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In traditional BCI techniques, different types of signal acquisition may be used, depending on the appli-
cation. In this paper we have chosen to treat a complex EEG-EMG-based solution for the control of an 
artificial arm because only the results offered by motor imaginary solution are not satisfying excepting the 
fact that electroencephalogram signals present a lower amplitude in comparison with the EMG signals 
because of limited number of mental commands that can be accessed at the same time through the BCI 
interface and which must be combined with physical commands, such as facial gestures that can also be 
recognized and mapped to predefined sequences of keystrokes. This makes it impossible to generate se-
quences that involve complex movements on a group of servomotors in real time being necessary to record 
the motion intention generated by each group of muscles to replicate the movement of the human arm. This 
makes it impossible to generate sequences that involve complex movements on a group of servomotors in 
real time being necessary to record the motion intention generated by each group of muscles to replicate the 
movement of the human arm. The EEG solution is also useful in limitation of human error produced by 
mental workload due to the capacity of recognizing the mental states that produced by the drowsiness state 
signalized by the increase of blink rate. 
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В традиционных методах МКИ могут использоваться различные типы сбора сигналов, в зави-

симости от приложения. В этой статье для рассмотрения выбрали решение на основе ЭЭГ-ЭМГ 
для управления искусственной роботизированной рукой, поскольку результаты, предлагаемые толь-
ко моторным воображаемым решением, не удовлетворяют потребностям практики, за исключени-
ем того факта, что сигналы электроэнцефалограммы имеют меньшую амплитуду по сравнению с 
сигналами ЭМГ из-за ограниченного числа ментальных команд к которым можно получить доступ 
одновременно через интерфейс МКИ. Ментальные команды должны сочетаться с физическими 
командами, такими как жесты лица, которые также могут быть распознаны и сопоставлены с 
предопределенными последовательностями нажатий клавиш. Это делает невозможным создание 
последовательностей, включающих сложные движения группы серводвигателей в режиме реального 
времени, что необходимо для записи намерения движения, генерируемого каждой группой мышц, 
чтобы воспроизвести движение руки человека. Решение ЭЭГ также полезно для снижения человече-
ских ошибок, вызванных умственной нагрузкой, благодаря способности распознавать психические 
состояния, вызванные состоянием сонливости, сигнализируемым увеличением частоты моргания. 

 
Ключевые слова: электроэнцефалография, магнитоэнцефалография, МКИ, мозг - компьютерный 

интерфейс. 
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1. Definitions and models of bio-neuro-signals 

In the following, we briefly describe four types of brain signals, their properties, and the suitable ma-

chine interfaces [1-15]. 

Electroencephalography (EEG) signals. EEG is the most employed method to detect electrical 

activity of the brain by use of small electrodes attached to the scalp. These signals are recorded by a machine 

for tracing both normal brain function and diagnosing pathological conditions (e.g., epilepsy). In stimulus 

(e.g., visual cue) induced EEG, there is positive deflection of voltage with a latency (delay between stimulus 

and response) of roughly 250–500 ms, which is called event related potentials (ERP). Examples of such ERP 

is the so-called P300 formed at time 300 ms, which is related to decision making. Indeed, cognitive impair-

ment is often correlated with modifications in the P300. It is considered an endogenous potential, as its 

occurrence links not to a stimulus‟ physical attributes, but a person‟s reaction to it. More specifically, the 

P300 is thought to reflect processes involved in stimulus evaluation or categorization. The presence, magni-

tude, topography, and timing of this signal are often used as metrics of cognitive function in decision-making 

processes and hence used in BCIs. The P300 has several desirable qualities for pattern recognition. First, the 

waveform is consistently detectable and is elicited in response to precise stimuli. The P300 waveform can 

also be evoked in nearly all subjects with little variation in measurement techniques, which help simplify 

interface designs and permit greater usability. The speed at which an interface can operate depends on how 

detectable the signal is despite “noise.” One negative characteristic of the P300 is that the waveform‟s ampli-

tude requires averaging multiple recordings to isolate the signal. This and other post-recording processing 

steps determine the overall speed of a BCI interface.  

Magnetoencephalography (MEG) signals. MEG is a functional neuroimaging technique 

monitoring brain activity via magnetic fields of electrical currents in the brain, using SQUIDs (su-

perconducting quantum interference devices), which are very sensitive magnetometers operated in a 

cryogenic environment. Another type of magnetometer is spin exchange relaxation-free (SERF) 

magnetometer, which can increase portability of MEG scanners, while it features sensitivity equiva-

lent to that of SQUIDs. A typical SERF magnetometer is relatively small and does not require bulky 

cooling system to operate. It has been demonstrated that MEG could work with a type of SERF, i.e., 

chip-scale atomic magnetometer (CSAM), where its development can be used efficiently for BCI. 

Basically, MEG may provide signals with higher spatiotemporal resolution than EEG, and therefore 

useful for an increased BCI communication speed.  
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Electrocorticography (ECoG) signals. ECoG uses electrodes placed directly on the surface 

of the brain to record electrical activity from the cerebral cortex, i.e., an invasive technology that 

involves removing a part of the skull to expose the brain surface to enable the implant of an elec-

trode grid on the surface of the brain, i.e., called craniotomy, which is a surgical procedure per-

formed either under general anesthesia or under local anesthesia if patient interaction is required for 

functional cortical mapping. The spatial and temporal resolution of the resulting signal is higher and 

the signal to noise ratio (SNR) superior to those of EEG due to the closer proximity to neural activi-

ty. Thus, ECoG is a promising recording technique for use in BCI, especially for decoding imagined 

speech or music, in which users simply imagine words, sentences, or music that the BCI can direct-

ly interpret. 

Functional near-infrared spectroscopy (fNIRS) signals. fNIRS is a non-invasive optical 

imaging technique that measures changes in hemoglobin (Hb) concentrations in the brain by means 

of the characteristic absorption spectra of Hb in the near-infrared (NIR) range. fNIRS tomography 

makes use of the fact that light penetrates up to several centimeters into biological tissue, i.e., a safe 

technique that is minimally invasive and which relies on small, relatively inexpensive easy-to han-

dle technology, and provides relatively low spatial resolution. The penetration range of light in 

tissue limits the size of the target tissue volume. fNIRS can be used in BCI for the restoration of 

movement capability for people with motor disabilities. fNIRS cannot aff ord high error rates for 

safety purposes, and must be fast enough to provide real-time control. Several fNIRS-BCI studies 

have tried to improve classification accuracies and information transfer rates. 

2. Hybrid brain–computer interfaces (BCIs) models  

Brain–computer interfaces (BCIs) allow disabled people to establish a new communication channel be-

tween the human brain and a machine. This communication is based on the analysis of electrophysiological 

brain signals recorded by the electroencephalogram (EEG). Although BCI technology has shown impressive 

progress in the last few years, it cannot be compared to non-BCI control channels in terms of performance 

and interaction speed. Therefore, the development of practical BCIs for disabled people should allow them to 

use all their remaining functionalities as control possibilities and to use the currently best available ones. 

Especially since the physical and mental conditions of a patient (e.g. early stage of amyotrophic lateral 

sclerosis) are changing over the day, various control strategies could be applied, e.g. sometimes muscular 

activity would be available (most likely in the morning when they are not exhausted), whereas at other times 

maybe only brain signals can be voluntarily controlled. 

Such a combination and parallel usage of at least one BCI and at least one additional communication 

(e.g. another physiological signal or special assistive input devices such as joysticks, switches) is called a 

hybrid BCI [1-3]. Generally, these control channels can operate different parts of the assistive device or all of 

them could be combined to allow users to smoothly switch from one control channel to the other, depending 

on their preference and performance. We can assume that such a hybrid BCI will improve the quality of life 

of a patient. The following examples of hybrid BCIs can already be found in the literature: based on multiple 

brain signals, such as the combination of a motor imagery (MI)-based BCI with a steady-state visual evoked 

potential (SSVEP)-based BCI or the combination of an MI BCI with error potential (ErrP) detection and 

correction of false mental commands, or the combination of a SSVEP BCI with a heart rate controlled on/off 

switch. 

The EEG was acquired monopolarly over the motor cortex with 16 electrodes (see Fig. 1). 
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Fig. 1. The photograph shows a subject wearing the cap with 16 EEG electrodes over the motor cortex and 4 

EMG channels at the flexor and extensor of the left and right forearm  

[The diagram explains the processing and fusion principle of muscular and brain activities in a hybrid BCI] 

From the Laplacian filtered EEG, the power spectral density (PSD) was estimated in the band 4–48 Hz 

with 2 Hz resolution over the last second. The EMG was acquired bipolarly over the flexor and extensor of 

the left and right forearm (see Fig. 1). 

The BCI can be controlled either by a single modality (EEG or EMG) or by the fused activity of both. In 

total we have compared six different conditions in Fig. 2(a): two single modalities and four fused activities 

with increasing levels of muscular fatigue (i.e. 0%, 10%, 50%, 90% attenuation of EMG amplitude).  

  

(a)                                                                                        (b) 

Fig. 2. (a) Mean ± the standard deviation (SD) of correctly classified samples over the whole task period (0–

5 s) for the six conditions. [The leftmost (red) and rightmost (green) conditions correspond to the single 

modalities, EMG and EEG, respectively. The four conditions in the middle correspond to the fusion of EEG 

and EMG with different levels of remaining amplitude (i.e. 0%, 10%, 50%, 90% attenuation). For each of 

these conditions two performances provided according to the fusion modality: simple fusion (left side in 

black) and Bayesian fusion (right side in blue)]; (b) Examples of raw signals and averaged classifier outputs 

(integrated probabilities; mean in solid lines ± SD in dotted lines) of EEG (left) and EMG (right). The cue 

appeared at 0 s 

The average performance of all subjects for the EEG activity alone was 73% and for EMG activity 

alone was 87%. In the first fusion approach (equally weighted sources) the fused activity achieved an in-

crease to 91%. Remarkably, thanks to the fusion of EEG and EMG, increasing muscular fatigue (from 10% 

to 50% to 90% attenuation) led to a moderate and graceful degradation of performance: 90%, 85% and 73% 

accuracy, respectively. It is worth noting that in the case of fusion with only 10% of EMG amplitude (90% 

attenuation), the performance is the same as for EEG alone despite the fact that the fusion weights are the 

same over all conditions. 

The second fusion technique based on the Bayesian approach achieved similar results but with smaller 

the standard deviation (SD) (see Fig.2). Interestingly the Bayesian fusion performance is very stable over the 

first three fatigue conditions. Especially in the 50% EMG condition, a tremendous increase could be 
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achieved compared to the other fusion technique (statistically significant from 85.1% to 92.0%). In contrast, 

in the last condition (90% EMG attenuation) the Bayesian approach failed and had a result of 60.4%, which 

is worse than EEG alone. The reason is that the confusion matrices of the Bayesian fusion have been calcu-

lated using a non-fatigued subject and the method assumes that the sources do not change over time. Howev-

er, a strong level of EMG fatigue leads to almost a removal of this source, thus causing the significant per-

formance decrease. 

The experiment demonstrates the benefits of a hybrid BCI. Multimodal fusion of muscular and brain ac-

tivity yielded better and more stable performance compared to the single conditions. Furthermore, the in-

creasing muscular fatigue led only to a moderate and graceful degradation of performance compared to the 

non-fatigued case. Therefore, such a system allows the user a very reliable hybrid BCI control, even though 

she/he is getting more and more exhausted or fatigued during the day. 

Comparing the behavior of the two fusion techniques, it is obvious that the Bayesian fusion achieved a 

constant performance over a wide range of muscular fatigue, compared to the steadily decreasing perfor-

mance in the case of the simple fusion. However, the Bayesian approach yielded the worst performance in 

case of 10% EMG, even lower than the EEG alone condition. This behavior can be explained by the domi-

nance dependence of the Bayesian fusion approach on the EMG classifier output. For fatigue levels of 50% 

and lower the output of the classifier was still reliable and therefore the Bayesian approach achieved better 

results. However, in the conditions in which the quality of the EMG input signals dropped below a certain 

threshold the results were worse. The reason is the strong violation of the assumption that the input patterns 

are stationary over time, necessary to compute the Bayesian confusion matrices. This problem could be 

overcome by adapting the way contribution of the different modalities. Let us chosen a static approach 

(computed once and kept constant over time). Instead it should dynamically update these coefficients based 

on the reliability of the input channels, or the confidence/certainty the system has on its outputs. 

Surprisingly [1], the fused activity resulted in a 6% improvement in classification compared with the 

EMG alone condition. One may expect that EMG classification leads to a perfect classification of 100%. The 

reason for the „non-perfect‟ classification of the single EMG condition is based on the fact that the move-

ments were repetitively executed and that the number of correctly classified samples over the whole task 

time is used as a performance measure. A glance at the raw signals and the extracted classifier outputs exem-

plifies the behavior (see Fig.2(b)). The EEG classifier had a smooth but stable improvement over the trial 

time compared to the fast and strong but fluctuating response of the EMG classifier, which also had a large 

variation over time. The EMG fluctuation over time can be explained by the repetitive execution of the hand 

movements during the task time. Sometimes the subject executes the movements and sometimes pauses 

them. 

Thereby the EMG power drops below the detection threshold and therefore is counted as not detected. 

On the other side, repetitive movements are commonly used in BCI research, since they lead to more dis-

criminative and stable EEG patterns. Generally speaking, besides muscular fatigue a mental fatigue could 

also appear. This would influence the reliability of the EEG signal in a similar way as the simulated muscular 

fatigue influenced the performances of the EMG channel. 

Such a reliability could be estimated from supervision signals such as cognitive mental states in the case 

of EEG (e.g. fatigue, error potentials) and physiological parameters (e.g. median frequency of the myoelec-

tric signal power spectrum in the case of muscular fatigue). Another possibility is to analyses the perfor-

mance of the individual classifiers in achieving the task (e.g. stability over time, influence of noise, etc) and 

thereby adapt the fusion weights. 

Electroencephalography (EEG) and functional near infrared spectroscopy (fNIRS) endow brain – com-

puter interfaces (BCIs) with their essential and indispensable attributes of non-invasiveness, low cost, and 

portability. EEG- and fNIRS-based BCIs have enabled paralyzed patients to communicate and control exter-

nal devices with their own brain functions. Unfortunately, classification accuracy in these modalities dimin-

ishes as the number of BCI commands increases. As a mean of overcoming the problem of the reduction of 

classification accuracy upon an increase in the number of control commands, the concept of hybrid brain–

computer interface (hBCI) was introduced. The hBCI pursues the following three main objectives: (i) en-

hanced BCI classification accuracy, (ii) increased number of brain commands for control application, and 

(iii) shortened brain-command detection time. These benefits provide hBCI a clear advantage over any single 

brain signal acquisition modality. The hBCI is meant to combine either (i) more than two modalities (of 
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which at least one is a brain signal acquisition device) or (ii) more than two brain activities with a single 

modality, for example, the combination of P300 and steady-state visual evoked potential (SSVEP) with EEG. 

An hybrid BCI (hBCI) system is similar to a simple BCI but that it needs additionally to fulfill the fol-

lowing four criteria: (i) the activity should be directly acquired from the brain; (ii) at least one of multiple 

brain signal acquisition modalities should be employed in acquiring such activity, which can be in electrical 

potential, magnetic field, or hemodynamic change form; (iii) the signals must be processed in real time/ 

online to establish communication between the brain and a computer for generation of control commands; 

and (iv) feedback describing the outcomes of the brain activity for communication and control must be 

provided. 

Six aspects (hardware, signal processing, brain activity, feature extraction, classification, and feedback) 

need to be considered in developing an hBCI: (i) the hardware should consist of at least one brain signal 

acquisition modality; (ii) the hybrid system should detect and process different physiological signals simul-

taneously; (iii) the paradigm should be able to acquire multiple brain activities simultaneously using multiple 

modalities; (iv) a number of features for classification should be acquired in real time/online for both accura-

cy enhancement and additional control-command generation; (v) the classified output should have a potential 

for interfacing with external devices (e.g., wheelchairs and robots); and (vi) it should also provide feedback 

to the user for rehabilitation and control purposes. 

Figure 3 provides an example of an hBCI scheme.  

 

Fig. 3. Purposes of hybrid brain–computer interface: (i) increase the number of control commands by com-

bining electroencephalography (EEG) with functional near infrared spectroscopy (fNIRS) [further elec-

trooculography (EOG)] and (ii) improve the classification accuracy by removing motion artifacts 

It indicates the following two things: (i) multiple activities are required for hBCI and (ii) a combination 

of brain and non-brain signal acquisition modalities is overviewed. 

After detection, the activities are processed simultaneously for feature extraction and classification; 

then, the classified results are used as feedback for the user‟s rehabilitation and control applications. Hybrid 

brain–computer interface hardware can be configured in the following two ways: (i) combination of a brain 

signal acquisition modality with a non-brain signal acquisition modality and (ii) combination of a brain 

signal acquisition modality with another brain signal acquisition modality. Brain and non-brain signal acqui-

sition modalities are combined either to remove motion artifacts or to increase the number of commands in a 

BCI system. Two brain signal acquisition modalities are combined and positioned over the same brain region 
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in order to enhance the classification accuracy, or, they are positioned in different regions to increase the 

number of control commands. 

Electromyography signals are generated and detected as a result of muscular movement. These act as an 

artifact in EEG signals, resulting in the false detection of brain signals. The purpose behind a hybrid EEG–

EMG-based hBCI is to combine EEG and EMG signals in hBCI. This incorporation of EMG signals is user 

specific and depends on the activity or task performed by that user. The applications of hybrid approaches 

vary from a simple game control application for an able-bodied person through to a prosthetic arm control 

application for an amputee.  

Figure 4 shows a typical strategy used for incorporating EEG and EMG signals into an hBCI system. 

 

Fig. 4. Electroencephalography–electromyography (EMG)-based brain–computer interface: one choice is 

selected using steady-state visual evoked potential (SSVEP) and muscle movement is used to change the 

selected option 

The steady-state visual evoked potential (SSVEP) signals are detected mostly in the occipital brain re-

gion. They are generated by gazing at a stimulus, which causes an increase in neural activity in the brain. 

VEPs are elicited by sudden visual stimuli, the repetition of which leads to a stable voltage oscillation pattern 

in EEG that is known as SSVEP. The stimulus used for these signals is light flickering at different frequen-

cies (sometimes in the “checker board” pattern with changing colors). Using SSVEP signals, multiple reac-

tive commands can be generated. The drawback of this activity is the need for the continuous focus on 

flashing light, which might not be possible or an ineffective approach for some patients. The signal detection 

time for these signals has been reduced to less than 1 s using spatio-temporal features with a reduced number 

of channels. 

The applications of EEG–EMG-based hBCI are found in the control area of assistive devices. In the ear-

ly work using EEG with EOG and EMG, the EMG signals were used to categorize different “locked-in” 

patient types. In their study, six types were defined, the first three of which were categorized using EMG as 

follows: 

- Patients capable of movement (e.g., eye movement and finger movement);  

- Patients incapable of movement but showing some detectable EMG activity due to partial muscle 

movements;  

- Fully locked-in patients with no muscular activity detectable by EMG signals. 

Figure 5 shows the recent trend in EEG- and fNIRS-based hBCIs. 
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Fig. 5. Trend in electroencephalography (EEG)/functional near infrared spectroscopy (fNIRS)-based hybrid 

brain–computer interface (BCI) [2] 

The remaining three types of patients were categorized using EOG and EEG signals. For EEG–EMG-

based BCI, a neuro-electric interface was developed for real-time control applications. 

Most hybridization strate-gies that have been introduced are applicable to EEG-based BCI; yet, further 

improvement of fNIRS-based BCI systems is needed.  

The major hBCI emphasis is the EEG–EOG-based hBCI. Most of these studies have combined, or are 

combining, two modalities for eye movement artifact removal and additional BCI commands.  

EEG–EMG-based hBCIs have limited applications and are used only in muscular-artifact removal from 

brain data for enhanced classification accuracy. Meanwhile, only very limited research has been done on 

EEG–fNIRS-based BCI applications. Moreover, the works done have focused mostly on an improvement of 

classification accuracy, with very little attention having been paid to the issue of command-number increase. 

Another important aspect that requires a focus with respect to hBCI is the selection of active control 

commands. The reactive commands can be increased by changing the flickering stimuli for BCI. In fact, 

using reactive tasks, more than 50 commands can be achieved. A BCI using active commands is more desir-

able than one based on reactive commands. After, at most, three or four active commands, the accuracy 

severely drops, making it difficult to control an external device with a further increased number of com-

mands. The current need is such strategies that can be used to achieve active control of BCI systems without 

impacting negatively on accuracy. In this regard, the hBCI can play an important role. Future research in this 

area will provide a solution to the problems related to the increase in the number of active commands. 

3. EEG–EMG dataset  

Electromyography (EMG) is a method to record the electric manifestation of skeletal muscular activity. 

The information is captured using electrodes. The torque applied to the skeletal system joints due to muscle 

contraction leads to movement in the body. Muscles are composed of fibers that are innervated alpha motor 

neurons, which receive efferent neural drive descending from the central nervous system. A motor unit is 

made of motor neuron and all the muscle fibres which the neuron innervates. Each motor neuron controls a 

varying number of muscle fibers depending on different muscle types. This number is called the innveration 

ratio. Motor neuron depolarization propagates as a wave through axons from the spinal cord to muscle fibres 

to activate a motor unit. The propagating depolarization of the neuronal membrane can be recorded by elec-

trodes placed in the vicinity of the membrane, and such activity is called a motor neuron action potential 

(MUAP). When the MUAP reaches the neuromuscular junction (NMJ), special neurotransmitters are re-

leased from the axon to the muscle fibre membrane, which depolarizes the muscle fibers. And such fibre 

depolarization would, in turn, propagate from the NMJ, along with the fibre, toward the two tendons, to 

which the fibres are attached. This propagating depolarization can also be detected by electrodes place in its 

vicinity and is called muscle fibre action potential. 
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The collective muscle fibre actional potentials from the same motor unit often appear to be a single ac-

tion potential because all fibres within the unit would be activated simultaneously. And this „collective‟ 

action potential is often called the motor unit action potential. One motor unit action potential is often re-

ferred to as a „firing‟ of a motor unit. The frequency of motor unit „firing‟, or the firing rate ranges from 4-6 

Hz (firings per second) to approximately 30-40 Hz. The above is a brief description of the electric process of 

muscular activation. 

A mechanical process of muscular activation occurs simultaneously with this electric process. Upon the 

membrane depolarization, muscle fibres would shorten, resulting in mechanical contraction. The amount of 

contractile tension generated by the fibres differs among different types of muscle fibres. Furthermore, the 

overall contractile tension generated by a muscular contraction further depends on factors, such as how many 

motor units being activated. The motor unit action potential, being an electromagnetic signal, can be detected 

at the skin surface, usually by Ag/Ag-Cl electrodes with conducting gel. The gel helps to reduce impedance 

between the skin and electrode. For long-duration applications, a gel electrode system is not preferred; 

instead, dry electrodes made of a material such as stainless steel or conductive ceramics are used. Dry elec-

trodes often have higher noise levels due to higher electrode-skin impedance. 

In addition to the above described non-invasive measurement of EMG, also known as surface EMG 

(sEMG), EMG can also be measured by invasive electrodes, such as needles or fine wires that are transcuta-

neously inserted into the muscle under investigation. This latter method is called intramuscular EMG. Alt-

hough intramuscular EMG collects muscle activity of individual muscle fibers, sEMG is more frequently 

used in disciplines outside neurophysiology, where these invasive methods are not practical due to problems 

such as electrode insertion, infection, and subject compliance. The sEMG signal contains two types of in-

formation, Time-Domain, and Frequency-Domain, which depend upon intensity and duration of muscle 

contraction, electrode-amplifier configuration, skin-electrode contact quality, and placement of electrode 

with respect to muscle. 

There are multiple sources of noise while acquiring EMG data, such as relative displacement between 

the recording electrode and the muscles under investigation, the movement of the electrode with respect to 

the skin, electromagnetic interferences due to power line, etc. This noise degrades the performance of the 

system and needed to be rectified before any processing.  

Multiple methods can be used to rectify these problems, such as filtering techniques like bandpass and 

stop, high and low pass filters. Noise such as power line noise and motion artifact can be largely removed 

with these techniques. 

The dynamic development of electronics, mechanical engineering, and biomedical engineering has 

opened up new possibilities in the field of prosthetics and smart devices. Thanks to modern equipment, 

rehabilitation is faster, more-advanced surgery is possible, and recovery after accidents is more efficient. The 

observation of such bioelectric signals as EEGs, ECGs, and EMGs is often the basis for finding a particular 

disease or deciding on further treatment(s) for the patient. Research related to biomedical engineering and 

processing bioelectric signals is still ongoing. There are more and more devices controlled by human-

machine interfaces. To improve such systems, more-accurate measurement systems, more-complex control 

algorithms, and more-precise positioning systems are needed. The topic of discussion in the following article 

will be the analysis of EMG signals, which is the process of forming electrical potentials on human skin 

during muscle tension (specifically, surface EMG [sEMG]). This signal is mainly used for testing motor 

dysfunction among people. The aim of the study is to present the problem of measuring and filtering an 

EMG signal. Through the use of digital filtering and the appropriate signal processing, relevant information 

carried by the signal should be obtained. The experiment will provide the results on whether an EMG signal 

is suitable for use in systems controlled by muscle tension (for example, an intelligent prosthetic hand or 

exoskeleton). 

We briefly overview the human skeletomuscular physiology that gives rise to sEMG signals followed 

by a review of developments in sEMG acquisition hardware. Special attention is paid towards the fidelity of 

these devices as well as form factor, as recent advances have pushed the limits of user comfort and high-

bandwidth acquisition. We explore work quantifying the information content of natural human gestures and 

then review the various signal processing and machine learning methods developed to extract information in 

sEMG signals. Finally, we discuss the future outlook in this field, highlighting the key gaps in current meth-

ods to enable seamless natural interactions between humans and machines. 
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4. Myoelectric Physiology of The Human Body  

When the brain instructs the body to move, it sends an electrical impulse signal down the spinal cord 

and through an intricate network of peripheral nerves to the targeted muscle. This neuronal signal is trans-

duced into a muscular contraction by numerous neurons known as motor units, each consisting of a motor 

neuron (anterior horn cell), its axon, and all the individual muscle fibers it innervates (Fig. 6).  

 

Fig. 6. A single motor unit and the muscle fibers it innervates  

[When an anterior horn cell is activated, all muscle fibers depolarizes synchronously to generate a motor 

unit action potential (MUAP). Action potentials measurable by electrodes from all motor units superimpose 

to form the EMG signal] 

The fast development of electronic skin offers the feasibility to address the demanded features. The pio-

neering work in this area is more focusing on soft robots, health engineering, human/robot fingertips, and 

human-robot interfaces on human body. Apart from the above focuses, some significant efforts also have 

been devoted to developing electronic skin for large-area and rigid cobot body (i.e., robot skin). To well 

blend into human living environments, future skin-covered cobots are coupled robotic systems composed of 

rigid, flexible, and soft component. Cobots will inherently provide the rigid part to ensure necessary force, 

power, and responsiveness of actuation, while robot skin will offer the soft part for the requirements of 

demanded features. 

Individually, mechanoreceptor appear as jelly-like materials located under the human skin. Lexically, 

they can be said to be a network of receptors and processing centers combining to form the haptic sensory 

system. The latter is responsible for the perception of the information acquired from surroundings, flashing it 

to the central nervous system (CNS) as signals. After analyzing and processing the signals, the body then 

gives feedback in the form of a physical response 

The human sense-of-touch involves diff erent sensory subsystems that can be classified according 

diff erent factors. One of the most common classification methods is by the source of neural inputs which 

may be cutaneous, kinesthetic, or haptic. The cutaneous subsystem is associated with the skin and involves 

physical contact with stimuli. This subsystem performs the spatiotemporal perception of external stimuli via 

receptors such as thermoreceptors for temperature and thermal inputs and nociceptors, which respond to pain 

and damage. The mechanoreceptors, which are the focus of this review, play vital roles in providing the CNS 

with information about mechanical eff ects, such as vibration and contact pressure. The kinesthetic subsystem 

acquires sensory information received through mechanoreceptors located in the muscles, joints, and tendons 

of the human body system.  

Thus, kinesthetic information enables the CNS to know about the position and movement of the body 

and limb segments in both cases, static and dynamic. The haptic sense is combining sensory stimulations of 

both the cutaneous and kinesthetic subsystems, in purpose to perform and stimuli body activities efficiently. 

Human skin is an active sensory system which protects our bodies from injury, dehydration, radiation, and 

toxic substances in the external environment by tactile sensation of stimuli. The skin consists of complex 

layers of specialized receptors [10], such as the epidermis, dermis, and hypodermis (Fig. 7).  
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(A) 
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(B) 

Fig. 7. (A) Description of sensory touch receptors in glabrous human skin; (B) Skin-integrated electronics 

for tactile sense. 

[(a) Prosthesis with e-skin that perceives touch and pain; (b) Fingertip skin-inspired e-skin; structure and 

functions of human fingertips (left); artificial multimodal e-skin (right); (c) Illustration of ultra-lightweight 

large-area tactile flexible electronics; (d) Intrinsically stretchable transistor array for e-skin. The array 

enables accurate sensing of the position of a synthetic ladybug with six conductive legs; (e) Image of a 

triboelectric nanogenerator-based e-skin attached on a curvy hand; (f) Photograph of an artificial skin with 

stretchable silicon nanoribbon electronics covering the entire surface area of a prosthetic hand; (g) Photo-

graph of a prosthetic hand with a multi-modal sensor on the finger grasping a cup of hot coffee; (h) Pros-

thetic hand wearing a temperature sensor array; (i) Schematic diagram of the biological and bio-inspired 

optoelectronic spiking afferent nerve systems] [11] 

The external layer of the epidermis is responsible for regulating body temperature and consists of im-

pervious protective surfaces. The dermis layer, which is located under the epidermis, transmits nerve infor-

mation from thermal, mechanical, and chemical stimuli. The third layer is hypodermis which, depending on 

the study, may or may not be considered a part of human skin. This part of the external layer consists of 

connective and subcutaneous tissues that separate the dermis from the muscle and bone. 

The skin-like wearable sensors can be highly attached to the human skin or the surface of clothing with 

high comfort and acceptability. It has good application potential in health monitoring of elderly patients and 

assisting elderly patients in their daily life. Recent advances in health monitoring devices and intelligent 

assistive devices based on skin sensors can be seen in Fig. 8. 

 

Fig. 8. Recent advances in health monitoring devices and intelligent assistive devices based on skin sensors 

[12]  

[(a) A flexible, wearable, and flexible skin-like pressure sensor, which could monitor important physiologi-

cal signals in real time; (b) A wearable tactile sensor that responds instantly to external stimuli; (c) A wear-

able sensor based on the roll-to-roll (R2R) gravure printed electrodes for real-time, in situ perspiration 

monitoring during exercise; (d) An irritable, skin-like wearable sensor can induce muscle contractions by 

increasing electrical levels to aid in the recovery of paralyzed limbs; (e) A smart prosthesis based on skin-

like sensors can be used by patients to receive tactile sensations as they grab, grab, squeeze, shake or touch; 

(f) A soft, conformal bioelectronics for a wireless human-wheelchair interface] 

According to different sensing mechanisms, a variety of skin-like wearable sensors, including electro-

chemical, bioimpedance, photoelectric and other wear-able sensors and the research progress on the health 

monitoring and the development of smart assistive devices in recent years developed [5-9]. Several studies 

have been carried out on different applications of human-machine interaction such as manipulation, grasping, 

position recognition, and pressure evaluation. Another important direction of in the development human-

machine interaction devices is methods based on deep learning. Recently, the deep learning technique was 
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used to realize an extremely simple macro-scale electronic skin without macro-, nano-, and micro-patterns. 

The deep learning network (DNN) architecture that has been used is shown in Fig. 9.  

 

Fig. 9. The schematic illustration of basic concept for e-skin and DNN architecture for reliable sensing. (a) 

A schematic elucidating the comparison between the human skin and the proposed e-skin; (b) The DNN 

architecture for tactile sensing [10]. 

The reported deep learning-based method enables the use of a sample of bulky sheet (40 × 40 mm
2
) pie-

zoresistive MWCNT-PDMS to play a role in the smart sensory devices (e.g., e-skin). The results show that 

the proposed e-skin based on deep learning obtained a 97.22% level of test ac-curacy for position recognition 

and had a reliable pressure estimation with a 3.12% RMSE and therefore approximated the capability of 

human skin. Furthermore, DNN-based e-skin showed high performance in pressure sensitivity and high 

spatial resolution (0.78 ± 0.44 mm) for position recognition. The great potential of this revolutionary concept 

could open a new era for many fields, not only for e-skin application but also high-end applications such 

flexible keyboard, sign language interpreting, touch panels, and diagnosis motility. 

4.1. EEG–EMG dataset 

Electromyography (EMG) is a method to record the electric manifestation of skeletal muscular activity. 

The information is captured using electrodes. The torque applied to the skeletal system joints due to muscle 

contraction leads to movement in the body. Muscles are composed of fibers that are innervated alpha motor 

neurons, which receive efferent neural drive descending from the central nervous system. A motor unit is 

made of motor neuron and all the muscle fibres which the neuron innervates. Each motor neuron controls a 

varying number of muscle fibers depending on different muscle types. This number is called the innveration 

ratio. Motor neuron depolarization propagates as a wave through axons from the spinal cord to muscle fibres 

to activate a motor unit. The propagating depolarization of the neuronal membrane can be recorded by elec-

trodes placed in the vicinity of the membrane, and such activity is called a motor neuron action potential 

(MUAP). When the MUAP reaches the neuromuscular junction (NMJ), special neurotransmitters are re-

leased from the axon to the muscle fibre membrane, which depolarizes the muscle fibers. And such fibre 

depolarization would, in turn, propagate from the NMJ, along with the fibre, toward the two tendons, to 

which the fibres are attached. This propagating depolarization can also be detected by electrodes place in its 

vicinity and is called muscle fibre action potential. 

The collective muscle fibre actional potentials from the same motor unit often appear to be a single ac-

tion potential because all fibres within the unit would be activated simultaneously. And this „collective‟ 

action potential is often called the motor unit action potential. One motor unit action potential is often re-

ferred to as a „firing‟ of a motor unit. The frequency of motor unit „firing‟, or the firing rate ranges from 4-6 

Hz (firings per second) to approximately 30-40 Hz. The above is a brief description of the electric process of 

muscular activation. 
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A mechanical process of muscular activation occurs simultaneously with this electric process. Upon the 

membrane depolarization, muscle fibres would shorten, resulting in mechanical contraction. The amount of 

contractile tension generated by the fibres differs among different types of muscle fibres. Furthermore, the 

overall contractile tension generated by a muscular contraction further depends on factors, such as how many 

motor units being activated. The motor unit action potential, being an electromagnetic signal, can be detected 

at the skin surface, usually by Ag/Ag-Cl electrodes with conducting gel. The gel helps to reduce impedance 

between the skin and electrode. For long-duration applications, a gel electrode system is not preferred; 

instead, dry electrodes made of a material such as stainless steel or conductive ceramics are used. Dry elec-

trodes often have higher noise levels due to higher electrode-skin impedance. 

In addition to the above described non-invasive measurement of EMG, also known as surface EMG 

(sEMG), EMG can also be measured by invasive electrodes, such as needles or fine wires that are transcuta-

neously inserted into the muscle under investigation. This latter method is called intramuscular EMG. Alt-

hough intramuscular EMG collectes muscle activity of individual muscle fibers, sEMG is more frequently 

used in disciplines outside neurophysiology, where these invasive methods are not practical due to problems 

such as electrode insertion, infection, and subject compliance. The sEMG signal contains two types of in-

formation, Time-Domain, and Frequency-Domain, which depend upon intensity and duration of muscle 

contraction, electrode-amplifier configuration, skin-electrode contact quality, and placement of electrode 

with respect to muscle. 

There are multiple sources of noise while acquiring EMG data, such as relative displacement between 

the recording electrode and the muscles under investigation, the movement of the electrode with respect to 

the skin, electromagnetic interferences due to power line, etc. This noise degrades the performance of the 

system and needed to be rectified before any processing.  

Multiple methods can be used to rectify these problems, such as filtering techniques like bandpass and 

stop, high and low pass filters. Noise such as power line noise and motion artifact can be largely removed 

with these techniques. 

4.2. EMG based Pattern Recognition  

Pattern recognition involves extracting knowledge and statistical information from the data to develop 

classification or regression capacity. It is a multi-stage process. The significant limitation of pattern recogni-

tion in EMG signals is low classification capacity due to high noise in the acquired data. Pattern recognition 

is the process of identifying characteristics of known data that can be utilized to perform classification or 

regression to unseen data. Often EMG applications follow a series of steps for classification, which involves 

filtering and pre-processing, feature extraction and reduction, model training, followed by real-time or off-

line classification. 

A sub-category of the bionic HMI is one that utilizes EMG, which is the recording of the electrical ac-

tivity of muscle recruitment. Compare to EEG, which is the recording of cortical neuron‟s electric activities 

and is usually in the range of microvolts, EMG is usually in millivolts, requires less sophisticated amplifica-

tion instrumentation, and is less susceptible to various noise and artifacts. Several HMI applications rely on 

EMG, for instance, full-body exoskeleton to increase user strength, gesture recognition, motionless gestures, 

and myoelectric control. Furthermore, EMG-based HMI in gaming is also used in rehabilitation and for user 

engagement and participation. Previous studies used EMG to measure engagement in the Levee Patroller 

game training, in myo-gaming, or EMG controlled game to test improvement in prosthesis control. This 

work was implemented using the WAY-EEG-GAL dataset, which is an open and free available EEG–EMG 

dataset.  

5. Electromyography methods 

Electrical activities of the skeletal muscles can be recorded by surface electrodes or needle electrodes. 

Needle electrodes are the clinical gold-standard method to evaluate individual motor units within a muscle. 

This approach, albeit invasive, provides detailed composition of the EMG signals and is advantageous for 

diagnosing medical conditions such as neuromuscular dystrophy or polymyositis. EMG measurement 

through surface electrodes, on the other hand, lack the measurement specificity but are popularly embraced 

for being non-invasive. The detection of EMG signals through adhesive electrodes on the skin surface have 
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been clinically beneficial in kinesiology studies of gait analysis and rehabilitation of prosthetic patients, as 

well as human-machine interface applications such as the control of robots and drones 

Upon arrival of the electrical impulse from the brain, the motor units quickly depolarize the cell mem-

brane space of their respective axon terminals, leading to a propagating action potential wave that travels 

across the muscle fibers. Since an activation impulse from the brain can recruit multiple motor units, all the 

resultant motor unit action potentials (MUAPs) become superposed as their electrical signals radiate though 

the muscle. The resultant electrical signal can be sensed on the skin by the surface electrodes, giving the 

characteristics EMG signal.  

The state-of-the-art methods used in the recognition of recurring patterns in EMG data streams. Pattern 

recognition usually has three stages: 1) Signal pre-processing: reduction of the influence of external noise 

sources and SNR improvement; 2) Feature extraction: determination of the gesture pattern predictors; 3) 

Classification. 

Rather than reading the electric potential on the motor nerves, an EMG electrode reads the electric po-

tential generated in the muscle fibers when they contract. An EMG electrode usually consists of a pair of 

poles aligned along the muscle fiber direction. There are also sensors with monopoles which measure the 

potential in respect to other reference electrodes. Monopoles have the advantage of allowing more flexible 

setups, since any two poles can be connected to obtain a reading. Bipolar electrodes are limited to specific 

electrode widths. The distance between each electrode pole and their diameter also have a significant influ-

ence on the EMG signal. 

The provenance of signals measured with sEMG electrodes is the potentials generated by muscle cells 

when excited by motor nerves, rather than the electric potentials within the nerves themselves. However, 

there is a strong correlation between these two potentials. The EMG potential reading is also correlated with 

the activation level of muscles and the force they generate. However, this relationship is nonlinear and diffi-

cult to model. sEMG signals have inherently low SNR, which means that they are very susceptible o envi-

ronmental noise. The first study describes methods to decrease the captured noise, signal artifacts and inter-

ferences in EMG recordings, as well as signal processing techniques for noise suppression (e.g. band-pass 

filtering, adaptive noise cancellation filters and filters based on the wavelet transform). sEMG electric poten-

tials are acquired with electrodes placed on the surface of the skin just above the target muscle, which is a 

non-invasive technique.  

A graphical representation of the forearm muscles is presented in Fig. 10. 

 

Fig. 10. Longitudinal and transverse representations of the forearm muscles [3] 

Universal protocols for EMG measurements are hard to define due to the diversity of applications and 

hardware configurations. However, general guidelines can be observed and have been predominantly docu-

mented in academic textbooks with minor cross-reference variations. It is generally accepted that prior to 

filtering and processing the superposed MUAPs, sEMG sensors should produce a raw signal ideally on a 

low-noise baseline, as seen in the example of Fig. 11(a) where three biceps brachii contractions were execut-

ed with a rest interval in between. The general analog process of EMG signal conditioning is illustrated by 

the flow chart in Fig. 11(c).  
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Fig. 11. a) An example of raw EMG signal recording of 3 contractions bursts of the Biceps Brachii; b) Two 

types of electrodes commonly used, wet and dry; c) Signal conditioning modules that amplify, filter, sample 

and display EMG for analysis [4] 

Bipolar electrodes coupled with a differential amplifier is the most commonly employed measurement 

arrangement [4]. With this technique, a pair of differential electrodes are placed along the length of muscle 

fiber, and a third reference electrode on an electrically neutral site. In contrast, monopolar recording consists 

of a single recording electrode and a reference electrode. Bipolar arrangement is typically more advanta-

geous since it offers common-mode electrical noise rejection and therefore higher SNR. The un-amplified 

EMG signal amplitudes measured on the skin are only a few microvolts to millivolts, therefore the signal is 

always amplified by a factor of at least 500 to 1000 to match input voltage ranges of commercially available 

analog-to-digital converters (ADCs). Input impedance of the amplifier is typically in the range of 1 – 10 

Megaohms. The frequency range of the EMG signal is a frequently adjusted parameter, typically performed 

by an analog bandpass filter to capture either the full range or selective region of the signal spectrum. sEMG 

signals typically have a frequency content ranging between 10 – 500 Hz, with dominant frequency power 

from 20 – 150 Hz depending on the skeletal muscle being measured.  

Before the EMG signal can be analyzed on a computer, it must be converted from an analog voltage to a 

digital format. This conversion process is typically performed through a 12-bit ADC with a dynamic range 

capable of capturing the full signal from noise floor to peak EMG amplitude. The ADC sampling rate must 

be sufficiently high to capture the full bandwidth of EMG frequencies, which according to the Nyquist 

Sampling Theorem is double the highest desirable frequency component. Literature reports vary widely on 

the selection of sampling frequency depending on the application, but typically range from 200 Hz to 2 kHz 

and beyond. 

Averaged baseline noise level is a good assessment of overall EMG signal quality and should not ex-

ceed 3-5 microvolts in a high-fidelity system. To obtain a high signal-to-noise (SNR) ratio, sufficient electri-

cal contact with the skin must be achieved. “Wet” adhesive electrodes incorporating silver and silver-

chloride (Ag/AgCl) metal is commonly recognized as the gold-standard (Fig. 11(b)). Dry electrodes made of 

non-liquid based conductive materials such as stainless steel have been explored for enhanced user comfort 

that is free from adhesives and gel residues. However, they are prone to interfacial slippage, which causes 

unpredictable changes to electrode position and contact resistance, increasing noise and it is the main chal-

lenge to universal adoption. 

Electromyography (EMG) is a valuable technique for studying human movement, evaluating mecha-

nisms involving neuromuscular physiology, and diagnosing neuromuscular disorders. However, there are 

many potential pitfalls in the use of EMG as a tool. The question that a researcher is asking may not be 

amenable to solution using EMG techniques. Furthermore, the interpretation of the EMG signal requires a 

thorough knowledge of the origin of the signal. The waveform of an EMG signal is frequently evaluated as 

an electrical signal; this is why its characteristics can be analyzed using conventional signal processing 

techniques. The source of an EMG signal is a single muscle fiber or group of fibers. The anatomical features 
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of an individual fiber and physiology of the whole muscle action potential formation are key to understand-

ing how to record, analyze, and interpret the EMG signal. 

While at rest, there is a potential gradient across the membrane of the muscle fiber. Inside the cell, there 

is the potential of about –90 mV with respect to the exterior of the cell. The potential difference is produced 

with different concentrations of sodium cations (Na+), potassium cations (K+), chlorine anions (Cl
–
), and 

other anions near the membrane. During the state of rest, the concentration of Na+ ions is relatively high on 

the outside of the cell membrane and relatively lower inside. On the other hand, the concentration of K
+
 ions 

is relatively low on the outside and higher inside the muscle fiber. Muscle fibers are excitable tissues. When 

the fiber is depolarized by a potential of about 10 mV or greater, the membrane potential reacts specifically 

and in a predictable manner to produce a response that is called the muscle fiber action potential or simply 

action potential. 

The action potential is generated through a neuromuscular joint and spreads along the muscle fiber in 

both directions relative to this joint. In the first phase of the action potential, the permeability of sodium 

cations grows and move into the cell, eventually reversing the polarity of the cell so that it temporarily 

reaches a positive potential – about +10 mV. When the migration of Na+ increases, then the membrane 

permeability for K
+
 is changed. They emerge on the outside, which eventually results in the potential return 

to the resting state. Described process of generation of action potential has been presented [6] in Fig. 12. 

  

(a)                                                          (b) 

 

(c) 
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Fig. 12. (a) The time course of muscle fiber action potential is mediated be changes in membrane permeabil-

ity to Na+ and K
+
 ions; (b) At different sites in the skin layers, incident light displays reflection, absorption, 

and scattering effects; (c) - (i) the lateral surface of the human cerebral cortex with the (a) precentral (i.e., 

the primary motor cortex) and (b) post-central (i.e., primary somatosensory cortex) regions highlighted in 

red and blue; and (ii) splices of these regions overlaid with representations from Penfield’s Homunculus 

A motor unit is described as a combination of a single motoneuron and all of the muscle fibers innervat-

ing by this motoneuron. All fibers that the motoneuron innervates are activated at the same time as when 

action potential appears on the motoneuron.  

The total activity of the muscle fibers of the same motor unit results in generation of motor unit action 

potential (MUAP). The signal amplitude of a motor unit is the super-position of all action potentials generat-

ed by the muscle fibers. This process is shown in Fig. 13. 

 

Fig. 13. The surface electromyogram as a composition of signals form all motor unit action potentials 

Bearing in mind that many individual muscle fibers are innervated by the same motoneuron in any mo-

tor unit, each of these fibers generate a discharge almost simultaneously. 

6. Surface electromyography HMI 

Surface electromyography (sEMG) is a non-invasive method of measuring neuromuscular potentials 

generated when the brain instructs the body to perform both fine and coarse locomotion. This technique has 

seen extensive investigation over the last two decades, with significant advances in both the hardware and 

signal processing methods used to collect and analyze sEMG signals. While early work focused mainly on 

medical applications, there has been growing interest in utilizing sEMG as a sensing modality to enable next-

generation, high-bandwidth, and natural human-machine interfaces. 

Since the dawn of the 1
st
 industrial revolution, we have sought effective modes of interaction with ma-

chines to help improve our efficiency and productivity. Early interaction with machines was dominated by 

simple mechanical actuators such as levers, ropes, and knobs which required significant human physicality. 

The advent of the Computer Age fundamentally transformed the way humans and machines interact, with the 

emphasis on physical interaction shifting to digital interaction. Blunt physical instruments were replaced by 

keyboard-controlled command line interfaces, mouse-navigated graphical user interfaces (GUI), and simple 

touch-based interfaces. Today, GUIs are ubiquitous in almost every sector of society, enabling flexibility of 

control parameters and input streams, while providing security and privacy features.  

The increasing complexity and flexibility of mechanized systems, however, has led to a corresponding 

increase in the complexity of these HMIs, leading to a strain on the cognitive workload of human workers. 

Exacerbating this, we are now entering into the 4th industrial revolution, where the fusion of artificial intelli-

gence (AI), robotics, Internet of Things (IoT), 3D printing, and other technologies are giving rise to a new 

age of cyber-physical connectivity, blurring the boundaries between digital, biological and the physical 

worlds. This explosion of linked devices and systems constantly increases the number of communication 

channels between humans and machines, challenging mental capacities and requiring the development of 

ever more sophisticated HMI technology. In an attempt to increase the bandwidth of HMI without placing 

increasing burden on humans to learn artificial controls, there has been a move towards creating a more 

natural form of interactions with machines, known as a Natural User Interface (NUI). 
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NUIs sense the user‟s body movements, voice inputs, and potentially even thoughts to create an experi-

ence where even a novice instantly feels like they have expert control. Physically, NUIs rely on unobtrusive 

sensors embedded either on a person or in their immediate environment. Inertial measurement units (IMU) 

embedded in a wristband or glove, for example, have been demonstrated to track hand gestures via motion of 

the fingers and hand. Video cameras are another common physical sensor employed, with real-time video 

analytics techniques demonstrated that can interpret physical movements and body language. IMUs and 

video analytics, however, are unable to fully capture the rich fine-grained and subtle motion of the human 

musculoskeletal system. Early use of sEMG required a simple hardware assembly: a few pairs of wet elec-

trodes, a signal conditioner and an analog-to-digital converter (Fig. 14(a)).  

 

(a)                                                                       (b) 

Fig. 14. a) Typical sEMG benchtop hardware setup to obtain gesture differentiating signals. (b) Control of 

aerial drone with 4 hand gestures enabled by sEMG benchtop system 

Early demonstrations often focused on simple hand gesture detection, such as binary “on” or “off” 

commands to interact with remote-controlled toys. For example, it was showed one pair of wet electrodes 

placed on the forearm anterior muscles to be sufficient in moving a toy car in the forward and backward 

direction. In a similar fashion, used five pairs of wet electrodes and benchtop electronics to control an aerial 

drone in four directions with four coarse but unique hand gestures (fist, wrist flex, wrist up, and ring finger 

flex) (Fig.14(b)). More complex hand and finger gestures detection have been widely demonstrated, while 

exploring different forearm electrode placements for optimal recognition accuracy. 

Surface electrodes of sEMG systems can take up large sensing area on the body, and the requirement for 

a gel or water-based interface further presents challenge to miniaturization. Even with dry electrodes, insuf-

ficient contact and skin impedances across different individuals under different conditions can result in 

varying degrees of noise levels. Tattoo-based electrodes have been shown as a promising candidate to over-

come these challenges. As the electrode size decreases, greater degree of contact can be achieved with the 

skin without exerting external pressure through Van der Waals forces to secure them in place. Furthermore, a 

smaller footprint allows more sensing electrodes to be included for highly refined measurement of biopoten-

tials from minor muscle fibers. One of the earliest works in this area was performed by Lapatki et al. in 2004, 

in which they constructed a thin, 2D multielectrode grid on a highly flexible polyimide material. After add-

ing silver-chloride coated copper as the electrodes on the grid, the resultant patch is only 470-micron thick 

and sits on a double-sided adhesive that allows easy attachment to the skin. sEMG measurement was con-

ducted by the group to show differentiable muscle activities on the face. Using a nonconductive and stretch-

able laminate (e.g. polydimethylsiloxane) as the base material, conducting metal such as copper or gold are 

either transferred or sputtered onto the laminate to serve as the electrodes and wiring traces. Additional 

laminate and etching process finalize the sandwich construct to expose only the electrodes to the skin (Fig. 

15(a)).  
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(a)                                                                                  (b) 

Fig. 15. a) Stretchable micron thick sEMG patches attached onto the forearm to record myoelectric activities 

as shown in b) during various grasping force exertions. Channel A – E are 5 separate EMG recording 

channels showing EMG signals with dashed pink line separating intervals 

Both research groups have demonstrated excellent sEMG signal quality and the ability to discriminate 

hand gestures with high accuracy (Fig. 15(b)). 

Ultimately, the success of sEMG as a ubiquitous NUI is limited by the simplicity, compactness, and 

comfortability of its physical form. To that end, there has been a significant amount of work reducing the 

size and complexity of these systems to facilitate end-user applications. An elastic armband is the most 

common form factor for its ease of on-and-off boarding, greater sensing coverage with circumferential 

measurement, and firm placement during hand motions. In addition to snug fit, a stand-alone, portable sEMG 

armband requires four main functional blocks: signal conditioning, signal processing, power supply, and data 

transmission. To date, there have been numerous research prototypes and commercialized versions of this 

type of device, such as those shown in Fig. 16. 

 

(a)                                             (b) 

Fig. 16. a) Forearm EMG armband capable of wireless gesture detection via onboard electronics; b) ArmIn 

armband employing sEMG sensor for keystroke detection 

In an interesting study, the stiffness command to a robot was derived in real-time from the measurement 

of 8 EMG channels from an operator's arm, Fig. 17. 
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Fig. 17. Diagram of a data acquisition system used to estimate the joint stiffness to be replicated by a robot 

during a tele-operation session 

Most research systems focus on recognizing individual gestures one at a time. After preprocessing, the 

traditional pipeline for gesture recognition via sEMG extracts a number of pre-chosen “features” which 

characterize the gesture in a much more compact way than the original signal, while still retaining the infor-

mation necessary for gesture recognition. In parallel, a gesture detection method is typically used to deter-

mine when the continuous signal contains a gesture. When a gesture is recognized, a classification method is 

used to determine which of the set of gestures it is. A typical system architecture is presented in Fig. 18. 

 

Fig. 18. One typical gesture recognition system architecture [6] 

[sEMG signals are collected, the frequency range of interest is selected via filtering or other preprocessing, 

and the signals are then digitally sampled. Features of interest (in this case Continuous Wavelet Transform 

coefficients) are calculated from the signals, and then a classifier (in this case a neural network) is applied 

to these features, outputting the probabilities of various gestures] 

It is important to note that sEMG signals vary widely from person to person, and can significantly differ 

even between the same user on different days. When a system is evaluated on a user who was not part of the 

training data, this is the “interuser” accuracy. When a system is evaluated on a known user who was part of 

the training data, but the device has been removed and re-placed on the user, this is the “intersession” accu-

racy. When some of the gesture repetitions from a user and session are used for training a system, and the 

system is evaluated on other repetitions from this user and session, this is the “intrasession” accuracy. The 

intrasession accuracy, intersession accuracy, and interuser accuracy form a hierarchy of increasing difficulty. 
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When comparing accuracy numbers from different authors on the same dataset, it is important to keep in 

mind which accuracy is being reported. One approach to achieving higher interuser accuracy is to “pre-train” 

the system on a large training set from multiple users, then to fine-tune the system on a limited training set 

from an individual user. 

In the case of EMG signals, there are several forms of structure available. EMG signals contain one-

time dimension, and one or two spatial dimensions (depending whether the electrodes are arranged linearly 

or in a grid). In the spatial dimension(s), networks commonly use convolutional layers, which learn features 

that are applied in a sliding-window fashion across the one or two spatial dimensions. In the time dimension, 

researchers have worked with recurrent layers, which learn features that read an input sequentially, “remem-

bering” some of the values it has seen. The most popular type of recurrent layer is the “Long Short-Term 

Memory” (LSTM) layer, which explicitly models the process of learning which values to “forget” [6]. Re-

searchers have also used convolutional layers to analyze time series data. Due to the physical mechanisms 

that generate sEMG signals, they are highly stochastic and historically it was generally accepted that the 

instantaneous value of an EMG signal was of little use.  

For example, existing gesture recognition methods using sEMG are largely based on a conventional pat-

tern recognition algorithms (such as support vector machine, hidden Markov model, etc. ) on sEMG feature 

space, i.e., the sequence of myoelectric signals of each channel often need to be transformed into a set of 

descriptive and discriminatory features extracted using a window of EMG data (or segment).  

Figure 19(a) shows a classical framework of gesture recognition using windowed sEMG. 

 

(a) 

 

(b) 

Fig. 19. (a) Schematic illustration of gesture recognition by windowing sEMG signals. MAV: mean absolute 

value. AR: auto-regressive coefficients. MNF: mean frequency; (b) The architecture of the deep learning 

network. Electrodes are placed in a square grid pattern, and the instantaneous sEMG signal amplitudes are 

then processed using networks originally designed for image processing applications [6, 7] 
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The optimal window length represents a compromise between classification error and controller delay in 

the field of assistive technology, physical rehabilitation and human computer interactions. However, on HD-

sEMG signals, which have two spatial dimensions, the spatial patterns in an instantaneous reading have been 

analyzed successfully with high accuracy via convolutional networks, using techniques from image recogni-

tion (see Fig. 19(b)).  

A similar architecture has also been used for analyzing sparse sEMG signals through an entire time 

window, using a 2-dimensional convolution that looks for patterns over both the time and space axes. One 

recent paper makes the natural extension to a 3-dimensional convolution over an HD-sEMG signal evolving 

through time. When LSTMs are used for time analysis, they are typically combined with convolutions, also 

in the time dimension. Most research uses convolutional layers for feature extraction, with LSTM layers 

being used to build the classifier, but there is limited evidence that the other order may work equivalently 

well. A similar architecture has also been used for analyzing sparse sEMG signals through an entire time 

window, using a 2-dimensional convolution that looks for patterns over both the time and space axes.  

As sEMG hardware and classification systems continue to provide higher accuracy at lower latencies, 

the overarching systems that map the outcome of these gestures to actions still needs to be fully investigated. 

To date, most systems use individual gestures with one-to-one control mappings, such as up/down/left/right 

to control a drone and are not truly a natural way to interact with a machine. Natural gesturing can take many 

forms and can have a diverse number of meanings depending on situational context. Incorporating context 

into an sEMG system and developing a system that can understand the language of natural human gesture is 

still a very open and exciting research area, and may be the ultimate hurdle to overcome before sEMG sys-

tems can be ubiquitously deployed as natural human-machine interfaces. 

7. EMG based Pattern Recognition  

Pattern recognition involves extracting knowledge and statistical information from the data to develop 

classification or regression capacity. It is a multi-stage process. The significant limitation of pattern recogni-

tion in EMG signals is low classification capacity due to high noise in the acquired data. Pattern recognition 

is the process of identifying characteristics of known data that can be utilized to perform classification or 

regression to unseen data. Often EMG applications follow a series of steps for classification, which involves 

filtering and pre-processing, feature extraction and reduction, model training, followed by real-time or off-

line classification. 

A sub-category of the bionic HMI is one that utilizes EMG, which is the recording of the electrical ac-

tivity of muscle recruitment. Compare to EEG, which is the recording of cortical neuron‟s electric activities 

and is usually in the range of microvolts, EMG is usually in millivolts, requires less sophisticated amplifica-

tion instrumentation, and is less susceptible to various noise and artifacts. Several HMI applications rely on 

EMG, for instance, full-body exoskeleton to increase user strength, gesture recognition, motionless gestures, 

and myoelectric control. Furthermore, EMG-based HMI in gaming is also used in rehabilitation and for user 

engagement and participation. Previous studies used EMG to measure engagement in the Levee Patroller 

game training, in myo-gaming, or EMG controlled game to test improvement in prosthesis control. This 

work was implemented using the WAY-EEG-GAL dataset, which is an open and free available EEG–EMG 

dataset.  

The dataset consists of EEG and EMG recordings, as well as 3D hand and object position measure-

ments. Twelve healthy right-handed subjects (8 females and 4 males, aged 19–35 years) were recorded using 

32 EEG channels located at Fp1, Fp2, F7, F3, Fz, F4, F8, FC5, FC1, FC2, FC6, T7, C3, Cz, C4, T8, TP9, 

CP5, CP1, CP2, CP6, TP10, P7, P3, Pz, P4, P8, PO9, O1, Oz, O2, PO10 according to the 10–20 international 

EEG placement system. Reference and ground electrodes were connected to FCz and AFz locations, respec-

tively. In addition, five EMG channels from the following muscles: 1. Anterior Deltoid (AD), 2. Brachiora-

dialis (B), 3. Flexor Figitorum (FD), 4. Common Extensor Digitorum (CED), and 5. First Dorsal Interosse-

ous (FDI). EEG signals were recorded with the ActiCap device at a sampling rate of 500 Hz. On the other 

hand, EMG signals were recorded using five sensors at a sampling frequency of 4 kHz.  

Figure 20 shows the experimental setup for the dataset acquisition. 
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Fig. 20. Experimental setup for data acquisition. A EMG based controller for a video game (up); A myoelec-

tric hand connected to participant’s hand with an open cast [7] 

Remark. Tactile HMI requires physical touch to something by users, which is considered as input to the 

system. Mouse and keyboards are examples of tactile HMI. The most popular technology of tactile HMI is 

touch screens, which we used in our mobile, tablet, and laptops. Recently, a pressure-based toggling mecha-

nism of buttons is used in mobile devices instead of the button‟s physical press. One application in medical 

practice is haptic feedback based surgical procedures. 

In the protocol, initially, there is a rest period of 2 seconds before starting the movement where subjects 

maintain the right upper limb leaning on a table, next, the subject receives a visual indication from a LED to 

start performing a reaching movement of the right hand toward an object. Then, the user grasps it with the 

index and thumb fingers; afterward lifts it and holds the object steadily within a circle that is about 5 cm 

from the table for 2 seconds until the LED turned off , and subsequently replacing the object and returns the 

upper limb to the position indicator, as shown in Fig. 1. Ten series of approximately 32 trials were recorded, 

for a total of 328 trials per participant in which the weight of the object (0:165, 0:330, 0:660 kg), the contact 

surface (sandpaper, chamois, silk), or both was changed. 

This study used 3 EEG channels (C3, Cz, and C4) and five EMG channels for calculating cortico-

muscular connectivity, following the international 10–20 system of EEG electrode placement and muscle 

location for EMG, as presented in Fig. 21. 
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Fig. 21. EEG electrodes layout following the international 10–20 system used in the original WAY-EEG-

GAL dataset and EMG electrode placement following the locations of five upper limb muscles [8] 

Data from two diff erent weights were used when the subject manipulated the object (0:165 and 0:660 

kg) where the contact surface was kept constant with sandpaper. Five series of weights were used where each 

series included 22 trials, for a total of 110 trials per participant. Finally, data were taken for each trial until 

the subject performed the task of replacing the object. 

After dataset integrity validation the methodology for EEG–EMG coherence analysis presented in 

Fig.22 was implemented. 

 

Fig. 22. Block diagram of the implemented methodology in this study to estimate cortico-muscular connec-

tivity between EEG and EMG signals during the movement of reach-grasp-lift-hold and replace an object 

First, the study is delimited using two weights and selecting subjects. After, artifacts are detected in the 

EEG signal, and channels are selected. Next, the signals are pre-processed using filters. After, the EEG and 

EMG signals are segmented by using a Hanning window of 1 second overlapped to 25% for calculating the 

coherence, which is represented using significant coherence values. 



Сетевое научное издание «Системный анализ в науке и образовании»           Выпуск №2, 2023 год 

 

87 

Connectivity analysis between EEG and EMG signals was calculated using the coherence algorithm, a 

measure of connection or correlation between two signals in the frequency domain that determines the 

strength of correlation in the range of 0–1 [6].  

Coherence was implemented to evaluate the connectivity between the electrical activity of the brain and 

muscles when performing an object manipulation movement. To calculate coherence, the frequency compo-

nents of EEG and EMG signals in the range 6 - 50 Hz were extracted by calculating the auto-spectrum and 

cross-spectrum using MATLAB (Version R2020b, MathWorks Inc). EEG and EMG signals were segmented 

by a 1 second Hanning window with 25% overlap at a frequency resolution of 2 Hz between 6 and 50 Hz for 

each trial and subject.  

Combinations between channels were obtained by relating the 3 EEG channels (C3, C4, Cz) with each 

EMG channel (5 Channels), which generate a total of 15 combinations between channels, as shown in 

Fig.22. 

Data were taken for each trial until the subject performed the task of replacing the object. First, obtained 

results of the data integrity validation were presented. Next, coherence between EEG and EMG signals was 

shown in frequency bands and upper-limb muscles involved and finally, the study is presented to demon-

strate which muscles are mostly in communication with the hemispheres of the motor cortex.  

Figure 23 presents the head maps for each analyzed weight using all trials and subjects spanning the 

frequency range 8 - 30 Hz from 2 - 8 seconds. 

 

Fig. 23. Power Spectral Density (PSD) for all EEG channels (32 channels) for both weights using all trials 

and subjects analyzed. PSD magnitude extends in the range (0 - 20) of magnitude expressed in the head map 

for the execution movement (2 - 8 seconds) in the 8 - 30 Hz frequency band [8] 

According to the Fig.20, the movement was distributed in all cortical cortex by the power decrease pre-

sented in the head map, where this eff ect could be presented by the movement complexity. Finally, the EEG 

channels chosen for the coherence analysis were C3; C4 and Cz due to the main location in the cortical-motor 

cortex. 

Significant diff erences in the movement of manipulation of an object with two diff erent weights were 

found by quantifying the connectivity of EEG and EMG signals. Specifically, significant diff erences were 

found of; a) coherence of C3 with Anterior Deltoid and Brachioradial muscles; b) coherence of Cz with 

Brachioradial muscle; c) coherence of C4 with Flexor Digitorum and Brachioradial muscles. Furthermore, 

the greatest coherence was found in the β band for the 3 EEG channels, which is in agreement with the 

results of previous studies. Those studies reported that subjects showed a peak in the coherence spectra 

between 15 – 30 Hz bandwidth during a hold task involving stable force production where the coherence 

between signals may be aff ected by the performance in the development of motor tasks. 
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EMG-EEG coherence is higher in the beta frequency band were demonstrated, individualized diff er-

ences in coherence have been found according to each muscle involved during the reaching and grasping 

movement, showing that the brachioradialis muscle is the most involved in the connectivity due to the 

significant diff erences found in the EEG channels. Additionally, it has been demonstrated how the EMG- 

EEG coherence could change depending on the force exerted to grasp an object of diff erent weight, and it 

has been determined which muscles are mostly in communication with each side of the cerebral hemi-

spheres. 

Coherence is significantly higher at a weight of 0:165 kg than at a weight of 0:660 kg for the α band in 

the C3, Cz and in α and β for the C4 channel. In addition, these diff erences are found in the C3-AD, C3-B, Cz-

B, Cz-CED, C4-B and C4-FD channel combinations. These results are of great importance in rehabilitation 

engineering applications because cortico-muscular connectivity can be used as a descriptor to improve the 

classification rates, usability, and control of prostheses based on BCI systems. In this case, the application of 

prostheses for weightlifting identification.  

As future studies proposed to evaluate other methods such as Granger Causality to establish connectivi-

ty and delay times between EEG and EMG information when performing other types of movements involved 

in activities of daily living. As well as using corticomuscular connectivity as a rehabilitation method for 

people with disabilities, for implementing computational methods based on connectivity to improve iden-

tification rates using techniques such as filter banks. 

8. Example: Hybrid EEG-EMG based brain computer interface (BCI) system 
for on-line robotic arm control  

Bio-signal based BCI systems are widely being used in healthcare systems and hence proven to be an 

effective tool in rehabilitation engineering to assist disabled people in improving their quality of life. Handi-

capped people with above hand amputee have been targeted and hence non-invasive EEG and EMG biosen-

sors are used to design wireless hybrid BCI system. The hybrid system is able to control real-time movement 

of robotic arm via combined effect of brain waves (attention and meditation mind states) and wrist muscles 

movements of healthy arm as command signal. The system operates the robotic arm within 3 degree of 

freedom (DOF) motion which corresponds to movement of shoulder (internal and external rotation), elbow 

(flexion and extension) and wrist (Gripper open and close) joint. It has been experimentally tested on 4 

subjects with upper limb amputee (having one healthy arm) after training period of one day. On receiving the 

input signals from EEG and EMG sensors, subjects have successfully controlled the movements of the 

robotic arm with accuracy of 70% to 90%. In order to validate the obtained results, a potentiometer has been 

fixed on robotic arm and angular motion of shoulder and elbow joint is recorded (actual motion) and com-

pared with results of the BCI system (required motion). The comparison shows high resemblance between 

actual and required motion which reflects the reliability of the system. In addition, apart from robotic proto-

type, its 2D modelled is also designed on visual studio. The presented preliminary experimental results show 

that the motorized prosthetic prototype movement due to mind and muscle control is in accordance with the 

2D modelled virtual arm permitting to improve its real-time adoption for rehabilitation. 

The BCI system aims to control the movement of targeted body area in the similar fashion as the normal 

body moves in response to the bio signals acquired from muscles and brain. The implemented BCI system 

uses patient‟s bio potentials (EEG and EMG signals) in simultaneous manner to control the movement of 

robotic arm.  

The first tactile feedback system reported for MIS is found in da Vinci surgical robots. The system con-

tains an end-effector, which comprises piezoresistive force sensor and pneumatic balloon both used for 

creating tactile feelings, and it is driven with a semiautomated control system during robotic surgery. The 

tactile feedback in the system was evaluated by 16 novices and 4 experts peg transfer tasks. During the 

experiments, the force of effectors was measured from three blocks, but only the middle set provided tactile 

feedback. Control system of the da Vinci surgical robot was equipped with digital signal processor which 

enables the system to process the voltage signal and accordingly, based on signal conditioning electronics, 

determined the inflation level corresponding to the input voltage as well as for the generated an output signal 

to affect the inflation. The signal was relayed to the pneumatic balloons mounted at the master control to 

provide the thumb and index finger with feedback, as shown in Fig. 24.  
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(a)                                                                  (b) 

Fig. 24. (a) Modified FlexiForce sensor mounted on the top and bottom jaws of the Cadiere grasper for the 

da Vinci System. (b) The balloon tactile displays were mounted directly onto the da Vinci master control for 

thumb and index finger [10] 

This system was the first complete tactile system known to be applied to commercial robotic surgical 

system; it is used to evaluate the direct tactile feedback in robotic surgery. Additionally, it has been adopted 

for various applications including prosthetics rehabilitation, surgical training, and robotic manipulation. 

The current features of cobots, such as flexible mechanical design, varying price, and safety features, are 

still lagging behind in the effectiveness of deployment for human care, where the requirements of cobots are 

stringent. For instance, during the field investigation of the cobot at a COVID-19 specific hospital in Fig. 24, 

there are many issues limiting the real implementation of cobots: 1) High-performance wireless communica-

tions; 2) Temperature and haptics sensing at the robot fingers and body parts; 3) Perception of patient‟s 

responses and affective state; 4) Usability and accuracy of the remote operation; 5) Robot self-disinfection; 

and 6) Self-learning for new tasks. For example, a cobot has been experimentally used to verify the potential 

application useful to combat the coronavirus disease outbreak during the COVID-19 pandemic. As demon-

strated in Fig.25 (a), in this field investigation, a cobot was installed on a mobile platform in an isolation 

ward and wirelessly controlled by a human operator through a wearable device in a remote-control center. 

Simple tasks that the telecobot can complete were validated, as shown in Fig. 25 (b), including the daily 

checkups of physical and mental conditions, remote operation of standard medical instruments, extensive 

disinfection of medical ward, and objects delivery for care recipients.  

 

(a)                                                                             (b) 

Fig. 25. The ongoing field tests of a dual-arm mobile cobot for patient-care applications at the Emergency 

Department of the First Affiliated Hospital of Zhejiang University, Hangzhou, China: (a) The teleoperation 

system consists of a mobile platform, a dual-arm cobot (YuMi, IRB14000), and a wearable motion capture 

device including a pair of data gloves to capture the finger motions for the teleoperation of grippers; (b) By 

leveraging the motion capture device, motion data collected from the upper limb of the healthcare worker 
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can be obtained, processed, and used to wirelessly control the robot arm remotely for delivering healthcare 

services [Ethical approval has been granted to the research team for the related research, which covers the 

human-subject related aspects and test of devices in hospital environment, where ethical principles are fully 

followed] 

Another urgent need is regulations on functional safety, privacy, and ethical issues because the existing 

ones are originated from traditional robot applications, and ward-care is not well addressed. 

Endowing robot skin with the stiffness-tuning capability by coupling sensors and actuators is an 

emerging research topic. By integrating inflatable actuators and force sensing units, proposed a soft robot 

skin with variable stiffness for safer HRC was proposed.  

As shown in Fig. 26, the skin can alter its stiffness without affecting the initial impedance of sensing 

units and the robotic motion of host robots. 

Thanks to the capability of stiffness modulation, their skin is capable of not only reducing the peak 

collision force but also extending the sensitivity of sensing units. They further generalized the design of the 

skin to an off-the-shelf cobot body. The stiffness-tuning capabilities of the above robot skin are actuated by 

the pneumatic power source and cannot cover the entire cobot body. The sensing function is also supplely 

narrowed down to contact force with limited spatial resolution. They are inherently limited by the original 

application-orientated codesign of sensing and actuation. Stiffness tuning has gained much attention with the 

development of soft robots and continuum robots, resulting in a diverse range of methods to achieve it. 

 

(a)                                                                                    (b) 

Fig. 26. Robot skin with the ability of stiffness tuning. (a) Illustration of the working principle of safety 

improvement by altering the stiffness of robot skin according to the predicted impact velocity or the limited 

peak impact force Ec is the elastic modulus of covering materials; (b) When the limited peak impact force is 

below 30 newtons, or the impact velocity is below 0.3 meters per second, the optimal stiffness is obtained by 

altering internal air pressure below 50 kilopascals [16] 

Therefore, the application scenarios of cobots are extending from traditional manufacturing to the ser-

vices sector. Cobots have the potential to deliver human care services in the future while equipping with 

demanded features, including safe collaboration, immersive teleoperation, and affective interaction. Robot 

skin tightly coupled with multimodal sensing and self-contained actuation may play an important role in 

addressing these features by improving cobot safety, giving intuitive feedback, providing natural interfaces. 

As a potential enabler, robot skin is expected to be capable of proximity sensing, pressure sensing, tempera-

ture sensing, sensory feedback, and stiffness tuning, which are required for directly powering fundamentals 

of sensing and actuation desired in demanded features. 
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Apart from the application in common robots, tactile sensor systems also have great potential applica-

tion value in micro/nanorobots for a variety of deep-sea exploration and biomedical applications. In virtual 

and augmented reality field, tactile sensors are also widely used. For example, a tactile sensor system used 

for real-time detection of eyeball vergence in virtual reality can treat the astigmatism of eyes at home.  

Using a skin-integrated wireless haptic interface, people can touch far-away relatives (Fig. 27A). Those 

with disabled upper limbs can regain the sense of touch with the help of a flexible sensor system (Fig. 27B). 

People who play fighting games may feel the virtual pain from the game (Fig.27C). In addition, a soft virtual 

reality glove integrating a pneumatic actuator with a piezoelectric tactile sensor can transmit the real stimulus 

to the users from virtual reality (Fig. 27D). 

 

Fig. 27. Applications in virtual and augmented reality of tactile sensing systems [12].  

[(A) The child touches grandmother on the screen and the grandmother wearing the VR devices on arm can 

feel the touch; (B) The man with disabled upper limbs has the sense of virtual touch with the help of the 

sensor system. (C) The man playing fighting games feels the virtual pain from the game; (D) The actual 

appearance of the virtual reality glove, and the man wearing the virtual reality glove can feel the real stimu-

lus from the virtual reality] 

The setup does not require the human operator to be in the same room as the patient. Therefore, it ena-

bles remote diagnostic procedures over a network. 

9. Solution based on EEG-EMG  

Telerobotics is a form of teleoperation in which a human operator behaves as a supervisor, intermittent-

ly communicating to a computer information about goals, assumptions, suggestions and orders suitable to a 

limited task, getting back information about raw sensory data, performances and difficulties and meanwhile 

the subordinate telerobot executes the task based on information received from the human operator and its 

own intelligence and artificial sensing. Robot development has always started from the model of the human 

body or from a part of it. That's why robotic arms know how to reproduce the movement of a human arm.  

This leads to the idea that, if the right sensors are used, a robotic arm can be controlled by the movements of 

a human arm (Fig. 28). 

Because the brain is the one who sends the motion control signals, we used 2 types of sensors to “read” 

the signals that are given by the brain. One type of sensors are EEGs that can read the brainwave signals of a 

particular intent of motion and can reproduce it in actions based on pre-set mental commands. 
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Fig. 28. Proposed solution block diagram for EEG-EMG control system [17] 

During the training of the mental command, it is necessary that the user maintains a high level of atten-

tion and focus over the mental action that it is supposed to learn because these two key factors correspond to 

chemical reactions over the brain that give a high level of beta brainwave on the frontal cortex that is respon-

sible, among many others, for conscious thoughts and imaginary actions formation presented in Fig. 28 as a 

result, from a real time recording session according to impose mental action, together with Emotiv BCI 

headset EEG signals quality at scalp level (Fig. 29). 

 

Fig. 29. 3D Brain Visualizer Emotiv Interface of beta brainwave activation for impose Lift mental action 

In order to create a neural network based on an EEG solution, it is not enough just to train it, which re-

quires, among other things, mapping each mental action to a predefined sequence of keystrokes to link the 

imagined movement to a robotic arm action. EEGLAB provides a programming environment that allows 

user to store, access, measure and manipulate the single-trial and/or averaged EEG data and display it hier-

archized according to the number of EEG communication channels provided by BCI equipment.Based on its 

functionality it can be represented (Fig. 30) the EEG signals distributions for each one of the five EEG 

channels provided by Emotiv Insight BCI headset corresponding to impose Lift mental action. 
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(a)                                                                           (b)  

Fig. 30. (a) EEGLAB EEG Signals Plot for impose Lift mental action; (b) EEGLAB Spectral Analysis for Lift 

mental task 

It is also able to provide a spectral analysis for every data channel using a trace of color for every par-

ticular area of the brain according to the power at a frequency between 6Hz and 22Hz, as can see in figure 6 

with parieto-temporal cortex predominance. 

Another type of sensors is EMG [8] used in combination with EEG sensors solution, principally due to 

the fact that it is too difficult to create a complex group of movements over a several servomotors in case of 

artificial arm brain control because of  the limited mental commands  that can be use at a time and also due 

to the absence of  the movement intention that it is given by brain over a particular group of muscles of the 

human arm. For this reason, the role of EMG sensors is to read the electrical signal sent by the brain to each 

muscle group to make a movement. With this type of command for the robotic arm, a remote control can be 

made when the robotic arm is in a dangerous environment and must perform certain movements that do not 

follow a particular pattern and have to make certain movements. In this case, the human operator places 

sensors on him and is positioned in a safe area where he can observe the movement area of the robotic arm. 

The robotic arm is tied to the control unit and does exactly the same movements as the human operator. 

Signals purchased through the Arduino prototyping system are used as input data for the neural network that 

had an initial training period. 

During the training period, sets of values acquired from the EMG (Fig. 31) and EEG (Fig.30) sensors 

were used as inputs in neural network together with signals taken from the IMU sensor to determine the 

position of the arm and are used as outputs of the network.  

 

Fig. 31. EMG signal aquisition 

Following the training of the network, the two types of EMG and EEG signals are used as inputs into 

the neural network (Fig. 32), and depending on them, the position of the robotic arm is determined. 



Сетевое научное издание «Системный анализ в науке и образовании»           Выпуск №2, 2023 год 

 

94 

 

Fig. 32. Neural network based on EEG-EMG solution 

IMU type signals are still displayed to see if the value displayed on the network output is roughly equal 

to the value still displayed by the IMU sensor. 

Another example of smart sensing involves using the human brain as the source of signals in [18-28] 

demonstrated. 

Conclusions 

The EEG-EMG-based solution enables the user to manipulate a large number of substances with high 

potential hazard only by using his own brain signals through a neural network and in a way that gives him 

the capacity to view the whole process from a safe distance. In this paper we have chosen to treat a complex 

EEG-EMG-based solution for the control of an artificial arm because only the results offered by motor 

imaginary solution are not satisfying excepting the fact that electroencephalogram signals present a lower 

amplitude in comparison with the EMG signals because of limited number of mental commands that can be 

accessed at the same time through the BCI interface and which must be combined with physical commands, 

such as facial gestures that can also be recognized and mapped to predefined sequences of keystrokes. This 

makes it impossible to generate sequences that involve complex movements on a group of servomotors in 

real time being necessary to record the motion intention generated by each group of muscles to replicate the 

movement of the human arm. The EEG solution is also useful in limitation of human error produced by 

mental workload due to the capacity of recognizing the mental states that produced by the drowsiness state 

signalized by the increase of blink rate. Also, the EMG solution together with IMU sensors offers the ad-

vantage of constantly knowing the position of the robotic arm making it predictable to be used in precision 

operations that imply the synchronizing movements with the human operator. 
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