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Introduction 

Let us consider the description of Quantum Fourier Transform (QFT). The universality of the QFT in 

forming the basis of quantum computing algorithms is considered. The unique universal fundamental proper-

ties of quantum computing concerning quantum superposition, entanglement and interference are all explicit-

ly represented in terms of quantum multiparticle interferometry [1-18]. 

The Universality of the Quantum Fourier Transform in Forming the Basis of 
Quantum Computing Algorithms 

The Quantum Fourier Transform (QFT) on the additive group of integers modulo 
m2  is defined by. 
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QFT plays a significant role in the development of the quantum computer (QC). One may note, for ex-

ample, that the potentially powerful integer factoring algorithm by P. Shor relies critically on the QFT for the 

detection of periodicity springing from the prime factors. 
We can further analyze (1) as follows. First, write  
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In the above factorization (or “untangling”), each factor is of the form 10 ie .  

Remark: Such a state can be produced in two steps: 

First, apply the transformation 




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1
H , where H is known as the Walsh-Hadamard trans-
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Remark: The RHSs are equal (apart from a normalization coefficient). Therefore, we see that the con-

stituents of the QFT are H and  P . From the quantum optics point of view, H is realized by a half-

silvered mirror (beam splitter) and  P  represents a phase shifter, as in a standard Mach-Zehnder interfer-

ometer.  

First, we wish to emphasize that the QFT strictly by itself is not universal in quantum computing (see 

Remark below). Thus, the question becomes whether the two constituents H and  P  of QFT are universal 

or not. We will discuss the following problem: 
“Any QC algorithm can be represented as a composition of Walsh-Hadamard transforms and associated conditional 

phase shifts.” 

Remark: The implication of this problem is that the realization of any QC algorithm translates into a 

combination of elementary quantum interferometric operations, i.e., single particle beam splitter (Walsh-

Hadamard transform) followed by a conditional phase shift. Any QC algorithm can thus be formulated, or 

reformulated, in terms of elementary multiparticle quantum interferometric operations. The unique universal 

fundamental properties of QC concerning quantum superposition, entanglement and interference are all 

explicitly represented in terms of quantum multiparticle interferometry (QMI). 

Remark. QMI practically is not to be taken as a proposed embodiment of a QC any more than the Turing 

machine is to be taken as a literal construction in classical computing. Rather, Ekert has suggested its equiva-

lence to QC in the sense of its universality, meaning that QMI could be viewed as the closest QC analogue of 

the classical Turning machine (through the universality theorem established in this appendix). This concept 

and viewpoint should provide physical insights into the operational aspects and can facilitate efficient design 

of a universal QC. 

Mathematical proof of the Universality of H and P(.) 

As usual, we let  nU  to denote the unitary group on n-dimensional space. By abuse of notation, we re-

gard 
 nU

 the same as the multiplicative group of all nn   orthogonal matrices. 

 nSO  denotes the orthogonal group on n-dimensional spaces or, equally, the multiplicative group of all 

nn   orthogonal  matrices. We also define the maximal tours  nT  in  nU  as  

    1

1 2 2,..., , ,...,nii
T n diag e e

    
, 

i.e.,  nT  consists of all nn   diagonal matrices whose diagonal entries are complex numbers of unit mag-

nitude.  nT  is a subgroup of the multiplicative group  nU . 

Let A  be a collection of nn   unitary matrices. We will use  ng A  to denote the unitary subgroup of 

 nU  generated by A, i.e.,  

    ,ng A G G is a subgroup of U n A G  



   

We will write  ng A simply as  g A if the value of n is clear from the context.  

We begin with 2n  .  

Lemma: We have       2 2 , 2U g SO T , i.e.,  2U  is generated by  2SO  and  2T ; more 

precisely, for every  2A U , we have  
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for some , , , .     

Lemma:     2 , .T g H P   

Proof. We first note that the NOT-gate 









01

10
X  can be obtained as 

  .HHPX   

 

Therefore   , .X g H P   From this, we have 

 

    ,
0

0

0

01

01

10

0

01

01

10

2

1

21
21 


















































i

i

ii
e

e

ee
XPXP  

 

for any given 
1 2, .    Therefore   ,g H P   contains the maximal torus  .2T  

 

Lemma     2 , .SO g H P   

Proof. For each rotation matrix 

  ,
cossin

sincos















R  

we easily verify that 

      .
22























 HPXPHPPR  

Theorem: 
    , 2 .g H P U 

 

Proof. This follows immediately from Lemmas. 

Decomposition Procedure of General Finite Dimensional Unitary Transfor-
mations into a Product of Plane Unitary Transformations 
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  ,pqT  is just a plane unitary transformation acting non-travially only on states p and q. 
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Similarly, we can find 1,3,2, ,,, nnnnn TTT   such that 
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At this point, it should already be clear that  nU 2  can be generated through controlled-U(2) gates, for 

any n = 1,2,…. Let us give the following concise, rigorous treatment as to how to construct any  nUV 2  

from a serial connection of a collection of unitary matrices ,ijV  where each ijV  is a (generalized) controlled-

U(2) gate. The precise statement is given below. 
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For a collection of matrices  n

ij UV 2  such that  

  






















.120

,,,12,1,0

,:

n

n

ij

ijijij

ij

jmimmmspanS

tiontransformaidentitytheisSSV

                  (3) 

In other words, each  nUV 2  is a product of (generalized) controlled-U(2) unitary matrices ,ijV  

which acts nontrivially only on  ., jispanSij 


 

Proof. We first quote the following fact (see above). For any  nUV 2 , there exists a collection of 

unitary matrices ,120,,  n

ji ijT  and a  nTD 2  such that ,
12

1

1

0

, DTV

n

i

i

j

ji 












 









 

where    nn

ji USOT 22,   is a rotation involving i  and j  and satisfying the above mentioned condi-

tion. Now we can break up D into 

1221

12

1

0



























 n

n

DDD

d

d

d

D 


 

where 

























1

1

0

0

1

0

1



d

d

D  and 

























1

1





ii dD

 

for .12,,3,2 
ni   It is easy to see that 1D  acts trivially except on 0  and 1 , and the other 

iD ’s act 

non-trivially only on i . In addition, iD ’s commute with each other, and each iD  commutes with 

iklT lk 0,,
 as well.  

Thus, 

12210,10,21,20,2232,220,1222,12 
 nnnnnnn DDDTTTTTTTV   



















10,1

20,21,2

220,2232,22

120,1232,2222,12

DT

DTT

DTT

DTTT

nnnn

nnnnnn







12 n
 

strings of products. For 120  nij , define 










.0

,0

0,,

,

jifDTDT

jifT
V

iiiji

ji

ij  
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Therefore we have reached 









12

1

1

0

n

i

i

j

ijVV , where each 
ijV  is a unitary matrix which acts nontrivially 

only on the states i  and j  satisfying  the above mentioned expression. 

Remark. The factoring of D into the product of ,, 21 DD  and 
12 nD  in the presented forms is peculiar 

in the sense that 1D  is chosen differently from the other 
iD ’s, .1i  It must be done this way. The reason 

for this is that there are 12 n
 strings of products as indicated above. Therefore D must be factorized to have 

12 n
 factors ,,,,

1221 nDDD   in the unique way. 

Remark. Now it can be readily seen that the QFT itself is not universal in the sense that  nU 2  is not 

generated by nF
2

(cf., with case nm   therein) or (generalized) controlled- mF
2

 (where nm  ) operations. 

First, check :1n  we see that 
22

FF n   is actually the Walsh-Hadamard transform H (apart from the 

normalization factor 2/1 ). Therefore, the phase shifts  P  in (2) cannot be generated by 2F  because 

 P  has eignevalues 1 and 
ie  while H has eignevalues 1 and –1. For a general positive integer n, the 

range of nF
2

 or of controlled- ,,
2

nmF m   consists at most of linear combinations of states of the form 

      
,1

.0.0.02 1211

n

yaayaayai
yye nnnn  

 where  ,1,0, jj ya  for .,,2,1 nj   

The phases of such states are not even dense with respect to all possible phases 
ie2

, .20    

Remarks on Circuits. The decomposition (3) is a mathematical rendering of above mentioned statement 

and answers the conjecture affirmatively. 

Each factor ijV  in (3) satisfies (4) and thus ijV  acts nontrivially only on the states i  and .j  Denote 

the restriction of ijV  to the 2-dimensional subspace  ,ij span i j    by .ijV  Then  .2ˆ UVij   Each ijV  

is not a standard  1
ˆ

n ijV  gate is the sense that the controls are states rather than bits. 

Nevertheless, point out how to rearrange basis states with a “gray code connecting state i  to state 

j ” such that ijV  becomes unitarily equivalent to  1
ˆ .n ijV  In this sense, ijV  are generalized controlled-

ijV̂  gates. 

Proposition. The symmetric group nS
2

 of permutations on the symbols 0,1,2,…,2
n

-1 is generated by 

the 2-cycle  12,22  nn
 and the 2

n
-cycle  .12,...,2,1,0 n

 

Proof. This is a basic fact of group theory. 

Incidentally, we note that the 2-cycle  12,22  nn
 is a permutation between the states 

bitsn

0111  and 


bitsn

111  and thus can be realized by the controlled-NOT gate with the nth qubit as the target bit and the first 

 1n  bits as the control bits as shown in Fig. 1. 
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Figure 1: The n -bit controlled-NOT gate 

On the other hand, the 2
n

-cycle  12,...,2,1,0 n

 makes the rotation of the states 

,0122210  nn
 i.e., the 

nxx 2mod1
 operation. This can be imple-

mented by the circuit as shown in Fig. 2. 

 

Figure 2. This circuit implements the operation 1mod 2nx x   or, equivalently, the 2n  -cycle (0, 1, 2, 

. . . , 2n . 1) in Proposition. Note that the bit 1  at the bottom of the figure is the “scratch bit” which is 

sometimes omitted in circuit drawing. All the gates in this circuit are controlled-NOT gates 

Therefore, any permutation of the basis states ,12,,2,1,0,  nxx  can be realized by finitely many 

controlled-NOT operations consisting of circuits as shown in Figs 1 and 2. 

Thus, each factor ijV  in (2) can be realized by the circuit as shown in Fig. 3. 

 

Figure 3: The unitary matrix 
ijV  as a controlled- ˆ

ijV  gate where ˆ (2)ijV U . The operations  , 2 2ni   and 

j, 2n . 2) in the two boxes are cyclic permutations (which can be realized by concatenations of circuits in 

Figs 2 and 3 
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By concatenating together all the blocks 
ijV  as shown in Fig. 2 according to the factorization (2), we 

have constructed all  nUV 2  with controlled-
ijV̂  gates according to (2). Each  n

ij UV 2ˆ   is then further 

formed from concatenations of the gates    2, UPH   according to corresponding Theorem. It is in this 

sense that we have the universality of the Walsh-Hadamard gate H and the phase shift gate  P  and, conse-

quently, that of the QFT with the affirmative answer to the above question. 

Example: Another Way to Perform the Quantum Fourier Transform in Linear Parallel Time. Shor’s 

factoring algorithm suggests that quantum computers can do things in polynomial time that classical 

computers cannot. However, since decoherence due to storage errors is a function of time, we should also 

ask to what extent we can parallelize quantum algorithms; if we can do many quantum operations at once, 

rather than serially, we can solve larger problems before our computer decoherens.  

Consider a quantum circuit operating on a set of qubits, containing one-qubit gates (2 2 unitary 

matrices) and the two-qubit controlled-not-gate; these are universal for quantum computation. We can define 

the depth of this circuit as the number of layers, where each layer consists of gates operating on mutually 

disjoint sets of qubits; that is, each qubit interacts with at most one other qubit at time. (In a model of 

quantum computation where one qubit can simultaneously interact with several others, we could allow gates 

operating on the same qubit in the same level, as long as these gates all mutually commute.) 

The heart of Shor’s algorithm is the Quantum Fourier Transform. If we represent n-digit numbers a  

with n qubits, the QFT maps a  to be

n

n

b

iabn







12

0

2/22/2 
. 

We exhibit a circuit with depth  nO  for performing the QFT.  

Griffiths and Niu have already done this, in fact in a more natural way. 

We exhibit a quantum circuit that performs the QFT on n qubits in  nO  depth. Thus, a parallel 

quantum computer can carry out the QFT in linear time. Griffiths and Niu have already shown this. We also 

speculate as to whether the QFT might be in the class QNC of problems solvable in logarithmic parallel time. 

The standard quantum algorithm for the QFT takes   2/1nn  gates. One way to construct it is to 

reshuffle the rows of the matrix by putting the digits of the input in reverse order. Then for n=3, for instance, 

we have 

 

 















































4/4/34/54/7

4/54/74/4/3

4/34/4/74/5

4/74/54/34/

11

11

11

11

1111

1111

11111111

11111111

iiii

iiii

iiii

iiii

eieeie

eieeie

eieeie

eieeie

iiii

iiii








 

where we are suppressing a factor of 
2/32
. 

If we call this F(3), we immediately notice that its upper-left and upper-right quadrants are 

























ii

ii

11

11

1111

1111
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which is simply F(2). The lower-left and lower-right quadrants of F(3) are F(2) and –F(2), with a series of 

phase shifts applied to the columns; this can be expressed by multiplying on the right by the matrix 



















4/3

4/

1

i

i

e

i

e





 

which we will call M. In general, we can write 
 

 

 1nF  

 

= 








 FMFM

FF

2

1
 

  

= 


























11

11

2

11

MF

F
 

 

We recognize this as the circuit for F(n) applied to the n least significant qubits, followed by a gate 

where the most significant qubit controls whether or not to apply the phase shifts M , followed by the 

Hadamard operator 











11

11

2

1
H  applied to the most significant qubit. 

Finally, note that M is simply a tensor product of independent one-qubit operations 



























8/4/

111
ii eei

M


 

Then the controlled-M gate becomes a series of controlled phase-shift gates 


















































4/

1

1

1

1

1

1

1

iei

M


 

These gates are symmetric, in that the “controlled” and “controlling” qubits are interchangeable. Putting 

all this together gives us the recursive construction.  

To what extent can this circuit be parallelized?  

Even though all the phase shift gates within a given pair of H’s commute with each other, we can’t 

perform them simultaneously unless we can couple one qubit to multiple qubits at the same time, and they 

don’t commute with the H preceding them. Thus, it would appear that all O(n
2

) gates have to be applied in 

series. 

However, we can turn this circuit onto one where most of the gates commute, so that many can be 

performed simultaneously, in the following way. Note that H is its own inverse. Conjugating a phase shift 

gate with H gives 

H
e

H
i 









1
 

 

= 





















ii

ii

ee

ee

11

11

2

1
 

Call this matrix R  . Then if we pass the H operators through the phase shifts to the right, we get the 

circuit, where the controlled phase-shift gates have been replaced by controlled-R   gates. 

Now note that two controlled- R gates commute in every case except when the ‘control’ of one is the 

‘controlled’ qubit of the other. Formally, if ijR is a controlled- R  gate with qubit I controlling qubit j, then 

ijR  and klR  commute unless j=k or i=l. We can perform commuting gates simultaneously, as long as we 
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respect the ordering between pairs of this kind. Adding the constraint that each qubit only interact with one 

other in each layer gives the circuit with the depth 22 n , linear in n. 

It is easy to show that 22 n  is the minimal depth for this set of gates. We have one gate 
ijR  for every 

pair i <j, and 
ijR  must be performed after 

jkR . Therefore, two gates 
ijR  and 

klR  cannot be in the same 

layer if i < j < k < l, since 
jkR  has to precede 

ijR  but follow 
klR . This means that the 1n  gates 

ijR  where 

1 ij  must all be in separate levels; since each qubit can only interact with one gate per layer, the 2n  

gates 
ijR  where 2 ij  also need their own layers. Adding this to a final layer of H’s gives depth 22 n . 

Remark. Of course, this does not mean that a different set of gates couldn’t solve the QFT more 

efficiently. It would be especially nice if the QFT could be accomplished by a quantum circuit with depth 

O(log n). This would put it in QNC
1
, the quantum analog of the class NC

1
 of problems solvable in 

logarithmic time by a parallel computer. We would also add the requirement that only a polynomial number 

of ‘ancilla’ qubits be used, corresponding to a polynomial number of processors. 

How would this be done?  

Each qubit controls and receives phase shifts on and from  nO  other qubits. We can easily ‘fan out’ 

 nO  copies of each controlling qubit with a reversible circuit of depth O(log n) consisting  of controlled-not 

gates. Classically, we could ‘fan in’ n phase shifts on a given qubit in depth O(log n) by composing them in 

pairs.  

However, it does not seem to be so easy to combine quantum gates in this way. We need some 

representation of phases so that they can be added in pairs with a linear, unitary operator. 

In one case, a quantum circuit can be parallelized by re-writing its gates, and lumping them into 

mutually commuting groups that can be performed simultaneously. 

Toffoli and Control-NOT in universal quantum computation.  

A set of quantum gates G (also called a basis) is said to be universal for quantum computation if any 

unitary operator can be approximated with arbitrary precision by a circuit involving only those gates (called 

a G-circuit). Since complex numbers do not help in quantum computation, we also call a set of real gates 

universal if it approximates arbitrary real orthogonal operators. 

Which set of gates is universal for quantum computation?  

This basic question is important both in understanding the power of quantum computing and in the 

physical implementations of quantum computers, and has been studied extensively.  

Examples of universal bases are: (1) Toffoli, Hadamard, and 
4


gate, due to Kitaev; (2) CNOT, 

Hadamard, and 
8


gate, due to Boykin, Mor, Pulver, Roychowdhury, and Vatan; and (3) CNOT plus the 

set of all single-qubit gate, due to Barenco, Bennett, Cleve, DiVincenzo, Margolus, Shor, Sleator, Smolin, 

and Weinfurter. 

Another basic question in understanding quantum computation is:  

Where does the power of quantum computing come from? 

Motivated by this question, we rephrase the universality question as follows:  

Suppose a set of gates G already contains universal classical gates, and thus can do universal classical 

computation, what additional quantum gate(s) does it need to do universal quantum computation? Are there 

some gates that are more “quantum” than some others in brining more computational power?  

What additional gates are needed for a set of classical universal gates to do universal quantum 

computation? We answer this question by proving that any single-qubit real gate suffices, except those that 

preserve the computational basis. 
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The result of Gottesman and Knill implies that any quantum circuit involving only the Control-NOT and 

Hadamard gates can be efficiently simulated by a classical circuit. In contrast, Control-NOT plus any single-

qubit real gate that does not preserve the computational basis and is not Hadamard (or its alike) are universal 

for quantum computing. 

Previously only a “generic” gate, namely a rotation by an angle incommensurate with  , is known to 

be sufficient in both problems, if only one single-qubit gate is added. 

Without loss of generality, we assume that G contains the Toffoli gate, since it is universal for classical 

computation. The above three examples of universal bases provide some answers to this question. It is clear 

that we need at least one additional gate that does not preserve the computational basis. Let us call such a 

gate basis changing. The main result is that essentially the basis-changing condition is the only condition we 

need: 

Theorem: The Toffoli gate and any basis-changing single-qubit real gate are universal for quantum 

computing. 

Remark. The beautiful Gottesman-Knill Theorem implies that any circuit involving CNOT and 

Hadamard only can be simulated efficiently by a classical circuit. It is natural to ask what if Hadamard is 

replaced by some other gate. We know that if this replacement R is a rotation by an irrational (in degrees) 

angle, then R itself generates a dense subset of all rotations, and thus is universal together with CNOT, by 

Barenco et al. What if the replacement is a rotation of rational angles? We show that Hadamard and its alike 

are the only exceptions for a basis-changing single-qubit real gate, in conjunction with CNOT, to be 

universal. 

Theorem: Let T be a single-qubit real gate and 
2T  does not preserve the computational basis. Then 

 TCNOT ,  is universal for quantum computing. 

A basis is said to be complete if it generates a dense subgroup of  kU  modular a phase, or  kO  for 

some 2k . Each of the two bases in the above theorems gives rise to a complete basis. By the fundamental 

theorem of Kitaev and Solovay, any complete basis can efficiently approximate any gate (modular a phase), 

or real gate if the basis is real. Therefore, any real gate can be approximated with precision   using 

polylog  

1  gates from either basis, and any circuit over any basis can be simulated with little blow-up in the 

size. 

We also provide an alternative prove for Theorem by directly constructing the approximation circuit for 

an arbitrary real single-qubit gate, instead of using Kitaev-Solovay theorem. The drawback of this 

construction is that the approximation is polynomial in 

1 ; however, it is conceptually simpler, and uses 

some new idea that does not seem to have appeared before (for example, in the approximation for Control-

sign-flip). 

There is a broader concept of universality based on computations on encoded qubits, that is, fault-

tolerant quantum computing. 

Preliminary. Denote the set  n,,2,1   by  n . The (pure) state of a quantum system is a unit vector in 

its state space. The state space of one quantum bit, or qubit, is the two dimensional complex Hilbert space, 

denoted by H. A pre-chosen orthonormal basis of H is called the computational basis and is denoted by 

 .1,0  

The state space of a set of n qubits is the tensor product of the state space of each qubit, and the 

computational basis is denoted by  

  .1,0: 2121

n

nn bbbbbbbb    

A gate is a unitary operator  ,rHU   for some integer .0r  For an ordered subset A of a set of n 

qubits, we write  A  to denote applying  to the state space of those qubits. A set of gates is also called a 

basis. A quantum circuit over a basis G, or a G circuit, on n qubits and of size m is a sequence 
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     ,,,, 2211 mm AAA   where each Gi   and  .nAi  . Sometimes we use the same notation for 

a circuit and for the unitary operator that it defines. 

Definition: The operator 
rr HH 

:  is approximated by the operator 
NN HH  :

~
  using 

the ancilla state 
rNH   if, for arbitrary vector 

rH  ,  

  .
~

    

Let G be a basis. A G-ancilla state, or an ancilla state when G is understood, of l qubits is a state bA , 

for some G-curcuit A and some   .1,0
l

b  A basis G is set to be universal for quantum computing if any gate 

(modular a phase), or any real gate when each gate in G is real, can be approximated with arbitrary 

precisions by G-circuits using G-ancillae. By a phase, we mean the set   exp : .i    The basis is set 

to be complete if it generates a dense subgroup of  kU  modular a phase, or  kO  when its real for some 

2k . A complete basis is clearly universal. 

We introduce the standard notations for some gates we shall use later. Denote the identity operator on H 

by I. We often identify a unitary operator by its action on the computational basis. The Pauli operators 
x  

and ,z  and the Hadamard gate H are 

.
11

11

2

1
:,

10

01
:,

01

10
: 






























 Hzx   

Example: If   is a gate on r qubits, for some 0r  (when 0r ,   is a phase factor),  k  is the 

gate on rk   qubits that applies   to the last r qubits if and only if the first k qubits are in .1
k

 The 

superscript k is omitted if .1k  Changing the control condition to be ,0
k

 we obtain  k .  

The Toffoli gate is  ,2 x  and CNOT is  .x .  Evidently the latter can be realized by the former. 

From now on we only consider real gates. A gate g is said to be basis-changing if it does not preserve the 

computational basis. 

Completeness proofs.We will introduce the proof of the following theorems, from which Theorem 2 and 

Theorem 1 follow immediately. 

Theorem. Let S be any single-qubit real gate that is basis-changing after squaring.  

Then  SCNOT ,  is complete. 

Theorem. The set   Hx ,2   is complete. 

We need the following two lemmas, which fortunately have been proved. 

Lemma (Wlodarski). If   is nit an integer multiple of ,4/  and ,coscos 2   then either   or   

is an irrational multiple of  . 

Lemma (Kitaev). Let M be a Hilbert space of dimension 3 , M a unit vector, and  MSOH   

be the stabilizer of the subspace   . If  MOV   does not preserve   1, H V HV 
 generates 

a dense subgroup of SO(M). 

Proof of Theorem. Define     .2,1:
2xSS  It suffices to prove that   and  x  generate a 

dense subgroup of SO(4). Without loss of generality, we assume that   is a rotation by an angle  , the 

other case can be proved similarly. The by the assumption,  is not an integer multiple of 4/ . 

Direct calculation shows that   has eigenvalues   ,exp,1,1 i where 
22arccos cos   
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The two eigenvectors with eigenvalue 1 are  ,11100100
2

1
:1   and 

   .10
2

cos
10

2

sin
:2 


  

Let   4: ii  be a set of orthonormal vectors. 

By Lemma  is incommensurate with  , therefore,  generates a dense subgroup of 

  .4,: 31 spanSOH   Note that   2,1x  preserve ,1 but not span  2 . Therefore, by Lemma 

the set       2,12,1 11

xx HH    generates a dense subgroup of    ,:4,3,2: 2HispanSO i   thus 

so does    .2,1, x  Finally, observe that   1,2x  does not preserve span  ,1 therefore, apply 

Lemma  again we conclude that       1,2,2,1, xx    generates a dense subgroup of   4SO . 

Proof of Theorem. Define     .3,2,1:
22 xHHH  Direct calculation shows that  has 

eigenvalue 1 with multiplicity 6, and the other two eigenvalues  ,exp:  i  where .arccos
4
3  

Since  are roots of the irreducible polynomial ,1
2

32    which is not integral, therefore  are not 

algebraic integers. Thus  is incommensurate with  , which implies that  generates a dense subgroups of 

the irritations over the corresponding eigenspace (denote the eigenvectors by 7 and 8 ). By direct 

calculation, the eigenvectors correspond to eigenvalue 1 are:  

 .101011,111110101,011001,100,010,000   

Label the above eigenvectors by  .6, ii  It is easy to verify that each  ,6, ii constructed below 

preserves  ,1: ijj  but not span  i . 

,:1 HII      ,1,3,2: 1

2

12   x  

   ,2,3,1: 1

2

13   x    ,1,3,2: 2

4

x  

   ,1,3,2: 1

2

15   x    .2,3,1: 2

6

x  

Applying Lemma several times, we see that  61 ,,,,  ii  generates a dense subgroup of span 

 .8:  jij Thus   Hx2  generates a dense subgroup of SO(8). We leave the details for the 

interested leaders. 

Example: Alternative proof for Theorem. Fix the arbitrary basis-changing real single-qubit gate S, and 

the basis   .,: 2 xSB  . We give an explicit construction to approximate an arbitrary real gate using the 

basis B. Due to the following result by Barenco et al., we need only consider approximating single-qubit real 

gates: 

Proposition (Barenco et al.). Any gate on r qubits can be realized by  rrO 42
 CNOT and single-qubit 

gates. 

Fix any arbitrary single-qubit gate W that we would like to approximate. Without loss of generality, we 

can assume that S and W are rotations, for otherwise 
x S and 

x W are. For any  ,2,0   define 

cos sin
: cos 0 sin 1 : .

sin cos
and 

 
  

 

 
    

 
 

Let  ,2,0,   and  not an integral multiple of ,2/ be such that S   and W . The follow-

ing proposition can be easily checked. 
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Proposition. Let W
2/ be a gate on 1k qubits that W .00 2/

1

2/

kk 
   With 

     1 †

/ 2 / 2: 1 1 ,k zW W W        (4) 

for any vector ,H  

  .00
kk

W


    (5) 

Clearly  11  k
can be realized by  x2 and .z  Therefore, to approximate , it suffices to 

approximate 
z and W ,2/ which we will show in the following subsections.  

Define the constants .
cos

1
log/1:,,

sincos

1
log/1:

244 



  


 and  

Approximating 
z . If  is a multiple of ,4/ say ,4/  then we can easily do a sign-flip by 

applying a bit-flip on .101
2

1

2

1 
  But for a general 1cos0sin1,     is 

“biased”. Immediately comes into mind is the well-known idea of von Neumann on how to approximate a 

fair coin by tossing a sequence of coins of identical bias. That is, toss two coins, declare “0” if the outcomes 

are “01”, declare “1” if the outcomes are “10”, and continue the process otherwise. To illustrate the idea, 

consider  

  .10sin01cos0011cossin10 22    

If we switch 00 and 11  and leave the other two base vectors unchanged, the first term on the right-

hand side changes the sign, while the remaining two terms are unchanged. While we continue tossing pairs 

of “quantum coins” and do the 00 -and- 11 switch, we approximate the sign-flip very quickly.  

The state defined below will serve the role of 01
2

1

2

1  . 

Definition. For any integer ,0k the phase ancilla of size k is the state 

  .10:
k

k


    

Clearly k can be prepared from 
k2

0


by B-circuit of size  .kO  

Lemma. The operator 
z can be approximated with precision , for any 0 , by a B-circuit of size 

 kO , using the phase ancilla ,k for some integer  .log 1
Ok   

Proof. Let k be an integer to be determined later. The following algorithm is a description of a circuit 

approximating 
z using .k  

Algorithm 1 

A B-circuit 
z~ approximating 

z using the phase ancilla .k  

Let bb 0 be a computational base vector, where  1,00 b is the qubit to which 
z is to applied, 

and   k

kkbbbbbbb
2

2211 1,0  are the ancilla qubits. Condition on 
0b (that is, if ,00 b do nothing, 

otherwise do the following), 

Case 1: There is no I that ,ii bb  do nothing. 

Case 2: Let I be the smallest index such that ,0 ii bb flip ib and .ib  
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Clearly the above algorithm can be carried out by  kO applications of Toffoli. Fix an arbitrary unit 

vector .H  Since neither 
z nor 

z~ changes  ,00 k  

     .1~1~
k

z

kk

z

k

z     (6) 

Let 
   kk

be the projection of k
to the subspace spanned by the base vectors satisfying 

Case (1) (Case (2)), it is easy to prove by induction that 

   1 1 1 1 .z z

k k k k
and               

Furthermore, 
  .sincos

2/44 k

k  

 Therefore, the left-hand side of Eq. (6) is upper bounded 

by 
  .sincos22

2/44 k

k  

 Since  is not a multiple of 2/ , the right-hand side is <1. Thus 

choosing 
 ,log 1

Ok 
the right-hand is the above can be made .  

Creating 2/ . We would like to construct a circuit that maps 
k

 00 to a state close to 

.02/

k
  The main idea is to create a “logical” 2/ : 

 ,1̂
2

sin0̂
2

cos:ˆ
2/


   (7) 

where 0̂ and 1̂ are two orthonormal vectors in a larger space spanned by ancillae, and the undo the encod-

ing to come back to the computational basis. To create 
2/

ˆ
 , we first create a state almost orthogonal to 

0̂ , and then apply Grover’s algorithm to rotate this state toward 
2/

ˆ
 . Define the operator T on 2 qubits 

as 

       .12,11:    xT    (8) 

Since for any   Txx ,,   and  T can be realized by the basis B. 

Let      .,,,,: 2

1  TTzx   . 

Lemma. For any 0 there exists a B 1 -circuit 2/

~
W of size  


11 logO  that uses  


1logO  ancilla 

and satisfies .00
~

2/

1

2/  
 kk

W  

Proof. Let k > 0 be an integer to be specified later.  

Define  
2 2ˆ ˆ0 : 0 , 1 : 0 : arcsin cos .
k k kT and  

     Notice that  2/ is the angle be-

tween 0̂ and ,1
~

 and ,2/0   since .1
~

0̂sin   Let S be the plane spanned by 0̂  and 1
~

. Let 

1̂ be the unit vector perpendicular to 0̂ in S and the angle between 1̂ and 1
~

 is  . Observe that on S we 

can do the reflection along 1̂ and the reflection along 1
~

. The former is simply  ,2 zk   which can be 

implemented using  x2 and .z  Since T ,1 

 T
 the reflection along 1

~
is 

   .: 2 kzkk
TTR


    

Without loss of generality we can assume ;2/2/   otherwise we will rotate 1
~

close to 

  2/

2 ˆ
 zk and then apply  .2 xk   Choose k sufficiently large so that .2/2/    Now we can 
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apply Grover’s algorithm to rotate 1
~

to a state very close to .ˆ
2/  After that we do a “controlled-roll-

back” to map 1̂  (approximately) to 
k

1 and does not change .0̂  This will give us an approximation of 

2/ in the state space of the controlling qubit. The algorithm is as follows. Let T be the integer such that 

  .2/122/   T Then  ./1 OT   

Algorithm 2 

A B 1 -circuit 2/

~
W  that maps 

k2
00


 to a state close to .0

2

2/

k
  

1. Apply I .
k

T


   

2. 
(Grover’s algorithm) Apply    .ˆ 2

T
zkR   

3. (Sub-circuit A
3
) For a computational base vector b of the ancillae, if 

,0̂b  flip the first bit. 

4. (Sub-circuit A 4 ) Use the first bit as the condition bit, apply  .k
T


   

It can be easily verified that   .2000
~ 2

2/

2

2/  
 kk

W  Setting ,2/  by direct 

computation the number of ancillae is    ,log 1
 OkO and the size of 2/

~
W is    .log/ 11

 OkO  

Approximating  . Theorems are a straightforward corollary of the following theorem and Proposi-

tion. 

Theorem: For any ,0 the operator  can be approximated with precision  by a B-circuit of size 

 

11 logO  and using  


1logO  ancillae. 

Proof. We first compose a B-circuit that approximates , according Algorithm 2, and use 1k  (differ-

ent) ancillae in each call to the latter, for an integer 1k to be specified later. Let .cos: 12  k
  Then the 

precision is  .O . After implementing T and  ,T  there are in total  

1O  uses of .z  

Finally we apply Algorithm 1 to approximate each 
z  using the same phase ancilla 

2k for 

 ./1 3

2 Ok  Let   2/44 2

sincos2:
k

   be the error of one call to 
z~ using exactly .

2k  Observe 

that using the same phase ancilla for  

1O  times causes error at most    2

1 11 2 1 .O O 
      Set-

ting 
3  , the total error caused by 

z~ is  .O  Thus the total error of the whole circuit is still  .O Set-

ting    
  11

1 loglog, OOk   and  .log 1
2 Ok   .  

Therefore the number of ancilla is    .log 1
21 OkkO   The size of the circuit is 

    .log 111
21  OkkO   
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