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Introduction

Let us consider the description of Quantum Fourier Transform (QFT). The universality of the QFT in
forming the basis of quantum computing algorithms is considered. The unique universal fundamental proper-
ties of quantum computing concerning quantum superposition, entanglement and interference are all explicit-
ly represented in terms of quantum multiparticle interferometry [1-18].

The Universality of the Quantum Fourier Transform in Forming the Basis of
Quantum Computing Algorithms

The Quantum Fourier Transform (QFT) on the additive group of integers modulo 2™ is defined by.

F.(a) = ZZ:G(Z”W”Z"” y
a

QFT plays a significant role in the development of the quantum computer (QC). One may note, for ex-
ample, that the potentially powerful integer factoring algorithm by P. Shor relies critically on the QFT for the
detection of periodicity springing from the prime factors.

We can further analyze (1) as follows. First, write

a=a2""'+a,2"* +---+a,,2' +a,2°=(aa,...a,)

). () | For ac{012,..,2"-1}.

and V= Y2 YR 2" e Yy 2 Y 20 = (Ve Y Y )

Then it is well known that

RHS of (1) = Zie(z,ﬂay,zm” o)
y=0
= 2mzlezm'(o.am)yl yl>e2m'(o.amflam)yz y2>___e27zi(0.a1a2...am)ym ym>
y=0
= QO> APSZICEN) 1>XJ0>+ 02702 12,) 1>)“,(10>+ 027022, .a) l>)

In the above factorization (or “untangling”), each factor is of the form |O> + ei”|1> .

Remark: Such a state can be produced in two steps:

111 1
First, apply the transformation H = —[ } where H is known as the Walsh-Hadamard trans-

J211 -1

form, to the state |0): 10) = %(I0>+|1>)'

1)

(]0>+e“"

Next, apply the phase shift operator P(@)= [1 0 } yielding P(a))[H|O>]—i
’ |0 €]’ 2
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Remark: The RHSs are equal (apart from a normalization coefficient). Therefore, we see that the con-
stituents of the QFT are H and P(a)) From the quantum optics point of view, H is realized by a half-

silvered mirror (beam splitter) and P(a)) represents a phase shifter, as in a standard Mach-Zehnder interfer-
ometer.

First, we wish to emphasize that the QFT strictly by itself is not universal in quantum computing (see
Remark below). Thus, the question becomes whether the two constituents H and P() of QFT are universal

or not. We will discuss the following problem:
“Any QC algorithm can be represented as a composition of Walsh-Hadamard transforms and associated conditional
phase shifts.”

Remark: The implication of this problem is that the realization of any QC algorithm translates into a
combination of elementary quantum interferometric operations, i.e., single particle beam splitter (Walsh-
Hadamard transform) followed by a conditional phase shift. Any QC algorithm can thus be formulated, or
reformulated, in terms of elementary multiparticle quantum interferometric operations. The unique universal
fundamental properties of QC concerning quantum superposition, entanglement and interference are all
explicitly represented in terms of quantum multiparticle interferometry (QMI).

Remark. QMI practically is not to be taken as a proposed embodiment of a QC any more than the Turing
machine is to be taken as a literal construction in classical computing. Rather, Ekert has suggested its equiva-
lence to QC in the sense of its universality, meaning that QMI could be viewed as the closest QC analogue of
the classical Turning machine (through the universality theorem established in this appendix). This concept
and viewpoint should provide physical insights into the operational aspects and can facilitate efficient design
of a universal QC.

Mathematical proof of the Universality of H and P(.)

As usual, we let U (n) to denote the unitary group on n-dimensional space. By abuse of notation, we re-
gard U (n) the same as the multiplicative group of all n x n orthogonal matrices.

SO(n) denotes the orthogonal group on n-dimensional spaces or, equally, the multiplicative group of all
nxn orthogonal matrices. We also define the maximal tours T (n) inU (n) as

T(n)= {diag (ei“‘l,...,ei”’“)

Wy, 0y,..., 0, GR}

i.e., T(n) consists of all nxn diagonal matrices whose diagonal entries are complex numbers of unit mag-
nitude. T(n) is a subgroup of the multiplicative group U (n)

Let A be a collection of nxn unitary matrices. We will use g, (A) to denote the unitary subgroup of

U(n) generated by A, i.e.,

g,(A)=N{G.

a

G, is a subgroup of U (n),Ac G,,}

We will write g, (A) simply as g (A)if the value of n is clear from the context.
We begin with n=2.
Lemma: We have U (2) = g(SO(Z),T(Z)), i.e, U(2) is generated by SO(2) and T(2); more

precisely, for every AeU (2), we have

Al e’ 0 |le“* 0 cosw sinwm |[e?? 0
o €| 0 e?|-sinm cosw| 0 e?]|
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for some & B0, @ e R.

Lemma: T(Z)g g(H,P(-)).

01
Proof. We first note that the NOT-gate X = L 0} can be obtained as
X =HP(-7)H.

Therefore X € g (H : P()) From this, we have

et 0 210 21 2]

for any given @,, , € R. Therefore ¢ (H P ()) contains the maximal torus T (2)

Lemma SO(Z) cg (H , P())
Proof. For each rotation matrix

o)

—-sin® Ccosw
we easily verify that

R(w)= P[%)HP(@)XP(— a))HP(— gj

Theorem: 9 (H.P()=U(2).

Proof. This follows immediately from Lemmas.

Decomposition Procedure of General Finite Dimensional Unitary Transfor-
mations into a Product of Plane Unitary Transformations
First, we define a special type of unitary transformations T,,(¢c)eU(n) by T,,(¢o)=1t; |

hxn’

1<p,g<n, p=#q, where

1 i=],i#pi=q,
coSg, i=j=pori=j=nq,
t; = .o, = ,i=p, j=gandi=q,j=0p,
—e7'7sin ¢, i=pand j=q,
e'” sin ¢, i=gand j=p;

(e} d
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1 0 0 0]

01
1
T, (#.0)= @} - cosp —e’sing
@} - e?sing  cosg
1 0

0 0

L 0 1_

To (¢,o-) is just a plane unitary transformation acting non-travially only on states p and g.

Let V eU(n). We want to find some T, ,(¢,0) suchthat T, V =V'= [Uilj] , where v, ,, =0:

n,n-1 Inxn

1 0 0

010 by v U U
-y _[00 1 0 : : :
— . Unai " Upan Unan ’

cos ¢ e7sing || U v Uppa Uy
I o) —e'“sing cosg |
Dn1p = Upsn COSG+0,.677 siN &,

50 n-1,n

We consider all possibilities:

U, 1, =0. Thenwe choose ¢ =0,0 =0, ie, T _,, (#,0)=1,, and we obtain

Case 1: ,

Vn1n = Upgn =0.
Case 2: Unn # 0,0, =0. Then choose ¢ = 7/2,0 =0. Obtain Vp_1p =0.
Case 3: Oy 1 #0,0,, #0. Write 0, ,, =T, € v, =r, %, Choose

oc==6,,,+6,, and  =tan - (— Moin /I’nn) Obtain

' _ 16, n 1 i(_ +gnn)
Uy, =COS@-1 _, """ +sing-r e’

r . .
= (—” “ 4 tan ¢]rnn cosge' ™" =0.
r

nn

Therefore, we have found T, , eU(n) such that

. « -
oo Uln
* —_| * *
Tn,n—lv Un—Z,n
0
_Unl Un,n—l Unn i
Similarly, we can find T ,,T,  _5,...,T,  such that



ONeKTPOHHbIN XXypHan «CUCTEMHBIN aHanu3 B Hayke n obpa3oBaHnm» Boeinyck Ne3, 2017 rog

[ % * "
U1n
* * Url;fzn
Tn,n—ZTn,n—lV = )
0
* * 0
|1 -+ Unnag Unn |
- N _
ToiToo o TonaTondY = : Cl=w.
* * 0
_Unl te Un,n—l Unn i
. . . 5 =0 :---:5 =0 = ig‘nE R'
Since W is unitary, we conclude " "2 n.n-1 and Ym =€ d, for some % €™ Thus
0

Tl T o TandV =

n,n-2

0 .. 0 d,

Now, applying the same technique to the remaining (n —1)x (n —1) undiagonalized matrix block (%)

above, together with a simple induction argument, we obtain plane unitary transformation
Totre-s Toncts Toctare s Totnzr- - Ta1s T3, @nd T,y such that

d

Hom ko ke * * * * dZ O
Dol Tl Tos o T o Ta o TopdV = . =D,

where d =e' for j=1,2,...,n.

Therefore

V = Tn,n—l ’Tn,n—Z . ‘Tann—l,n—Z . 'Tn—l,l . 'T32T31T21D

i-1
[ THJD.
i=1 j=1

At this point, it should already be clear that U(Z”) can be generated through controlled-U(2) gates, for

any n=1,2,.... Let us give the following concise, rigorous treatment as to how to construct any V eU( ”)
where each V;; is a (generalized) controlled-

>

from a serial connection of a collection of unitary matrices V;;,
U(2) gate. The precise statement is given below.

Theorem: Let V eU(Z“) Then

2"-1 i1

V=T1T1TV @)

i=1 j=0
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For a collection of matrices V;; eU (2”) such that
Vi S;—S; Iistheidentity transformation,

Sijzspan{m>‘me{0,l,...2”—1},m¢i,m¢j}, ©)
0<j<i<2"-1
In other words, each V eU(Z”) is a product of (generalized) controlled-U(2) unitary matrices V;;,
which acts nontrivially only on S = spanﬂi>,| J>}

Proof. We first quote the following fact (see above). For any V eU( ”), there exists a collection of

2"1 i-1
unitary matrices T;;,0<j<i<2"-1 and a D eT(Z") such that V :(HHTUJD,
i-1 j-0
where T, , € SO(2")cU(2") is a rotation involving |i) and | j) and satisfying the above mentioned condii
tion. Now we can break up D into

dO
d,
D= -D,D,...D,
dZn 1
d, 0 1
d, .
where D, = 1 and D, = d;
1 1

for i=23,...,2" —1. It is easy to see that D, acts trivially except on |0) and [1), and the other D, ’s act

non-trivially only on |i). In addition, D,’s commute with each other, and each D, commutes with
T, VOl <k<i aswell

Thus,
V= Tz"fl,z"fz ...Tznfl’oTM’znf3 .. -Tzn,g,o N PR YT B2 DU DI
= T2”—l,2”—2T2”—2,2” -3 'T2”—1,O DZ”—l
Tz"—z,z”—s . 'T2”—2,o Dz”—z
...... 2" -1
T2,1T2,0 D2
1,0 Dl

strings of products. For 0< j<i<2" -1, define

T if j=0,
" T,D, =T,D, if j=0.



ONeKTPOHHbIN XXypHan «CUCTEMHBIN aHanu3 B Hayke n obpa3oBaHnm» Boeinyck Ne3, 2017 rog

2"-1 i-1
Therefore we have reached V = [ [V;;» where each V; is a unitary matrix which acts nontrivially
i1 j-0

only on the states |i) and | j) satisfying the above mentioned expression.

Remark. The factoring of D into the product of D,,D,,... and D,, , in the presented forms is peculiar

-1
in the sense that D, is chosen differently from the other D, ’s, i #1. It must be done this way. The reason

for this is that there are 2" —1 strings of products as indicated above. Therefore D must be factorized to have

2" -1 factors D,,D,,..., Dzn_l, in the unique way.

Remark. Now it can be readily seen that the QFT itself is not universal in the sense that U(Z“) is not
generated by F,, (cf., with case m=n therein) or (generalized) controlled-F,, (where m <n) operations.
First, check n=1: we see that F,. =F, is actually the Walsh-Hadamard transform H (apart from the

normalization factor 1/\/5 ). Therefore, the phase shifts P(a)) in (2) cannot be generated by F, because
P(a)) has eignevalues 1 and e while H has eignevalues 1 and —1. For a general positive integer n, the
range of F,, or of controlled- F,,,m<n, consists at most of linear combinations of states of the form

e2”i [(O-a)y1+(o-an—lan )y2+"'+(0'al---an )Yn ]

Yi...Yo ) Where a;,y; {01}, for j=12,...,n.

The phases of such states are not even dense with respect to all possible phases e*"?, 0< 0 < 2r.

Remarks on Circuits. The decomposition (3) is a mathematical rendering of above mentioned statement
and answers the conjecture affirmatively.

Each factor V,; in (3) satisfies (4) and thus V/;; acts nontrivially only on the states |i) and | j). Denote
the restriction of V;; to the 2-dimensional subspace g, =span{|i).| j)} by V;. Then V;; eU(2). Each V,

is not a standard A, (\7IJ ) gate is the sense that the controls are states rather than bits.

Nevertheless, point out how to rearrange basis states with a “gray code connecting state |I> to state

| j> ” such that V;; becomes unitarily equivalentto A, (\7IJ ) In this sense, V;; are generalized controlled-

A

V;; gates.
Proposition. The symmetric group S, of permutations on the symbols 0,1,2,...,2" -1 is generated by
the 2-cycle (2” -2,2" —1) and the 2" -cycle (0,1,2,...,2n —1)

Proof. This is a basic fact of group theory.

Incidentally, we note that the 2-cycle (2” -2,2" —1) is a permutation between the states {11...10 ) and

n bits

11...1) and thus can be realized by the controlled-NOT gate with the nth qubit as the target bit and the first

n bits

(n —l) bits as the control bits as shown in Fig. 1.
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'

X

Figure 1: The n -bit controlled-NOT gate

(0’1’2’---’2n_1) makes the rotation of the states
|x>—>‘x+1mod2”>

On the other hand, the 2”—cyc|e
|0>—>|1>—>---2”—2>—>‘2"—1>—>|0>

mented by the circuit as shown in Fig. 2.
finY
I
? P

L
T
i

Figure 2. This circuit implements the operation |x) — ‘ X+1mod 2”> or, equivalently, the 2" -cycle (0, 1, 2,

" ie., the operation. This can be imple-

..., 2". 1) in Proposition. Note that the bit |1> at the bottom of the figure is the “scratch bit” which is
sometimes omitted in circuit drawing. All the gates in this circuit are controlled-NOT gates

Therefore, any permutation of the basis states |X> x=012,...,2" -1, can be realized by finitely many
controlled-NOT operations consisting of circuits as shown in Figs 1 and 2.

Thus, each factor V;; in (2) can be realized by the circuit as shown in Fig. 3.

~'IW _‘Il
(1,2 -1) (.2 -1)

n n
(.2 -2) .2 -2)

Figure 3: The unitary matrix V;; as a controlled-\iij gate where \7ij €U (2) . The operations (i, 2" — 2) and

J» 2n . 2) in the two boxes are cyclic permutations (which can be realized by concatenations of circuits in
Figs 2 and 3
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By concatenating together all the blocks V;; as shown in Fig. 2 according to the factorization (2), we

have constructed all V eU(Z“) with controlled—\fij gates according to (2). Each \7ij eU (2”) is then further

formed from concatenations of the gates H, P(a))eU (2) according to corresponding Theorem. It is in this

sense that we have the universality of the Walsh-Hadamard gate H and the phase shift gate P() and, conse-
guently, that of the QFT with the affirmative answer to the above question.

Example: Another Way to Perform the Quantum Fourier Transform in Linear Parallel Time. Shor’s
factoring algorithm suggests that quantum computers can do things in polynomial time that classical
computers cannot. However, since decoherence due to storage errors is a function of time, we should also
ask to what extent we can parallelize quantum algorithms; if we can do many quantum operations at once,
rather than serially, we can solve larger problems before our computer decoherens.

Consider a quantum circuit operating on a set of qubits, containing one-qubit gates (2x 2 unitary
matrices) and the two-qubit controlled-not-gate; these are universal for quantum computation. We can define
the depth of this circuit as the number of layers, where each layer consists of gates operating on mutually
disjoint sets of qubits; that is, each qubit interacts with at most one other qubit at time. (In a model of
guantum computation where one qubit can simultaneously interact with several others, we could allow gates
operating on the same qubit in the same level, as long as these gates all mutually commute.)

The heart of Shor’s algorithm is the Quantum Fourier Transform. If we represent n-digit numbers |a>

2"-1 . N
with n qubits, the QFT maps |a) to 27" > e*™** |p),
b=0

We exhibit a circuit with depth O(n) for performing the QFT.
Griffiths and Niu have already done this, in fact in a more natural way.

We exhibit a quantum circuit that performs the QFT on n qubits in O(n) depth. Thus, a parallel

guantum computer can carry out the QFT in linear time. Griffiths and Niu have already shown this. We also
speculate as to whether the QFT might be in the class QNC of problems solvable in logarithmic parallel time.

The standard quantum algorithm for the QFT takes n(n —1)/2 gates. One way to construct it is to

reshuffle the rows of the matrix by putting the digits of the input in reverse order. Then for n=3, for instance,
we have

1 1 1 1 1 1 1
1 -1 1 -1 1 -1 -1
1 i -1 i 1 i -1 —i
1 —-i -1 i 1 -i -1 i
1 Al | e¥i4 1 @S _j gTA4
1 %4 A4 1 At _j g3t
1 ¥4 _j ert 1 QTA4 j  gbAlt
1 ™4 _j %4 1 ¥4 g7l

where we are suppressing a factor of 272,

If we call this F(3), we immediately notice that its upper-left and upper-right quadrants are
1 1 1 1

1
1 1 -1 —i
1 i .

10
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which is simply F(2). The lower-left and lower-right quadrants of F(3) are F(2) and —F(2), with a series of
phase shifts applied to the columns; this can be expressed by multiplying on the right by the matrix

1

ml4

37 l4

which we will call M. In general, we can write

Fin+1) | = j%(;; —EMJ
SR e

We recognize this as the circuit for F(n) applied to the n least significant qubits, followed by a gate
where the most significant qubit controls whether or not to apply the phase shifts M , followed by the

1 1
Hadamard operator H :i(l J applied to the most significant qubit.

J2

Finally, note that M is simply a tensor product of independent one-qubit operations

wt Jo* ol o

Then the controlled-M gate becomes a series of controlled phase-shift gates
1 1

1 1 1
- ® ®--
M 1 1

H i/4
i e”

These gates are symmetric, in that the “controlled” and “controlling” qubits are interchangeable. Putting
all this together gives us the recursive construction.
To what extent can this circuit be parallelized?

Even though all the phase shift gates within a given pair of H’s commute with each other, we can’t
perform them simultaneously unless we can couple one qubit to multiple qubits at the same time, and they

don’t commute with the H preceding them. Thus, it would appear that all O(n 2 ) gates have to be applied in
series.

However, we can turn this circuit onto one where most of the gates commute, so that many can be
performed simultaneously, in the following way. Note that H is its own inverse. Conjugating a phase shift

gate with H gives
1 1(1+e" 1-e"
H( iejH e i0 i0
e 2\1-¢ l+e

Call this matrix R ,. Then if we pass the H operators through the phase shifts to the right, we get the

circuit, where the controlled phase-shift gates have been replaced by controlled-R , gates.

Now note that two controlled- R, gates commute in every case except when the ‘control’ of one is the
‘controlled” qubit of the other. Formally, if R;; is a controlled-R, gate with qubit I controlling qubit j, then

R; and R,, commute unless j=k or i=I. We can perform commuting gates simultaneously, as long as we
11
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respect the ordering between pairs of this kind. Adding the constraint that each qubit only interact with one
other in each layer gives the circuit with the depth 2n -2, linear in n.

It is easy to show that 2n — 2 is the minimal depth for this set of gates. We have one gate R; for every
pair i<j, and R; must be performed after R, . Therefore, two gates R; and R,; cannot be in the same
layer if i <j <k <I, since R, hasto precede R; but follow R, . This means that the n—1 gates R;; where

j =i+1 must all be in separate levels; since each qubit can only interact with one gate per layer, the n—2
gates R; where j =i+ 2 also need their own layers. Adding this to a final layer of H’s gives depth 2n—2.

Remark. Of course, this does not mean that a different set of gates couldn’t solve the QFT more
efficiently. It would be especially nice if the QFT could be accomplished by a quantum circuit with depth

O(log n). This would put it in QNC*', the quantum analog of the class NC' of problems solvable in
logarithmic time by a parallel computer. We would also add the requirement that only a polynomial number
of ‘ancilla’ qubits be used, corresponding to a polynomial number of processors.

How would this be done?

Each qubit controls and receives phase shifts on and from O(n) other qubits. We can easily ‘fan out’

O(n) copies of each controlling qubit with a reversible circuit of depth O(log n) consisting of controlled-not

gates. Classically, we could ‘fan in’ n phase shifts on a given qubit in depth O(log n) by composing them in
pairs.

However, it does not seem to be so easy to combine quantum gates in this way. We need some
representation of phases so that they can be added in pairs with a linear, unitary operator.

In one case, a quantum circuit can be parallelized by re-writing its gates, and lumping them into
mutually commuting groups that can be performed simultaneously.

Toffoli and Control-NOT in universal quantum computation.

A set of quantum gates G (also called a basis) is said to be universal for quantum computation if any
unitary operator can be approximated with arbitrary precision by a circuit involving only those gates (called
a G-circuit). Since complex numbers do not help in quantum computation, we also call a set of real gates
universal if it approximates arbitrary real orthogonal operators.

Which set of gates is universal for quantum computation?

This basic question is important both in understanding the power of quantum computing and in the
physical implementations of quantum computers, and has been studied extensively.

Examples of universal bases are: (1) Toffoli, Hadamard, and %—gate, due to Kitaev; (2) CNOT,

Hadamard, and g—gate, due to Boykin, Mor, Pulver, Roychowdhury, and Vatan; and (3) CNOT plus the

set of all single-qubit gate, due to Barenco, Bennett, Cleve, DiVincenzo, Margolus, Shor, Sleator, Smolin,
and Weinfurter.

Another basic question in understanding quantum computation is:
Where does the power of quantum computing come from?
Motivated by this question, we rephrase the universality question as follows:

Suppose a set of gates G already contains universal classical gates, and thus can do universal classical
computation, what additional quantum gate(s) does it need to do universal quantum computation? Are there
some gates that are more “quantum” than some others in brining more computational power?

What additional gates are needed for a set of classical universal gates to do universal quantum
computation? We answer this question by proving that any single-qubit real gate suffices, except those that
preserve the computational basis.

12
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The result of Gottesman and Knill implies that any quantum circuit involving only the Control-NOT and
Hadamard gates can be efficiently simulated by a classical circuit. In contrast, Control-NOT plus any single-
qubit real gate that does not preserve the computational basis and is not Hadamard (or its alike) are universal
for quantum computing.

Previously only a “generic” gate, namely a rotation by an angle incommensurate with 7 , is known to
be sufficient in both problems, if only one single-qubit gate is added.

Without loss of generality, we assume that G contains the Toffoli gate, since it is universal for classical
computation. The above three examples of universal bases provide some answers to this question. It is clear
that we need at least one additional gate that does not preserve the computational basis. Let us call such a
gate basis changing. The main result is that essentially the basis-changing condition is the only condition we
need:

Theorem: The Toffoli gate and any basis-changing single-qubit real gate are universal for quantum
computing.

Remark. The beautiful Gottesman-Knill Theorem implies that any circuit involving CNOT and
Hadamard only can be simulated efficiently by a classical circuit. It is natural to ask what if Hadamard is
replaced by some other gate. We know that if this replacement R is a rotation by an irrational (in degrees)
angle, then R itself generates a dense subset of all rotations, and thus is universal together with CNOT, by
Barenco et al. What if the replacement is a rotation of rational angles? We show that Hadamard and its alike
are the only exceptions for a basis-changing single-qubit real gate, in conjunction with CNOT, to be
universal.

Theorem: Let T be a single-qubit real gate and T2 does not preserve the computational basis. Then
{CNOT,T} is universal for quantum computing.

A basis is said to be complete if it generates a dense subgroup of U (k) modular a phase, or O(k) for

some k > 2. Each of the two bases in the above theorems gives rise to a complete basis. By the fundamental
theorem of Kitaev and Solovay, any complete basis can efficiently approximate any gate (modular a phase),
or real gate if the basis is real. Therefore, any real gate can be approximated with precision & using

polylog (%) gates from either basis, and any circuit over any basis can be simulated with little blow-up in the
size.

We also provide an alternative prove for Theorem by directly constructing the approximation circuit for
an arbitrary real single-qubit gate, instead of using Kitaev-Solovay theorem. The drawback of this
construction is that the approximation is polynomial in 1 ; however, it is conceptually simpler, and uses
some new idea that does not seem to have appeared before (for example, in the approximation for Control-
sign-flip).

There is a broader concept of universality based on computations on encoded qubits, that is, fault-
tolerant quantum computing.

Preliminary. Denote the set {1,2,---, n} by [n] The (pure) state of a quantum system is a unit vector in

its state space. The state space of one quantum bit, or qubit, is the two dimensional complex Hilbert space,
denoted by H. A pre-chosen orthonormal basis of H is called the computational basis and is denoted by

10)/1)}

The state space of a set of n qubits is the tensor product of the state space of each qubit, and the
computational basis is denoted by

{0)=|b,)®|b,)®---®b, ) :b=Dyb, b, {01} }

A gate is a unitary operator JeU (H ®r), for some integer r > 0. For an ordered subset A of a set of n

qubits, we write U [A] to denote applying [ to the state space of those qubits. A set of gates is also called a
basis. A quantum circuit over a basis G, or a G circuit, on n qubits and of size m is a sequence

13



ONeKTPOHHbIN XXypHan «CUCTEMHBIN aHanu3 B Hayke n obpa3oBaHnm» Boeinyck Ne3, 2017 rog

U, [Al] U, [Az] U, [Aﬂ ] where each U, €eG and A < [n] Sometimes we use the same notation for
a circuit and for the unitary operator that it defines.

Definition: The operator U:=H®" — H®" is approximated by the operator U: H®" — H®" using
the ancilla state | W) € H®" ™" if, for arbitrary vector |&) e H®",

O(2)9]¥)-Ug)|¥)| <))

Let G be a basis. A G-ancilla state, or an ancilla state when G is understood, of | qubits is a state A|b>,

for some G-curcuit A and some b e {0,1}'. A basis G is set to be universal for quantum computing if any gate
(modular a phase), or any real gate when each gate in G is real, can be approximated with arbitrary
precisions by G-circuits using G-ancillae. By a phase, we mean the set {exp(ia) ‘ae ]R}. The basis is set

to be complete if it generates a dense subgroup of U(k) modular a phase, or O(k) when its real for some
k > 2. A complete basis is clearly universal.

We introduce the standard notations for some gates we shall use later. Denote the identity operator on H
by 1. We often identify a unitary operator by its action on the computational basis. The Pauli operators o *

and o, and the Hadamard gate H are

(01 L. (t o), 111
c '_(1 oj’ o '_(o —1]’ '_f(l —1}

Example: If U is a gate on r qubits, for some r>0 (when r=0, U is a phase factor), A(U) is the
gate on K +r qubits that applies U to the last r qubits if and only if the first k qubits are in |1>®k . The

superscript k is omitted if k =1. Changing the control condition to be [0)*, we obtain A*(U).

The Toffoli gate is A (ax), and CNOT is A(ax) . Evidently the latter can be realized by the former.

From now on we only consider real gates. A gate g is said to be basis-changing if it does not preserve the
computational basis.

Completeness proofs.We will introduce the proof of the following theorems, from which Theorem 2 and
Theorem 1 follow immediately.

Theorem. Let S be any single-qubit real gate that is basis-changing after squaring.

Then {CNOT, S} is complete.

Theorem. The set {AZ (GX), H } is complete.
We need the following two lemmas, which fortunately have been proved.

Lemma (Wlodarski). If o is nit an integer multiple of /4, and Cosﬂ’:COS2 a, then either a or g
is an irrational multiple of 7 .

Lemma (Kitaev). Let M be a Hilbert space of dimension > 3, |£) € M a unit vector, and H = SO(M )
be the stabilizer of the subspace R(|&)). If V € O(M) does not preserve R(|&)), HUVHV generates
a dense subgroup of SO(M).

Proof of Theorem. Define |J:= (S ®S -A(O'X 11,2])2. It suffices to prove that |J and A(GX) generate a
dense subgroup of SO(4). Without loss of generality, we assume that |J is a rotation by an angle &, the
other case can be proved similarly. The by the assumption, & is not an integer multiple of 7 /4.

Direct calculation shows that |J has eigenvalues {1, 1, exp(i ia)}, where a = 2arccos cos’ @

14
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The two eigenvectors with eigenvalue 1 are |&, ) = %(]00) —|01) +|10) +|11>), and
sin @ cosé
0 —0)—]1
)= 22 [0) +[1)+ S22 (0)- 1)

Let ﬂ bl > e [4]} be a set of orthonormal vectors.

By Lemma «ais incommensurate with 7, therefore, (Jgenerates a dense subgroup of
H, = SO(Spanﬂ§3>,|§4>} Note that A((TX 11,2] preserve |&, ), but not span ﬂg‘Z)}. Therefore, by Lemma
the set HlUA(o-X Il,Z]HlA(o-Xll,Z] generates a dense subgroup of SO(spanﬂf )1i=23 4}) H,, thus
so does {U, A(JXII,Z}. Finally, observe that A(JX 12,1] does not preserve span ﬂgi)}, therefore, apply
Lemma again we conclude that { ( Il 2| (ax 12,1]} generates a dense subgroup of SO(4).

Proof of Theorem. Define U:= (H ®H®H -A2(0X11,2,3])2.Direct calculation shows that U has
eigenvalue 1 with multiplicity 6, and the other two eigenvalues A, = exp(i ia), where o =7 —arccos?.

Since A, are roots of the irreducible polynomial A —g/l +1, which is not integral, therefore A, are not

algebraic integers. Thus « is incommensurate with 7z , which implies that [ generates a dense subgroups of
the irritations over the corresponding eigenspace (denote the eigenvectors by |&;)and |&;)). By direct
calculation, the eigenvectors correspond to eigenvalue 1 are:

{000),|010), |100), |002) +|011), [101) +[110) + [111),|011) +]102)}

Label the above eigenvectors by |§i > I e [6] It is easy to verify that each U,,i e [6] constructed below
preserves {§j> 1< j< i}, but not span ﬂ§i>}.

U =1®1®H, U, =U,-A*(c*)2,31]-U,,
Uy =U,;-A2(6* 1.32]- Uy, | U, = A%(07 J2:31]
Us =U, - A (0 [2.31]-U,, | Uy :=A2(c" J13,2]

Applying Lemma several times, we see that {U, U,,U,,,,---,U, } generates a dense subgroup of span
ﬂ§j>:is j 38} Thus {AZ(UX)H} generates a dense subgroup of SO(8). We leave the details for the
interested leaders.

Example: Alternative proof for Theorem. Fix the arbitrary basis-changing real single-qubit gate S, and
the basis B = {S, A (o-x)}. We give an explicit construction to approximate an arbitrary real gate using the
basis B. Due to the following result by Barenco et al., we need only consider approximating single-qubit real
gates:

Proposition (Barenco et al.). Any gate on r qubits can be realized by O(r24r) CNOT and single-qubit
gates.

Fix any arbitrary single-qubit gate W that we would like to approximate. Without loss of generality, we
can assume that S and W are rotations, for otherwise o*'S and o * W are. For any /3 €[0,27), define

. , _ (cospB —sinp
|4,) =cos B|0)+sin B|1) and U, 'z[sinﬁ cos/)’j'

Let 6, a €[0,27),and @ not an integral multiple of /2, be such that S=U,, and W= ,,. The follow-
ing proposition can be easily checked.

15



ONeKTPOHHbIN XXypHan «CUCTEMHBIN aHanu3 B Hayke n obpa3oBaHnm» Boeinyck Ne3, 2017 rog

Proposition. Let W, be a gate on k +1qubits that W, ,|0) ™" =|g, ,, ) ®[0)™. with
W, =W, , (A" (-2))W, 0" [1], @
for any vector |£)e H,
U, lg)el0)” =w, (2)e0)") ®
Clearly A**'(—1)can be realized by Az(ax)and o’. Therefore, to approximate U, it suffices to
approximate o“and W _,,,which we will show in the following subsections.

1 1
. and, o) =1/l )
cos* 0 +sin* @ ¢ g cos’ O

Define the constants ¢, :=1/log

Approximating o’. If @is a multiple of z/4,say 0= /4,then we can easily do a sign-flip by
applying a bit-flip on Ue|1>=,—\15|0>+%|1>- But for a general 6, U, |1)=-sin6|0)+cosd|1) is

“biased”. Immediately comes into mind is the well-known idea of von Neumann on how to approximate a
fair coin by tossing a sequence of coins of identical bias. That is, toss two coins, declare “0” if the outcomes
are “01”, declare “1” if the outcomes are “10”, and continue the process otherwise. To illustrate the idea,
consider

U, [0)®U,|1) =sin @cosa(11)~|00))+ cos? 6|01) —sin ? 6]10).

If we switch |00)and |11) and leave the other two base vectors unchanged, the first term on the right-

hand side changes the sign, while the remaining two terms are unchanged. While we continue tossing pairs
of “quantum coins” and do the |00) -and- [11) switch, we approximate the sign-flip very quickly.

The state defined below will serve the role of £|1)—£0).
Definition. For any integer k > 0, the phase ancilla of size k is the state
®k
|, )= U, |0>®U9|1>) :
Clearly |CI)k > can be prepared from |0>®2k by B-circuit of size O(k )

Lemma. The operator o *can be approximated with precision ¢ , for any & >0, by a B-circuit of size
O(k), using the phase ancilla |®, ), for some integer k =O(5, log 2).

Proof. Let k be an integer to be determined later. The following algorithm is a description of a circuit
approximating o’ using |®@, ).

Algorithm 1
A B-circuit & approximating o using the phase ancilla |®, ).

Let |b,)®|b) be a computational base vector, where by € {0,1}is the qubit to which o is to applied,

and b=bbb,b;---b,b; {01} are the ancilla qubits. Condition on b, (that is, ifb, =0,do nothing,
otherwise do the following),
Case 1: There is no | thatb, @© b/, do nothing.

Case 2: Let | be the smallest index such that b, @b =0, flip b;and b;.
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Clearly the above algorithm can be carried out by O(k)applications of Toffoli. Fix an arbitrary unit
vector |£) e H. Since neither o* nor 6 changes [0)(0]((&) ® (., |),

lo8)8l,)-5(2) 0o, )| <D elo,) -5 (Ve|,)] ©

+ (D—
Let ‘ > q >) be the projection of |q)"> to the subspace spanned by the base vectors satisfying
Case (1) (Case (2)), it is easy to prove by induction that

& ([ne|w;))=[)e|o;)and & ()@@, ))=-[1)|,).
md);> :(cos4t9+sin40)k/2. _ _
Furthermore, Therefore, the left-hand side of Eq. (6) is upper bounded
Alo: )| = 2(cos* @ +sin* o).
by H‘ "> ( sl ) Since ?is not a multiple of ”/2, the right-hand side is <1. Thus
- 1
choosing k= 0(59 log 8)’ the right-hand is the above can be made < &

. . . . ®k
Creating |¢a,2>. We would like to construct a circuit that maps |0>®|O> to a state close to
¢a/2>:

¢a,2>:: cos%‘()>+sin%

|¢a,2 > ® |0>®k. The main idea is to create a “logical”

i>, (7)

where ‘6> and ‘i> are two orthonormal vectors in a larger space spanned by ancillae, and the undo the encod-

ing to come back to the computational basis. To create ‘&a ,2>, we first create a state almost orthogonal to

6> , and then apply Grover’s algorithm to rotate this state toward ‘¢fa ,2> . Define the operator T, on 2 qubits

T, = U, Ale* u2]u, [} @
Since forany 8,U_, =c*U, o, T,and A(T,)can be realized by the basis B.
Let 6,:={A2(c") o*,U, U . T,, A(T,)}.

as

Lemma. For any & > Othere exists a B, -circuit W, of size O(5; Llog 1) that uses O(5, log 2) ancilla
and satisfies ”\/Va,2|0> ~|¢,,,)®|0)™"

Proof. Let k > 0 be an integer to be specified later.

®k+1
’ <e&.

Define |0):=|0)", |1):=T,%|0) and y:=arcsin(cos™ ). Notice that z/2-Zis the angle be-
tween ‘0> and ‘I> and 0< y <7 /2,since sin 7/:<O‘I>. Let S be the plane spanned by ‘O> and ‘I> Let
‘i> be the unit vector perpendicular to ‘0> in S and the angle between ‘i> and ‘I> IS y . Observe that on S we
can do the reflection along ‘1> and the reflection along ‘I> The former is simply KZK(GZ), which can be
implemented  using Az(ax)and of. Since T,'=T? the reflection along ‘I> is
R:=T,% (- A%*(c*)T,".

Without loss of generality we can assume «/2< 7/2;otherwise we will rotate ‘I> close to

XZK(GZ]&Q,2>and then apply A% (o-x) Choose k sufficiently large so that ¥ <z/2—ca/2. Now we can
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apply Grover’s algorithm to rotate ‘I> to a state very close to

¢a ,2> After that we do a “controlled-roll-

back” to map ‘ > (approximately) to |1> and does not change ‘0> This will give us an approximation of

|¢a,2> in the state space of the controlling qubit. The algorithm is as follows. Let T be the integer such that
|7z/2—(2T +1)}/—a/2|< y.Then T =0(l/y).

Algorithm 2

A B, -circuit VVC{,2 that maps |0>®|0> to a state close to |¢a,2>®|0>®2k

L1 Apply 1®T,%.

2 (Grover’s algorithm) Apply (R/A\2k (O'Z ))T

3. (Sub-circuit A ;) For a computational base vector |b> of the ancillae, if
|b) = ‘ > flip the first bit.

4. (Sub-circuit A, ') Use the first bit as the condition bit, apply A(T9®k)

It can be easily verified that ”\/VQ,ZQO>®|0>®2'()—|¢ ,2>®|0>®2k <2y. Setting y ~&/2, by direct

computation the number of ancillae is O(k)=0(s log 1), and the size of W, is O(k/y)=0(5, 1log L)

Approximating U, . Theorems are a straightforward corollary of the following theorem and Proposi-
tion.

Theorem: For any & > 0, the operator U, can be approximated with precision & by a B-circuit of size
O(5, -%-log1) and using O(5,, - log 1) ancillae.

Proof. We first compose a B-circuit that approximates U, according Algorithm 2, and use k, (differ-
ent) ancillae in each call to the latter, for an integer k to be specified later. Let y = cos® 6. Then the
precision is O(y ). . After implementing T,and A(T,), there are in total O(%) uses of o,

Finally we apply Algorithm 1 to approximate each o using the same phase ancilla ‘¢k2>for
K, =O(1/;/3)Let 0, = 2<COS4 0 +sin* 6’)k2/2 be the error of one call to & using exactly ‘¢k2.> Observe
that using the same phase ancilla for O(%) times causes error at most 1+ 2 +---+O(%) -1= O(y%) Set-
ting 8, = °, the total error caused by &*is O(y). Thus the total error of the whole circuit is still O(y ). Set-
ting y ~&,k, =0(5, log 1)=0(5, log 1) and k, =0(5, log 2). .

Therefore the number of ancilla is O(k, +k, )=0(d, log ). The size of the circuit is

O((k; +k,)2)=0(s, tlog 1)
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