let us first
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consider a quantum harmonic oscillator with a Hermitian Lindblad operator L= \/;)2 which can be thought
of as modelling a position measurement.

7.1. Position measurement

Since the Lindbladian is Hermitian (purely decohering), in the Lindblad dynamics L yields no
contribution to the dynamics of the expectation values z;, which simply follow the familiar harmonic oscillator
trajectories. Conversely for individual SSE and quantum-jump trajectories L will affect the central dynamics.
The dynamical equations for the Gaussian parameters in the Lindblad dynamics equation simplify to

%:mz, CL—Ct;:a)(QG—GQ)+ZGQFQG, (16)

— 0
where we have defined I" = Re(VLVLT) = (g OJ . While the central dynamics is that of the unitary

harmonic oscillator, the dynamics of the covariances encoded by G(t), are influenced by the position
measurement. Let us consider the simple example of an initially squeezed state with,

¢ 0
G(O)=0 1
4

Solving equation (1.16) we find the physical variances as

AXP (t) = E(w—lsin (2at) - gzé:lcos(Za)t)j

4 ¢ w
Ap*(t)= %(%W+gsin (20t) + g;_lcos(Za)t)]
Axp(t)= Z( 72/4 + g“za)g—zmz— % cos(2a)t)j
w w

This behaviour is illustrated in Fig. 10.
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Fig. 10. Lindblad dynamics (solid black line) compared with single trajectories of the SSE (dashed red line)
and quantum-jump method (dotted blue line) for the position measurement, with @ = 7 and y = 0.2.
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2 0

[The initial Gaussian is a squeezed state (i.e. G = 1 |), centered at Z, = (2, O)T . We show the time
0o =
2

dependence of the position expectation (X) (top left), the momentum expectation ( p) (top right), the
positional variance Ax* (bottom left) and the momentum variance Ap? (bottom right).The Lindblad dynamics
are depicted as solid black lines]
Figure 10 depicts the expectation values of position and momentum and their uncertainties as a function
of time for an example with w = 1 and y = 0.2 for an initially squeeze state centred at Z, = (2, O)T . That is, we

observe the typical harmonic oscillations with frequency 2w in the covariances as they appear in the unitary
harmonic oscillator, accompanied by a linear growth of the position and momentum uncertainties AX? and Ap?,
associated with the effect of the position measurement.

The SSE dynamical equations become

] 1 v (1
dZ=aﬂZdt+‘/h?yG‘l(0jd§Rh/%[ojdé,, (L—(f=a)(QG—GQ)+F+GQFQG.

That is, for the central motion we again have the familiar unitary Hamiltonian flow term, and no damping
term, but now there is an additional width-dependent stochastic noise. The equation for the covariances differs
from that in the Lindbladian case, as expected.

As a result, independent of the initial value G(0), Z(t) tends to a fixed point as t — oo given by

20(2-w) A—o

2(A-w)

Z(t)—>—
27 d—w A

This is in stark contrast to the behaviour of the Lindblad covariances, with their linear growth in Ax? and
Ap?. We can see this in Fig. 10 which shows the SSE dynamics as red dashed lines. For the parameter choices

26

corresponding to the example in Fig. 1 (w =1, y = 0.2) we have A = T , and the covariances approach

52(1-1 52J2(A-1 -
sz(t)—>¥z0.497, Apz(t)a#zo.%?, Axp(t)%wzo.ow,

that is, the final state is very close to a coherent state, due to the relatively small value of y. For the central
dynamics we observe stochastic fluctuations around the average Lindblad dynamics.

The quantum-jump trajectories, on the other hand, depicted for an example run as blue dotted lines in
Fig.10, show very different behaviour. Here up to the first jump, the centre of the Gaussian state follows the
non-Hermitian dynamics, which in the present case reduce to

oL o)

where G(t) evolves dynamically as in the SSE case. That is, there is an additional position dependent
damping term in the evolution, modulated by the covariances of the state. This damping in comparison to the
Lindblad evolution is visible in the example depicted in Fig. 10.

We also observe in Fig. 10 that, as expected, the dynamics of position and momentum variances agree
between the quantum jump and the SSE dynamics up to the first jump. What is not shown here, but has been
numerically verified, is that averaging over many (quantum) jump trajectories simulated in the Hagedorn basis
does indeed recover the Lindblad dynamics, the same is true of the SSE parameter dynamics as expected.
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We observe clear differences between the Lindblad, SSE and quantum-jump dynamics for the harmonic
oscillator with position measurement, which can be understood to a large degree using the analytical treatment
developed in the previous sections.

Figure 11 shows the Wigner functions of the state at t = 10 for the three different realisations together
with the central trajectory up until this time (see, Fig. 10).

SN

N

Fig. 11. Lindblad dynamics (left) compared with a single trajectory of the SSE (middle) and quantum jump
(right) for the position measurement model equation with w = 1 and y = 0.2 [25]. [In each case, a snap-shot
of the Wigner function at t = 10 is plotted in phase space, with a white line displaying the precedent central

motion]

In the right panel, corresponding to the Lindblad dynamics the state remains Gaussian, and its central
motion follows the usual unitary harmonic oscillator trajectory. The increased uncertainties in position and
momentum lead to the broadening of the Gaussian apparent here. The SSE dynamics in the central picture, on
the other hand, also remains Gaussian in shape and stays well localised as predicted by the dynamical
behaviour of G. The central trajectory performs a Brownian motion around the harmonic oscillator trajectory.
Finally, the quantum-jump trajectory performs smooth stretches of damped harmonic oscillations interrupted
by discrete jumps, and crucially, the state does not remain Gaussian.

Let us consider the generic problem of state preparation for open quantum systems.

As is well known, open quantum systems can be simulated by quantum trajectories described by a
stochastic Schrodinger equation. In this context, the state preparation problem becomes a stochastic optimal
control (SOC) problem. The SOC problem requires the solution of the Hamilton-Jacobi-Bellman equation,
which is generally challenging to solve. A notable exception are the so-called path integral (Pl) control
problems for which one can estimate the optimal control solution by sampling. It is possible to derive a class
of quantum state preparation problems that can be solved with PI control. Since the method only requires the
propagation of state vectors , it presents a quadratic advantage over density-centered approaches, such as
Pontryagin Maximum Principle (PMP)-based methods. Unlike most conventional quantum control algorithms,
it does not require computing gradients of the cost function to determine the optimal controls. Instead, the
optimal control is computed by iterative importance sampling. The SOC setting allows in principle for a state
feedback control solution, whereas Lindblad-based methods are restricted to open-loop control. Here, we
illustrate the effectiveness of the approach through some examples of open loop control solutions for single-
and multi-qubit systems.

7.2. Stochastic optimal control of open quantum systems

Control problems, as abovementioned, can be divided into two categories: open-loop and closed-
loop/feedback control. In feedback quantum optimal control (QOC), the controls depend on the system’s state,
requiring full or partial information about the state at each time. In contrast, open-loop QOC involves state-
independent controls that are solely functions of time. The most widely used approach considers a closed
guantum system, which is a quantum system in isolation where effects from the environment can be ignored
and whose dynamics is unitary. For such systems one formulates an open-loop QOC which is solved using
gradient-based methods such as Gradient Ascent Pulse Engineering (GRAPE) and its variants, direct search-
based methods like Chopped RAndom Basis (CRAB), variational methods such as Krotov optimization and
techniques grounded in the Pontryagin Maximum Principle (PMP). These methods have been extensively
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applied to address a range of tasks. In reality, quantum systems are not isolated from their environment, and
the interaction with it decoheres the quantum system and destroys its unique quantum features. The theoretical
framework to study how quantum systems evolve in interaction with an environment is the theory of open
guantum systems. When the coupling with the environment is sufficiently weak, and the system’s dynamics is
much faster compared to the environment’s dynamics, then the system’s dynamics becomes Markovian and
can be described by the so-called Lindblad equation, which contains additional non-unitary terms describing
the interaction of the system with the environment.

Remark. All these methods can be computationally expensive, essentially because they require to
propagate the density matrix instead of the wave function. Moreover, these methods are gradient-based, and
they have several shortcomings. In some cases, the gradients can be computed analytically or numerically.
But, in most cases, the gradients can only be computed approximately (such as in k-order Open GRAPE) and
the gradient optimization is difficult due to the temporal dependencies inherent in the control problem, an issue
that occurs classically as well in dynamic programming. Secondly, the optimal control solution is an open-
loop controller, not a feedback controller that can correct for errors and stabilize the system. The reason a
feedback controller is not possible in these frameworks is that the Lindblad equation is a deterministic equation
that treats the effect of noise on average.

In order to obtain a feedback controller, the Lindblad equation needs to be replaced by a stochastic
dynamics that explicitly models the effects of individual disturbances due to the environment and due to
measurement. Such stochastic dynamics have been proposed under the name of quantum trajectories as
stochastic generalizations of the Schrédinger equation. The Lindblad equation emerges then as the dynamics

of the average <1//1//T> over quantum trajectories. Different ways of defining SSEs that lead to the same master

equation constitute different unravelings of the master equation and can take the form of a Markov jump
process or a diffusion process. The mathematical framework was formulated in Introduction. Stochastic
unravelings for non-Markovian scenarios can be traced back to Dios and Wiseman. Quantum trajectories have
been shown experimentally on different platforms, such as superconducting circuits, optomechanical systems
and hybrid quantum systems.

Control of open quantum systems using unravelings naturally results in a stochastic optimal control
problem, where the optimal solution is a feedback controller (see Chapter 1). The solution of the stochastic
optimal control problem requires the solution of the Bellman equation or a stochastic version of PMP involving
backward stochastic differential equations, which in either case is very difficult in general. A notable exception
are the linear quadratic Gaussian (LQG) problems, where the dynamics is linear in the state, the cost is
quadratic, and the noise is additive Gaussian. The stochastic Schrodinger equation is generally not of the LQG
form: it contains a bi-linear term uy, with u the control and y the quantum state and it may contain more non-
linearities due to a state normalization constraint. However, the bi-linearity does not necessarily preclude the
formulation of an LQG control problem in the Heisenberg picture, and this has been used to control quantum
systems. It was demonstrated for cooling and position localization of a quantum particle, the cooling of the
vibrations of a mechanical resonator and the position of an optically trapped nano particle at room temperature
etc.

Remark. The bilinearity of the control term up in the Lindblad equation, with u the control and p the
density matrix, does not necessarily preclude a linear dynamics in the Heisenberg picture. A classical analogy
is that a linear stochastic classical dynamical system dx = udt + dW is described by a Fokker-Planck equation

p:—V(up)+%V2p that describes the evolution of the instantaneous probability density p(x,t). The FP

equation (being the classical analog of the Lindblad equation) is bi-linear in u, while the stochastic dynamics
is linear in u. As a result, quantum systems described by position and momentum operators can be treated
within the LQG optimal control framework.

The feedback controller requires information about the quantum state through measurement. Since the
guantum state is only partially observable through measurement, the control problem becomes what is known
as a partial observable control problem. A unique quantum feature, not present in classical systems, is that
measurement will disrupt the quantum state by projecting the state onto one of the measurement eigenstates
(quantum back-action). A compromise between information gain and minimal disruption of the quantum state
is given by the so-called weak or continuous measurement. The issue of partial observability and measurement
is not so important for LQG control problems, because of a property called certainty equivalence, which
essentially states that the optimal control depends on the expected latent state only.
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However, partial observability and the correct treatment of measurement becomes important for stochastic
optimal control problems beyond the LQG regime. Measurement can be elegantly formalized by the so-called
hybrid dynamics, which describes the simultaneous time evolution of the quantum state and the classical
observation(s). The theory of unravelings of the hybrid dynamics in terms of discrete time quantum jumps was
first described]. Its generalization to continuous time measurements was recently proposed as a theoretical
framework to unify quantum physics with gravity and generalizes earlier work on continuous measurement.

Although the theory of stochastic optimal control of quantum systems is well developed, its application
has so far been mostly restricted to the LQG case. There exists another class of control algorithms that can
solve a large class of non-linear stochastic optimal control problems, known as the path integral (PI) control
method. This presents a quite large class of stochastic optimal control problems with non-linear dynamics,
non-Gaussian noise and non-linear control cost. A strong requirement for the control problem to be of the PI
form is that the noise dW and the control udt should appear in the dynamics as their sum udt + dW. The
advantage of the PI control problem is that the optimal control solution can be expressed in closed form as a
path integral, without the need to solve a Bellman equation or the PMP equations. The path integral can be
estimated relatively efficiently through sampling.

The sampling is optimized using a procedure called adaptive importance sampling which estimates
gradients based on self-generated quantum trajectories and is well suited for parallel computing with virtually
no overhead. Pl control has been very succesfully applied to many high dimensional non-linear stochastic
optimal control problems with real-time requirements that occur in robotics where all other methods fail.

We describe the proposal to apply the PI control method to control an open quantum system whose
dynamics can be written in Lindblad form. To simulate the Lindblad equation, continuous unravelings used
that yield a quantum diffusion process and that is formulated as stochastic differential equations (SDE) with
Brownian noise. These unravelings are not unique and in general not of the Pl control form. For certain
combinations of control Hamiltonian and Lindblad operators we can use this freedom to define a PI control
problem. We consider the problem of quantum state preparation. This problem can be formalized as a finite-
horizon stochastic optimal control problem that can be efficiently solved using the Pl control method. We will
focus, as a concrete example, on open loop control because closed-loop control requires the inclusion of
guantum measurement in the unravelings, which is a topic that we will consider in the future as the attempt in
combining state-centered quantum trajectories techniques with path integral control theory.

We describe a class of transformations on the Lindblad operators and the noise matrix that leaves the
Lindblad equation invariant while changing the unraveling. This transformation proves instrumental for
mapping many interesting control problems originally formulated in Lindblad form onto stochastic optimal
control problems of the PI form. The optimal control that results from solving the path integral equations is a
feedback controller, i.e. it depends on the system state. In practice, computing the optimal controller exactly
can be challenging if not unfeasible due to the infinite dimensionality of the control. Quantum control
algorithm by combining quantum unravelings with path integral control can be described.

Example: Unravelling formalism for noises. An alternative way to account for noises is to unravel the
master equation and consider explicitly the noise acting on the wavefunction. Consider the following master
equation, which - for the sake of simplicity - is taken as Markovian

B 2Hp]r e X[ LAl -G AY ) (7)

where H is the Hamiltonian, and & quantifies the coupling of the noises, while the Lindblad operator

A

L, can embed also relative strengths between diff erent noise channels.

Remark. We want to construct a stochastic unravelling of the Lindblad dynamics in Eq. (17). This is a
dynamical stochastic equation for the wavefunction |l//t> from which one can derive exactly Eq. (17) for the

corresponding statistical operator obtained as p, = EU w) (v, |] where E indicates the average over the

stochastic process. There are two advantages in using the unravelling approach in place of that based on the
master equation. The first one is that, for a N level system, the master equation approach is equivalent to solve
N2 ordinary coupled diff erential equations of the first order, while the unravelling approach has N stochastic
ordinary coupled diff erential equation of the first order. Clearly, there is a computational advantage in the
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scaling, however it is only polynomial and it has to be compared with the necessity of performing stochastic
averages. The second advantage is that for every master equation there are infinite equivalent unravellings
corresponding to it. Depending on the specific problem, some of these can be solved or simulated more easily
than others or than the master equation. In this family of equivalent unravellings, the linear stochastic
unravelling has a special place due to its simplicity.

In the so-called Ito form, it reads
dly,)= {_% Hat +Z(ig|ﬁkdwk’t —%gﬂ ﬁkdtﬂth) , (18)

where dW, , are diff erentials of standard independent Wiener processes, such that
E[dW,, |=0 and E[ dW, dW, |=5, dt. (19)
The first term of Eq. (18) is the standard Schrodinger equation. The second term introduces the

stochasticity of the noise process, while the last term is necessary to preserve the normalisation of |1//t> in

time. We now proceed in showing that the dynamics in Eq. (18) is equivalent to that in Eq. (17). We start by
diff erentiating the statistical operator:

do, :dE[|‘//t><‘//t|]: E[d (|‘/’t><'//t |)]

where the second equality follows from the linearity of the average. Then, one has

dp, =E[|dw,) (v, []+E[ v ) (dw, []+ E[|dy ) (dw, ],

where the last term is needed to account all the terms of the first order in dt, which includes that in the
second order in dW, see Eq. (19). Now, one substitutes, up to the first order in dt and second order in dWi;, Eq.

(18) in place of |y, ), and its conjugate in place of |d, ). Then, we obtain
dp, = E{—% I—A|dt+2[iglikdwk't _%gm; I:kdtﬂ|l//t><l//t |}
4 k
+E {| v ) (v, |{% Hdt + Z(—iglidek’t —%EZCL I:kdtﬂ}— E{Z“iglikdwkvt A2 |Ziglidem’t}
/ k k m

Under the Markovian assumption, i.e. that the noises dW: and dWyfor t # S are independent, then in
the state |z//t> there are only noises up to time s <t and thus independent from dW;. Thus, in last Equation

one can separate the average acting on dWy, and that acting on the state |l//t> . Namely, we find

E |:de1 |dl//t><l//t |:| =E I:de,t]E |:| d‘//t><l//t |:| =E [de,t:I/A)t =0,
E [de,t |dl//t><'//t |dWmt] = E I:de,tdWm,t]E |:| dl//t><l//t |:| = 5k,mdtlbt
By substituting these expressions in last Equation, we obtain
dpt :—%[H,pt}—i—gz;[LkptL;( _E{LTkprt}jdt )

which can be easily recasted in the form of Eq. (17).

Consider the evolution of a quantum system S that is coupled to an environment E. The total system S +
E is described by a quantum state ws.e that evolves according to a unitary dynamic dictated by the Schrodinger
equation. The density matrix of the system S is obtained by tracing out the degrees of freedom of the
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environment and is denoted as p =Tr, (l//S+Ewg+E ) The evolution law of the state p can be complicated or

inaccessible in general but, under certain conditions such as weak coupling between system and environment
and the environment being sufficiently large, one can derive an evolution law for p that satisfies some attractive
properties such as Markovianity and trace-preservation. The most general form of this class of dynamics is
given by the celebrated Lindblad equation

pz—i[H,p]+D[D,C]p (20)
with the dissipation super operator

1
D [D’C]p = Dab (CapCJ _E{Cgca'p}j

The first term in (20) describes the unitary dynamics of the closed system S with Hamiltonian H. The
second term describes the influence of the environment on the evolution of p in terms of m Lindblad operators
Ca,a=1,...,n. The noise matrix D is assumed to be positive semidefinite. This is a sufficient condition,
although not necessary, for ensuring positive evolution maps. Here we restrict D to be real symmetric.

The Lindblad operators encode decoherence and dissipation channels that arise from the interaction of the
systems with the environmental degrees of freedom. The dynamical maps p — C,poC, —%{cgca, p} are

complete positive and trace-preserving maps. Therefore, the maximum number of these channels is 22" — 1,
with n the total number of qubits. Some examples of Lindblad operators are measurement operators in which
case C, is Hermitian. Usually, Hermitian operators are related to dephasing/decoherence processes. In single-
qubit systems, dissipation operators such as ¢* serves to model e.g. the emission and absorption of light quanta
with the electromagnetic field. Due to the many ways of interacting with the environment, it is not surprising
that any initial state that is pure will not remain so under Lindblad evolution.

Alternatively, the Lindblad equation can be interpreted as an average dynamics obtained from considering
all particular time realizations of the quantum state w. This leads to the theory of stochastic unravelings.
Stochastic quantum unravelings are usually encoded as a stochastic differential equation (SDE) of the state y.
The SDE is designed in such a way that the density operator P = ', which now is a stochastic quantity,

follows in average a Lindblad evolution, i.e. p= <l//l//<>> , with p satisfying (20). One can define unravelings

in many ways, for instance using stochastic jumps at discrete times or using continuous Wiener noise. In this
section we use the latter. Assume the following SSE

dy =—iHydt —% D,,(CiC, —2c,C, +¢,¢, )wdt +(C, —c, ) wdW, (21)

with dW, a real-valued Wiener process with (dW.) = 0 and (dW.dW,) = Daydt, with D a symmetric matrix.

The C, are the Lindblad operators appearing in (1.20) and C, = l//Tcgh)l// with c;“> :=%(Ca +C§), the

Hermitian part of C,. Given these definitions, one can state the following result: Eq. (1.21) is an unraveling of
the Lindblad equation (20).

The specific form of Eq. (21) is not arbitrary and its derivation satisfies very general physical constraints.
If one considers that the term C_wdW, in Eq. (21) implements the basic stochastic action from the

environment onto the quantum state, then the remaining terms are needed to ensure that  remains normalized
under the dynamics (dllyll> = 0). The ca terms introduce non-linearities in the dynamics. This is a natural
consequence of the stochastic non-Hermitian interaction of the system with the environment, which makes the
evolution non-unitary and, therefore, violates norm preservation. A non-unitary norm preserving dynamics is
necessarily non-linear.

It remains interesting to construct quantum ODE algorithms with improved efficiency by reducing the
ODE to other quantumly solvable tasks. One notable candidate is the dynamics of open quantum systems with
the Lindblad master equation (Lindbladian) as a typical example. Lindbladian itself is a universal quantum
computing model. Recently, there have been several works proposing quantum algorithms based on
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Lindbladians, where they aim to encode states of interest such as Gibbs states and ground states as the steady
states of Lindbladians. Inspired by these rapid developments, our question arises:

Is it possible to solve linear ODEs via Lindbladians?

7.3. Linear ODEs solution via Lindbladians

Differential equations have long served as an essential tool for modeling and describing the dynamic of
systems in natural and social science. A general linear ordinary differential equation (ODE) is typically
expressed as

%ﬁ(t) =-V (t) f(t)+b(t), where V (t) e ", fi(t), b(t)eD? , and fi(0)= .

Classical simulation algorithms often become highly inefficient for large systems due to their polynomial
dependence on the system dimension. On the other hand, quantum algorithms with appropriate input access
can produce a quantum state that encodes the solution of the ODE with only poly-logarithmic dependence on
the system dimension, which makes solving ODE as a promising application of quantum computers. In
particular, the Hamiltonian simulation, which aims to simulate the Schrédinger equation, a special case of
ODEs on quantum computers, is arguably one of the most important applications and may be among the first
to achieve practical quantum advantages.

Remark. Since V (t) is generally not anti-Hermitian and the time evolution operator of the ODE is not
necessarily unitary for many important problems in such, as example, non-Hermitian physics and fluid
dynamics. The central challenge in designing quantum algorithms for linear ODEs is thus how to embed non-
unitary dynamics into intrinsically unitary quantum dynamics. When V (t) is a time-independent normal matrix

and B(t) # 0, the problem of solving an ODE can be efficiently addressed by the powerful quantum singular
value transformation (QSVT) algorithm. However, an ODE with a time-dependent non-normal matrix V (t)
and a possibly inhomogeneous term B(t) =0 is beyond the reach of QSVT due to the mismatch between the
singular value transformation and the eigenvalue transformation.

Previous works have developed two strategies for general linear ODEs. One is the linear-system-based
approach, which discretizes the ODE by a numerical scheme, formulates the discretized ODE as a dilated
linear system of equations, and solves the linear system by quantum linear system algorithms. The first efficient
linear-system-based approach was proposed by Berry, applying multi-step methods for time discretization and
HHL algorithm for solving the resulting linear system. Since then, there have been several subsequent works
on linear-system-based approach by higher-order time discretization and more advanced quantum linear
system algorithms. The other is the evolution-based approach, which directly embeds the time evolution
operator into the subspace of an efficiently implementable unitary by time-marching, reducing to Hamiltonian
simulation problems, or quantum eigenvalue processing.

Remark. The motivation comes from two remarkable features of Lindbladians. First, unlike previous
evolution-based algorithms where non-unitary dynamics is embedded into the subspace of unitaries (block
encoding), Lindbladians are naturally non-unitary due to the interaction with the environment. It is thus
tempting to use this non-unitary dynamics to solve non-unitary ODEs. We call this a subsystem approach.
Second, there exist various quantum algorithms for simulating Lindbladians, which makes it amenable to solve
linear ODEs via Lindbladians on quantum computers as long as we can establish a connection between them.
Solving linear ordinary differential equations (ODE) is one of the most promising applications for quantum
computers to demonstrate exponential advantages. The challenge of designing a quantum ODE algorithm is
how to embed non-unitary dynamics into intrinsically unitary quantum circuits.

A new quantum algorithm for solving ODEs by harnessing open quantum systems developed.
Specifically, the natural non-unitary dynamics of Lindbladians utilized with the aid of a new technique called
the non-diagonal density matrix encoding to encode general linear ODEs into non-diagonal blocks of density
matrices. This framework enables us to design a quantum algorithm with both theoretical simplicity and good
performance. Combined with the state-of-the-art quantum Lindbladian simulation algorithms, the algorithm
can outperform all existing quantum ODE algorithms and achieve near-optimal dependence on all parameters
under a plausible input model.

90



CeteBoe Hay4Hoe n3naHue «CUCTeMHbIN aHanu3 B Hayke u obpasoBaHumn» Beinyck Ne3, 2025 rog

Thus, it is possible to embed general linear ODEs into Lindbladians with the aid of a new technique called
non-diagonal density matrix encoding. The solution to an ODE can be encoded into a hon-diagonal block of a
density matrix, from which we can prepare the normalized solution state or merely measure its properties.
Based on this connection between general linear ODEs and Lindbladians, we construct an efficient quantum
algorithm for solving ODESs by applying the state-of-the-art Lindbladian simulation quantum algorithms, with
two different input models for the coefficient matrix V(t), namely the access to the original matrix V(t) or to
its square root information. The algorithm, especially under the second input model, can outperform all existing
guantum algorithms and achieve near-optimal dependence on all parameters.

Consider putting a system in an environment that is large enough such that the Markovian approximation
is valid, the dynamics of the system can be modeled by the Lindbladian

O('i—f =L[p]=-i[H (t),p]+Z(E (t)oF (1)’ —%{p, F(t)'F (t)}J . @2

where p = Zij 5 |1)( ] is the density matrix of the system, H(t) is the internal Hamiltonian, and {Fi(t)}

are quantum jump operators. By treating p as U(t) in ODE, the Lindbladian naturally corresponds to an ODE

with non-normal V (t). While so, the problem is that the Lindbladian has to be a completely positive trace-
preserving (CPTP) map and cannot be used to program general ODE problems.

Similar to the idea of block encoding where a matrix M of interest is encoded into the upper-right block
of a unitary operator, non-diagonal density matrix encoding (NDME) aims to encode the matrix M into a hon-
diagonal block of a density matrix to jump out of the restrictions of Hermiticity and positive semi-definiteness:

Definition 4 (NDME)). Given an (I + n)-qubit density matrix pm and an n-qubit matrix M, if pu satisfies
(<51|. ® In)pM <|52>| ® In) =yM , where [s,), and |s,), are two different computational basis states of the
I-qubit ancilla system and y > 0, then pw is called an (I + n, [s1), |S2), 7)-NDME of M.

We will focus on (1 + n, |0), 1), y) - NDME where pw has the form

(0 M
Pu = }/MT 0 ’

Since pwm is Hermitian, itis also a (1 + n, |1), |0), 7) - NDME of M'.

We now show how to combine Lindbladians and NDME to encode general linear ODEs.

Starting from a (1 + n)-qubit initial state po = |[+){(+| & |uo){uo| Whichisa (1 + n, |0), |1), %) - NDME of

|o){uol, we consider a Lindbladian with H (t)= [Hlo(t) (: j and F, (t) = (Giét) ﬂo| j .
@y i'n

Focusing on the upper-right block of o, L[ p, ] described as

§|uo><ﬂo|»%[—i(ﬂ(t)—a)—@zei v'e1)-246 <t>+§z|/zr)}|uo><uo|-

Here, since the « term can be absorbed into Hi(t) and %ZGi (t)TGi (t) is positive semi-definite, for

semi-dissipative ODEs (the Hermitian part of V(t) is positive semi-definite), we can simply set « = i = 0 such
that on the left vector of this upper-right block, we realize the homogeneous linear ODE as

dz(t)

SV )= . (0)-5 26 (06,0 |a) win 7(0)-1 ).
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This equation shows the interesting (but expected) connection between the anti-Hermitian (oscillating)
part of V(t) and the internal Hamiltonian of the Lindbladian, the connection between the Hermitian (dissipative)
part of V(t) and the environment induced jump operators of the Lindbladian. The non-Hermitian coefficient
matrix appeared in this equation, sometimes, is also known as the effective non-Hermitian Hamiltonian for
approximately describing the short-time dynamics of the Lindbladian. Evolving the Lindbladian for a time T,
we will have

_1( 0 ml%)(%lj
Pr=7 '

2\ 177 | o) (e | 0

where | 44 ) = fi(T )/, is the normalized solution with 7, = Hﬁ(T )H

A high-level picture of these procedures is shown in Fig. 12.

dp

[%ﬁ(t) =~V (t)i(t) + E(t)] [ = = Llo] ]

( . ")T|#T)(Ho|)
| o) (per | :

Fig. 12. High-level illustration of the algorithm [26].
[The dynamics of a linear ODE is embedded into the intrinsic non-unitary dynamics of a Lindbladian and
the solution to the ODE is encoded into a non-diagonal block of the density matrix evolved according to the
Lindbladian]

8. Quantum algorithms for open system simulation

The basic idea is to use high-order series expansion following the spirit of Duhamel’s principle where the
Lindbladian separated into two parts: the jumping part and the drifting part. The truncated expansion is then
realized on quantum computers with the aid of linear combinations of unitaries (LCU) and oblivious amplitude
amplification for isometry. A new quantum algorithm for linear ODEs is developed by combining the natural
non-unitary dynamics of Lindbladians and a new technique called the non-diagonal density matrix encoding,
the solution to a differential equation can be encoded into a non-diagonal block of a density matrix. With the
aid of advanced Lindbladian simulation algorithms and the assumption of a plausible input model, we achieve
near-optimal dependence on all parameters and outperform all existing methods.

8.1. Path integral control of open quantum systems

Let us now consider the state preparation problem. We want to prepare a quantum state from a given
initial state in total time T, but want to do so by considering the interaction of the system with its environment.
For this, we assume the system dynamics follows the Lindblad equation (21). One can formulate this as a finite
horizon control problem where the Hamiltonian in (21) takes the form H = Ho + usaHa with Ha (@a=1, ..., ne)
a set of Hermitian operators and us(a=1, . . ., n¢) real-valued control fields. Given the time interval [0, T], we
define the control objective as

C[u]:—%F (pT)+%quRutdt (23)
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where pr represents the quantum state at the final time T, Q is a positive constant and R is a real symmetric
positive m x m matrix. The objective is composed of two parts. The first term is the fidelity
F ( o ) =Tr ( Pr ¢¢"') of the final state p; with respect to a target (pure) state ¢. The second term is an energy

constraint and it penalizes the accumulated magnitude of the different controls. We want to find the optimal
control u- that minimizes the objective function u” =argminC[u].
u

Egs. (21) and (23) define a deterministic control problem and the optimal control solutions u, are state-
independent functions. This is referred to as open-loop control and it can be approached by using for example
the PMP method. Here instead, we propose to consider the stochastic optimal control problem based on the
unravelings of the Lindblad equation. For this, consider the following cost functional

lT
C :<—%F (1//T)+EjutT Rutdt> where y: is the quantum state satisfying the SSE (22) and F(y) =
0

Tr(wy'ég"). When the controls depend on the state, the problem is referred to as closed-loop/feedback control.
These control problems can be solved using the PI control formalism when the Lindblad operators C, can be
transformed into anti-Hermitian operators —iHa, while maintaining a real symmetric covariance matrix. When
the transformation is possible, the unraveling is linear and norm-preserving and the SSE and SME take the
form

: 1« . - T <
dy =—iHydt—=D, H H,ywdt—iH_ y (udt+dW, ), (dW,dW,)=D,dt
0 o eb b ( ) < b> b (24)

dP =—i[H,,P]dt+D| D,H |(P)dt—i(u,dt+dW,)[H,, P]dt

In addition, the transformation should leave the cost C invariant. The first term is invariant because
<Tr(z//Tz//T“Q)> :Tr( pTQ) and p; is invariant. The second term is generally not invariant, except when u

is open loop, as there is no state dependence in that case. However, for feedback control, the optimal control
formulation varies depending on the specific unraveling employed.

Example: Control of a noisy qubit. Consider a single-qubit system evolving according to the Lindblad
equation (1.21) with H =u,H, +u H,, where Hx = o and Hy = gy. The dissipation part is given by the two

. 1 i i .
non-Hermitian operators C; = ¢* and C; = o7, where ¢* = 5 (ox £ loy). This system is commonly used for
modeling the emission and absorption of light quanta in a two-level system coupled to an electromagnetic
field, e.g. a cavity resonator. Assume a diagonal noise matrix Da, = Ddap. The Lindblad equation is
p=-i[H, p]+ D(0'+,00'_+0'_po-+ —p).

To propose an unraveling suitable for Pl formulation, we transform the dissipators to a pair of anti-
Hermitian operators. The unraveling becomes:

dy =—Dy/dt —io,y (u,dt+dW, ), Dab:%wab, a=xy.

This unraveling preserves the norm of . This implies that the stochastic trajectories generated by dy lie
on the Bloch sphere. We consider the state preparation problem from an initial state

v, =|X) :%(|0>+|1>) to a target state ¢ =|Y) :%(|0>+i|1>).

Although the transformation X — Y can be realized by a simple o; rotation. This task is challenging, since
o0 1S not one of the control primitives in H. Instead, ox, oy must coordinate so as to realize the desired rotation.
As a result, the optimal trajectories do not lie on the equator.

In Fig. 13 (A) we show the adaptive importance sampling. In Fig. 13 (B) Optimal control solution uy(t)
after convergence of the algorithm. In Fig. 13 (C) we show how the quality of the optimal control solution in
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terms of asymptotic ESS depends on the number of pulses K. The ESS increases monotonically until reaching
an asymptote at around ESS ~ 0.21, showing the sub-optimality of the open-loop control compared to the
optimal feedback solution (for which ESS = 1).

Figure 113 (D) shows quantum trajectories on the Bloch sphere under optimal control.

Remark. We plot the average fidelity over trajectories Fayg, the worst-case fidelity over trajectories Fmin
and the average control cost C versus IS steps. In addition, we plot the effective sample size ESS, which is a
sensitive measure of the quality of the optimal control solution. The ESS indicates how close the control
solution is to the optimal (feedback) control, for which ESS = 1. We observe that while the fidelity and control
cost converge fast to constant values, the ESS still increases indicating that the quality of the control solution
is still improving (shaded region). We observe that the control solution becomes smoother in these later IS
iterations. The asymptotic average fidelity for K = 128 is F* = 0.9759+0.0006.

A) cost and fidelity B) control
T — 1.0 0.0 T
-2.5F ay " g ey A %
10.8 —05¢F
-3.0F —C
C Fusg 0.6 F —10F
peles 0 ESS =
35} Fuin 1.4 0.0 0.5 1.0
ESS t
0.2 0
—4.0 |0)
D)
0.0
0 200 100 600 800 1000
/1
)

0 20 10 60 80 100 )
K 1)

Fig. 13. Control of a noise qubit from X — Y [27]

[(A) Average fidelity Fayg, minimal fidelity Fmin, effective sample size ESS and cost C versus importance
sampling iterations p. The converged average fidelity is F* = 0.9759 & 0.0006. (B) Optimal control solution
Uxy(t) after convergence of the algorithm. The optimal solution is two-fold degenerate. The two solutions are
related by a global sign uxy — —uxy. (C). Dependence of the quality of the optimal control, measured by the

ESS, on the number of pulses K. (D). Optimally controlled trajectories on the Bloch sphere. Parameters:
horizon time T = 1, noise coupling D = 0.005, control weight R = 1, fidelity weight Q = 10, number of pulses
K =128, number of trajectories nywaj = 400 per IS step, maximum number of importance sampling (IS) steps
nis = 1000 and time discretization dt = T/N with N = 128. IS smoothing window w = 40]

The feedback controller requires information about the quantum state through measurement. Since the
guantum state is only partially observable through measurement, the control problem becomes what is known
as a partial observable control problem. A unique quantum feature, not present in classical systems, is that
measurement will disrupt the quantum state by projecting the state onto one of the measurement eigenstates
(quantum back-action). A compromise between information gain and minimal disruption of the quantum state
is given by the so-called weak or continuous measurement. Weak measurement can be elegantly formalized
by the so-called hybrid dynamics, which describes the simultaneous time evolution of the quantum state and
the classical observation(s). The issue of partial observability and measurement is not so important for LQG
control problems, because of a property called certainty equivalence, which essentially states that the optimal
control depends on the expected latent state only. However, partial observability and the correct treatment of
measurement becomes important for stochastic optimal control problems beyond the LQG regime.

8.2. Optimal feedback control of a continuously monitored spin
The spin interacts weakly with an optical mode (laser) along the z-axis. The cavity is used to control the

strength of that interaction. Then, a continuous measurement is performed on the laser using a technique known
as homodyne detection. This provides an indirect continuous measurement of the z-component of the spin
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angular momentum in such a way that the state of the system does not collapse to an eigenstate of S, (a so-
called non-demolition measurement). A magnetic field in the y-direction is applied for control purposes.

Figure 14 is a schematic representation of an experimental set-up for continuous measurement and control
of a spin. The dynamics of the continuously monitored spin system is described by a quantum stochastic
diff erential equation (QSDE).

Controller

Feedback law Filter

o Magnetic field

T

z Atoms
D
11’1'01"9 Photodetector
aser
Optical cavity

Fig. 14. Schematic of an experiment for continuous measurement and control of a spin [28]. [The spin
interacts with a probe laser, which is measured continuously using photodetectors. A magnetic field is used
for feedback]

The proper mathematical framework for QSDEs is the non-commutative analog of the Ito stochastic
calculus that was developed by Hudson and Parthasarathy. There is also a corresponding observation process
for a field observable of the laser probe. At this point, we should recall that it is impossible to measure all
components of the state because they are non-commuting observables. Hence, any measurement can provide
only partial information about the state of the system [29].

The situation is analogous with that of classical partially observed stochastic systems. As in the classical
case, one can derive a quantum filtering equation which is the equivalent of the Kushner-Stratonovich equation
in classical nonlinear filtering theory. The quantum filtering equation is a classical Ito SDE for the conditional

expectation of the density matrix p, (conditioned on the measurement record up to time t). The important
property of the filtering equation is that the expectation value of any system observable at time t is the same
whether it is computed from the corresponding QSDE or from p, , even with feedback control that depends

on the measurement record. This is a great simplification, since it allows us to circumvent the dynamical QSDE
and use the filtering equation (or Belavkin equation) for control design. Moreover, an output feedback control
problem has been converted into a state feedback control problem for the conditional expectation of the state

b

The starting point of the analysis will be the spin filtering equation. It has the following form:

~ [ A A licon & A oA AN A
dpt Z(IU(t)I:Sy,ptj|+ M (Szptsz _E(Szzpt +ptszz)j)dt+ nM (Szpt +ptSz —ZTF(SZpt)pt)th

where the innovations process W; is a Wiener process that describes the difference between the measured
value of S; at time t and its expected value.

The measurement strength M is determined by the properties of the cavity and the probe laser and
eff ectively determines the time-scale of the measurement process. The parameter # € [0, 1] is the detection
efficiency of the photodetectors and u(t) is the amplitude of the magnetic field applied in the y-direction. By

defining 7 =Mt, V. :WWt (so that (dVT)2 =M (dV\/t)2 =Mdt =dz)and 0 :ﬁu ,we can set M =1,

which we do from now on.

95



CeteBoe Hay4Hoe n3naHue «CUCTeMHbIN aHanu3 B Hayke u obpasoBaHumn» Beinyck Ne3, 2025 rog

For the case of a spin-1/2 system, we use the Bloch vector representation of p. introduced in Chapter 1,

1+z, X -1y,
X +ly, 1-z,

~ 1 1
P :§(|2+Xto-x+yto-y+zto-z)25

in terms of which, the spin filtering equation becomes the following system of SDEs:

1 1
dx, :_(U (t)Zt +§)(Tjdt—\/;xtztdww dy, 75 ytdt—\/;ytztth, dz, :u(t)xtdt_'_\/;(l_ th)dW‘

We seek to design optimal feedback strategies for this objective. Certainly, one may design feedback laws
for the filter dynamics based on some objective but they will not necessarily be optimal for the system. What
is needed is an appropriate Separation Principle, that is, a statement that under appropriate conditions the
optimal feedback control designed based on the filter dynamics remains optimal for the system (with the same
objective). Then, the optimal feedback is a separated strategy. The associated state space will now be the disk
0<x?+z°<1.

To the analysis let us use polar coordinates (r, 8) for the state space defined by x = r sin 8 and z = r cos 6.
It is a simple application of Ito ’s rule to obtain the following SDEs for them:

dr, = %LQ— rtjsin2 tht+\/;(1— r;z)COSQth,
f

(25)

dg, :{—u(t)+[rﬂ—2—77—%]sin6?t coset}dt—ﬁswlgt dw

t

Let us pose now the following optimization problem: Suppose that at time t the state of the system is (r,
0). Let u(s), s € [t, T] (T is the time at which the experiment terminates) be a square integrable function. We
define the following expected cost-to-go

I(t,r,0,u(s))=E, H(%uz (s)+U(r,6, )st]

0

where the expectation value is taken with respect to every possible sample path that starts at (r, 6) at time
t. We seek the control law u that minimizes J. The expected cost-to-go of the optimal law is called the value

function: V (t,r,0) = min J (t.r,6.u(s)).
Bellman’s principle of optimality and dynamic programming lead to the following Bellman equation for
2
. |u ov
the value function: min {? +U +E + LV} =0.
u

The stochastic generator L of the SDE system acts on V as follows:

L(V):E(ﬁ—rjsin29ﬂ+ —u+(%—n—1j3inecose ﬁ+£77(1—r2)2cos26'ﬂ
2\r or r 2 00 2 or

+1 sin? @ 0%V (1 j oV

——n| =—-r|sin@cosd ——
A oro0

For the case of perfect detector efficiency (y = 1), it is possible provide such a boundary condition and
hence obtain a solution to the problem.

Letting the initial value of r equal to 1 (ro = 1)
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dr, :%(?—n}sinz Ot +f7 (1-17 ) cos 6.dW,,

t

we see that dro = 0 and hence r; = 1, V t > 0. Hence, r = 1 is a forward invariant set of the stochastic
dynamics. Physically, this means that if the detection is perfect, a pure state of the system will remain pure for
all time. Let us rewrite dynamics on the invariant set r = 1.

dog, = —(u (t)+%sin Htcosetjdt —sing,dw, .

This stochastic system is the reduction of the full system whose state space is the disk 0 < r < 1, on the
boundary r = 1 which is a forward invariant set of the full dynamics.

Figures 15 (a,b) represent the value function and the optimal feedback for the infinite-horizon problem on
the boundary of the state space.

Figures 16 (a,b) represent the value function and the optimal feedback on the whole disk.
The asymmetry between the left and right side of the disk is obvious in all figures.

To elucidate the action of the control on the system, we portray, in Fig. 17(a), the vector field (-u(x, z)z,
u(x, z)x).

This vector field is the part of the dynamics that depends on the control. The fact that there are lines on
which this field vanishes should not be alarming: The action of the rest of the dynamics, the deterministic
dissipative part and the stochastic part, “throws” the system off these points. Finally, Fig. 17(b) demonstrates
some typical trajectories of the closed-loop system.

Value function
“
-
-
trol

Feedback con

[:] (1]
(@) (b)
Fig. 15. (a) Steady-state value function V on the boundary; (b) Optimal feedback on the boundary
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Fig. 16. (a) Steady-state value function V on the disk; (b) Optimal feedback on the disk
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Fig. 17. (a) Vector field generated by the feedback control; (b) Typical trajectories of the closed-loop system

Thus, it is possible to construct corresponding “averaged” systems and optimal transfer problems that
capture the long time-scale dynamics and in which the contribution of the short time-scale natural dynamics is
averaged out. These reduced problems off er great conceptual and computational simplifications to the solution
of the original ones. For example, the solution to an optimal feedback stabilization problem for an eigenstate
of a continuously monitored spin-1/2 system in the case of perfect detection.

Practical examples of quantum optimal control in [30] are described.

Conclusions

The results obtained in the field of quantum computer science clearly demonstrate the high technological
potential of quantum technologies.

A cryptanalytically significant quantum computer can threaten the functioning of various systems. The
article [1] formulates the main provisions of the Concept of ensuring the sustainability of national digital
platforms and blockchain ecosystems in the context of a new quantum security threat. When developing this
concept, the results obtained in the works of well-known Russian scientists on quantum information
technologies, as well as the results obtained in the works of the authors of this article and other members of
the Technologies for Countering Previously Unknown Quantum Cyber Threats group from the Scientific
Center for Information Technology and Artificial Intelligence of the Sirius University of Science and
Technology, were summarized, systematized and comprehensively rethought.

The lack of teaching staff and objective assessments of the necessity of industry and science for quantum
engineering personnel only increased the difficulties in the development of quantum engineering. In this
article, we have reviewed only the basics necessary for a deeper study of quantum computing, quantum
information technology, quantum strong artificial intelligence and quantum resilience of information systems.

Note. The article was prepared based on the results of the Project FCS-2024-2.3-VY-1160-5744
“Technologies for countering previously unknown quantum cyber threats” within the framework of the
implementation of event 2.3 of the state program of the federal territory “Sirius” “Scientific and technological
development of the federal territory “Sirius”.
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