
Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2017 год

1

УДК 512.6, 517.9, 519.6

STRUCTURE DESIGN TOOLKIT OF QUANTUM ALGORITHMS. PT 2.

Reshetnikov Andrey1 , Tyatyushkina Olga2, Ulyanov Sergey3, Degli Antonio Giovanni4

1PhD, Associate professor;

Dubna State University, Institute of the system analysis and management;

141980, Dubna, Moscow reg., Universitetskaya str., 19;

e-mail: agreshetnikov@gmail.com.

2PhD, Associate professor;

Dubna State University, Institute of the system analysis and management;

141980, Dubna, Moscow reg., Universitetskaya str., 19;

e-mail: tyatyushkina@mail.ru.

3Doctor of Science in Physics and Mathematics, professor;

Dubna State University, Institute of the system analysis and management;

141980, Dubna, Moscow reg., Universitetskaya str., 19;

e-mail: ulyanovsv@mail.ru.

4PhD, professor;

Polo Didattico e di Ricerca di Crema;

Via Bramante, 65-26013, Crema (CR), Italy;

e-mail: gda@dsi.unimi.it.

Principles and methodologies of quantum algorithmic gates design are considered. The possibilities of
quantum algorithmic gates simulation on classical computers are discussed. Applications of quantum gate of
nanotechnology in intelligent control are introduced.

Keywords: Quantum computing, universal quantum gates, quantum operators, matrix transformation

ИНСТРУМЕНТАРИЙ ПРОЕКТИРОВАНИЯ КВАНТОВЫХ АЛГОРИТМОВ. Ч. 2.

Решетников Андрей Геннадьевич1 , Тятюшкина Ольга Юрьевна2, Ульянов Сергей

Викторович3, Джиованни дели Антонио4

1Кандидат технических наук, доцент;

ГБОУ ВО МО «Университет «Дубна»,

Институт системного анализа и управления;

141980, Московская обл., г. Дубна, ул. Университетская, 19;

e-mail: agreshetnikov@gmail.com.

2Кандидат технических наук, доцент;

ГБОУ ВО МО «Университет «Дубна»,

Институт системного анализа и управления;

141980, Московская обл., г. Дубна, ул. Университетская, 19;

e-mail: tyatyushkina@mail.ru.

3Доктор физико-математических наук, профессор;

ГБОУ ВО МО «Университет «Дубна»,

Институт системного анализа и управления;

141980, Московская обл., г. Дубна, ул. Университетская, 19;

e-mail: ulyanovsv@mail.ru.

4PhD, professor;

Polo Didattico e di Ricerca di Crema;

Via Bramante, 65-26013, Crema (CR), Italy;

e-mail: gda@dsi.unimi.it.

http://slovari.yandex.ru/place%20of%20employment/en-ru/LingvoEconomics/#lingvo/
http://slovari.yandex.ru/place%20of%20employment/en-ru/LingvoEconomics/#lingvo/
http://slovari.yandex.ru/place%20of%20employment/en-ru/LingvoEconomics/#lingvo/
mailto:ulyanovsv@mail.ru

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2017 год

2

В работе рассмотрены принципы и методология проектирования квантовых алгоритмических
ячеек. Дано описание возможностей моделирования квантовых алгоритмических ячеек на
классических компьютерах для применения в проектировании интеллектуальном управлении на
основе нанотехнологий

Ключевые слова: квантовые вычисления, универсальные квантовые вентели, квантовые

операторы и матрицы преобразования

Introduction

The Hadamard gate creates the superpositions of classical states, and CNOT gate create the entangled

states for robustness quantum computation. We consider the possibility of creation the interference with

Quantum Discrete Fast Fourier Transformation (QFFT). Well-known examples of such transforms include

the discrete Fourier transform (DFT), the Walsh-Hadamard transform, the trigonometric transforms such as

the Sine and Cosine transform, the Hartley transform, and the Slant transform. All these different transforms

find applications in signal and image processing, because the great variety of signal class, occurring in

practice, cannot be handled by a single transform.

Quantum Parallelism, Interference, and QFFT.

We now have sufficient ingredients to understand how a quantum computation can perform logical

operations and compute just like an ordinary computer [1-18]. We describe an algorithm, which makes use

of quantum parallelism that we have hinted already: finding the period of long sequences.

Quantum Parallelism for Computation of Classical Functions. We use the fact that the efficiently

implementable classical functions can be implemented with comparable complexity on a quantum computer

using standard blocks. We assume perfect operations, so we do not deal with error control.

Remark. Let
 xf

 be a classical polynomially computable function. Quantum parallelism can be used

to compute all the values of  xf for all x at the same time. We will ignore any temporal work space,

which returns to its original state by the end of the computation that might be needed to compute  xf .

Knowing that arbitrary classical function  xf can be implemented on quantum computer, we assume the

existence of a quantum array fU that implements f . What happens if fU is applied to input in a

superposition? The answer is easy but powerful; since fU is a linear transformation, it is applied to all basis

vectors in the superposition simultaneously and will generate a superposition of the results. In this way, it is

possible to compute  xf for all n values of x in a single application of fU . This effect is called quantum

parallelism and was in detail in Part 1 described.

We use the following standard transformation to implement the quantum parallel computation of  xf ,

 xfyxyxU fU

f  ,,: where  does not denote the direct sum vectors, but rather the bitwise

exclusive – OR. Operator fU defined in this way is unitary for any function  xf . To compute  xf we

apply fU to 0,x . Since     0 xfxf , we have IUU ff  .

Graphically the transformation fU is depicted as

fU
y

x









 xfy

x



Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2017 год

3

Consider a superposition of x values, 
x

x xa . Then
fU transforms 0

x

x xa as

  
x

x

x

x xfxaxa ,0, .

Example: Changing of sign. We still have to explain how to invert the amplitude of desired result using

operator fU . Let   1xf if the sign of x is to change, and   1xf otherwise. We show, more generally,

a simple and surprising way to invert the amplitude of exactly those states with   1xf for a general f .

Let fU be the gate array that performs the computation  xfbxbxU f  ,,: . The additional register

is set to the superposition  10
2

1
b . The operation fU then gives a superposition in which the

phase of those x with   1xf are inverted and b remains unchanged. This means that applying of fU

to the superposition 
x

x xa and choose b as above to end up in a state where the sign of all x with

  1xf has been change, and b remains unchanged. This is readily seen as follows:

 

 

0 0 1 1

0 1

1
,0 ,1 ,1 ,0

21
0 1

2 1
0 1

2

x x x x

x X x X x X x X

f x

x

x x

x X x X

a x a x a x a x

U a x

a x a x

   

 

 
   

   
   

  
    
 

   



 

where   00  xfxX and   11  xfxX . The operation introduces a phase factor of – 1 for exactly

those 1Xx , as desired. It also leaves b unchanged. In particular the extra register is not entangled with

the x values.

Remark. This technique requires only one call to fU , but restrict the phase to 1 and – 1.

Example: Suppose we want to change the phase of all elements of 1X by  . Instead of using

 10
2

1
b we use  10

2

1
b . The result of applying fU is

 






















    

   0 0 1 1

0,1,1,0,
2

1
10

2

1

Xx Xx Xx Xx

xxxx

x

xf xaxaxaxaxaU 

In general, the resulting state is not simply a tensor product of x and b with some additional phase

shift. Usually, x and b become entangled. A possible approach to extracting the desired state from

entanglement is to measure the last bit. The state in last equation becomes either














 

 0 1

0,0,
Xx Xx

xx xaxa  or













 

 0 1

1,1,
Xx Xx

xx xaxa

If the measurement returns 0, we have achieved the desired phase shift. To get the desired result when

the measured value is 1, we try multiplying the state by  to get














 

 0 1

1,1,2

Xx Xx

xx xaxa

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2017 год

4

We get the desired result only when
2 = 1.

Example: While the preceding calculation shows that general phase changes cannot be implemented

with the technique for changing signs, the behavior when the last bit is measured suggest a way to change the

phase of the elements of 1X by a thm2 root of unity. This trick can be to rotate part of the state by i or i .

Let i . Perform fU and measure the last bit. If the result is 0, the state will be














 

 0 1

0,0,
Xx Xx

xx xaixa

and if the result is 1, the result will be





























   

   0 10 1

1,1,1,1,
Xx Xx

xx

Xx Xx

xx xaixaixaxai

except for a constant factor, the two states differ only in the phase of 1Xx and one can be transformed

into the other by applying a phase change of – 1 to 1X . Thus half the time, when 0 is measured, only one

call to  xf is needed. Otherwise a second phase change is needed, which requires an additional call to

 xf for a total of two calls. By iterating this process, one can achieve arbitrary rotations by thm2 roots of

unity. Let
mie 2/2  . The transformation and measurement of the last bit give














 

 0 1

0,0, 2/2

Xx Xx

x

i

x xaexa
m

 or













 

 0 1

1,1,2/2

Xx Xx

xx

i xaxae
m

when the last bit is measured to be 0 or 1, respectively. In the latter case the state is, up to a constant overall

phase,














 

 



0 1

1,1, 2/2

Xx Xx

x

i

x xaexa
m

.

Essentially 1X has been rotated by the right amount, but in the wrong direction. The desired state can

be achieved by rotating 1X by  12/2exp mi , twice the original amount, using the same process. In the

worst case, rotating elements in 1X by  mi 2/2exp  requires  mO invocations of fU . Surprisingly, the

average number of calls to  xf for this rotation is only
2

1

2

12


 
m

m

.

This average is always less than two, so on average this technique requires fewer calls.

A different generalization of the sign change technique allows additional function calls to be avoided

completely. Furthermore, multiple phases even up to
n2 of them, can be achieved in this way as long as they

are all multiplies of the same underlying phase
kie /2  . This technique requires only one function call

plus k2log additional qubits.

Example: In this case, the bitwise XOR  is replaced by modular addition. Specifically, we use

  kxfaxaxU f mod,,:  . Here,  xf maps states to the set  1,,0 k and the desired phase

adjustment for state x is
 xf , where

kie /2  . To perform this adjustment with a single evaluation of

 xf , we set the extra register in the superposition 





1

0

1 k

h

hk h
k

R  . The superposition R can be

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2017 год

5

constructed in k2log steps. To see behavior of fU acting on RS  , write 


 


1

0

k

j Xx

x

j

xaS , where jX

is the set of states for which   jxf  .

Then,





h j Xx

hk

x

j

hxa
k

RS ,
1



.

Operating with   kxfaxaxU f mod,,:  then gives 


 
h j Xx

hk

x

j

kjhxa
k

mod,
1

 .

For any j as h ranges from 0 to 1k , kjhm mod ranges over these values as well. In terms of

kjmhm mod,  and   kmkjhk mod . Furthermore, since 1k , we can write the sum as






m j Xx

mkj

x

j

mxa
k

,
1

 or 





m

mk

j Xx

j

x mxa
k

j


1

, which is just RDS  , where

D is diagonal matrix.

Remark: Approximation of Phase Changes. An arbitrary phase can be approximated by a series of shifts

by roots of unity. For instance, consider
ipe  2 for 10  p . Let

kbbbp 21.0 be the binary

expansion of p to the desired precision.

The 


 
















Bj

i
k

j

j

j

j

ebi 22

1

22exp  , where  1 jbjB . Arbitrary unitary transformation cannot

be efficiently approximated. However, if the phase changes can be concisely described, then they can be

approximated to k bit precision using this relations. Let the phase change be represented by a diagonal

matrix D with phases
mmm pD  , and let jf for each kj  be such that  mf j is the thj  bit of

mp .

Then D can be done by using one of the techniques for each jf using the 22 phase matrices 







jie 2/20

01


.

Thus, an arbitrary diagonal matrix D can be approximated to
kie 2/2

 in  kO steps plus the time it takes to

compute each of the sf j


.

Discrete Fourier Transform (DFT). The N bit Discrete Fourier Transform (DFT) matrix
NF is defined

by   ab

S

baN
N

F 
1

,
 , where

1,0,



SNZba and SN

i

e





2

 . Note that  
baNF
,

 is a symmetric and unitary

matrix. If v~ and v are complex SN dimensional vectors such that vFv
BN~ then we call v~ the DFT of v .

Calculating v~ the naive way, by multiplying v by
BNF , would take  2

SNO classical elementary operations

(complex multiplication mostly). Instead, it is possible to calculate v~ from v in order  SS NNO ln

classical elementary operations using the well-known Fast Fourier Transform (FFT) algorithm. The FFT

algorithm can be realized as a product of matrices each of which acts on at most 2 bits at a time. This way of

expressing it is often called “quantum FFT algorithm” because it is ideal for quantum computation. For

simplicity, we will only consider the case 4BN . What follows can be easily generalized to arbitrary

1BN . As usual, let 




















42

2
exp

2
exp


 i

N
i

S

. Define matrices ,, 2 by  ,1diag ,

 2,1diag ,  . The FFT algorithm might been stated like this

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2017 год

6

     

     

      432

124

884

322

24

443

212

4

222

1

2

1
2

1
2

1
2

1

PFIIIHF

PFIIIHF

PFIIIHF

HF

ExpressionF
BN









The matrices
432 ,, PPP are permutation matrices to be specified later. Although we could have written

just a single equation that combined all four equations for
iF , 4,3,2,1i , we have chosen not to do this, so

as to make explicit the recursive nature of the beast. Note

       021222765432124 012

,,,,,,,1 nnndiag  

The last equation becomes clear when one realizes that      021222 012 nnn  operating on a state

0123 ,,, aaaa gives the binary expansion of  012 ,,,0 aaad . Once the last equation sinks into the old bean,

it is only a short step to the realization that:

        

          

            

    

        

            432

32

2

012

01

0

031323

0212

01

02122231124

8

02122224

4

02144

2













nnnnnni

nnnni

nni

nnnn

nnn

nn

e

e

e

I

I

I
















The final step is to replace all tensor product that contain H by bit operators:

 

 

 

 0

1

2

3

8

24

42

8

HHI

HIHI

HIHI

HIH









If all the permutation matrices for jF , 4,3,2,1j are combined into a single permutation BRP , then

   43224 PPIPIPBR  . Let
4Boola


label the columns of a 1616 matrix.

As was known, the matrices 234 ,, PPP acts as shown in Fig. 1.

 

 
 

 
 

  BRPaaaa

PI

aaaaaa

PI

aaaaaa

P

aaaaaa

3210

24

322310

32

011230

4

300123

,,,

,,,

,,,

,,,













Figure 1. Permutation matrices
BRPPPP ,,, 234

 that arise in the FFT algorithm for 4BN

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2017 год

7

Therefore, their product BRP takes  0123 ,,, aaaaa 


 to  3210 ,,, aaaaa 


; i.e., BRP reverses the bits

of a


. In general form the FFT algorithm can written as following

              BRB

S

N PHHHNH
N

F
B

0011221
1

  , where  H is the 1- bit Hadamard matrix

operating on bit
1,0 

BNZ , BRP is the bit reversible matrix for BN bits, and

        ,1,2,1  BN , where

      





2

2
exp,

1



nni

Thus,   , is diagonal matrix whose diagonal entries are either 1 or a phase factor.

Example. For example, 3BN ,    


 


otherwise

aaifaaa
aaann

0

0,,1
,,20 02012

012 so

     


















111110101100011010001000

20 333 ,1,,1,1,1,1,12,0
 iinni

eediage .

For 3BN , reversing the bits of the numbers contained in 7,0Z exchanges  0011 d with

 1004 d and  0113 d with  1106 d , and it leaves all other numbers in 7,0Z the same. Thus, for

3BN , BRP is the 88 permutation matrix which corresponds to the following product of transpositions:

  6,34,1 .

Note that     ,,HF
BN and BRP are all symmetric matrices. Hence, taking the transpose of both

sides of
BNF , one gets              1221100

1
 BBR

S

N NHHHHP
N

F
B

 .

Both equations are called the quantum FFT algorithm.

Remark: Quantum Cooley-Tukey FFT Algorithm and Bit – Reversible Permutation Matrix. The classical

Cooley-Tukey FTT factorization for a
n2 - dimensional vector is given by nnnn PFPAAAF nn 222112

   ,

where in BIAi 22 1   , 






















11

11

22

22

2
2

1

ii

ii

i

I

I
B and  12

2

2

222

1

1 ,,,,1 

 
i

iiii diag   with

i

i e 2

2

2






 . We have that 











11

11

2

1
2 HWF . The operator 112 AAAF nn

n  represent the

computational kernel of Cooley-Tukey FFT while nP
2

 represents the permutation, which needs to be

performed on the elements of the input vector before feeding that vector into the computational kernel. The

Genteleman – Sande FFT factorization is obtained by exploiting the symmetry of nF
2

and transporting the

Cooley-Tukey factorization leading to
TT

n

T

n

T
nnnn FPAAAPF 221122

  , where
TT

n

T

n

T
nFAAA 211 

represent the computational kernel of the Genteleman – Sande FFT while nP
2

represents the permutation

which needs to be performed to obtain the elements of the output vector in the correct order. A quantum

circuit for the implementation of
T

nF 2 is presented by developing a factorization of the operator iB
2

 as






























































1

1

11

11

11

11

2

2

22

22

22

22

2 0

0

2

1

2

1

i

i

ii

ii

ii

ii

i

I

II

II

I

I
B

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2017 год

8

Let 




















1

1

2

2

2 0

0

i

i

i

I
C . It then follows that

  iii CIHB
222 1 and   iiniiiniin CIIHIBIA

2222221  

Remark: Unitary of Quantum Fourier Transform. For a system of n qubits QFFT is defined as







12

0,

2/2

2

1
n

n

kx

ikx

n
xekF  .

Verify that F is unitary. Write down the matrix representation of F for 2n . One has

   


































xx

xFFx

k

n

n

kxkx

ikxxki

n

xxxikx

xekkexFF

n

nn

,

12

0

,,,

2/22/2

2/2exp
2

1

2

1

  





If xx  , then 1  xFFx . Otherwise,

 

 
0

1

1

2

1
2/2

2












nxxi

xxi

n
e

e
xFFx





, since

  nxx 2 . Thus 1FF . For 2n one has




























ii

ii
F

11

1111

11

1111

2

1
.

Example. Let us consider a quantum computation consisting of n+l+m qubits, where a total of n qubits

(to be called the index bits) are used for an FFT, a total of l qubits describe the Hilbert space in which the

operator U acts, and m extra working qubits are required for temporary storage. Let
nQ 2 . The accuracy

of result will grow as 1/Q. Assume that the n index qubits are initially in the state 0 and that the l qubits

are initially in the state
aV . The state vector

aV may be generated using a quantum algorithm, such as

quantum annealing (hence, the need for
aV to be generated in quantum polynomial time). That is, the initial

state is aV0 , where the m work qubits are assumed to be 0 unless specified performs otherwise.

We a 2/ rotation on each of the n idex qubuts to obtain the state 





1

0

1 M

j

aVj
M

 .

Next, one performs a series of quantum logic operations that transform the computation into the state

 





1

0

1 M

j

a

j
VUj

M
 . This transformation is accomplished by applying the operation U to the

second set of l qubits (which are initially in the state
aV) j times. It can be implemented easily by

performing a loop (indexed by i) from 1 to M.

Remark. Using standard quantum logic operations, set a flag qubit to the value 1 if and only if ji 

and perform the operation U conditioned on the value of this flag. Thus only those components of the

above superposition for which ji  are effected. Finally, undo the flag qubit and continue with the next

iteration. After M iterations, the state above is obtained.

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2017 год

9

At this point, it is helpful to rewrite the state in a slightly different manner. Label the eigenvectors of

U by the state k and the corresponding eigenvalues with
k . We can then write 

k

kka cV  in

which case the state  





1

0

1 M

j

a

j
VUj

M
 can be rewritten as

 

 

 












1

0

1

0

1

1

M

j

k

j

k

k

k

M

j k

kk

j

jc
M

cUj
M



 

If we write
k as ki

e


 and change the order of the qubits that the labels k appears first, the result is

seen then most clearly:

 





k

M

j

ji

kk jec
M

k

1

0

1 

It is now self-evident that a quantum FFT performed on the m index qubits will reveal the phases

k and thereby the eigenvalues
k . The quantum FFT requires only poly(n) operations, whereas the

accuracy of the result will scale linearity with
nM 2 . Each frequency is seen to occur with the amplitude

kak Vc  ; by performing a measurement on the n index qubits, one thus obtains each eigenvalue with

probability
2

kc . Only polynomial number of trials is therefore required to obtain any eigenvalue for which

kc is not exponentially small. If the initial state aV is close to the desired state (i.e., aa VV is close to

1), then only a few trials may be necessary.

Remark. The number of qubits required for the FFT is not as large as one might at first suppose, based

on the earlier statement that the accuracy scales linearly with the size of the FFT. This statement is true only

for fixed U . By increasing the length of time in  tU one can obtain the eigenvalues to arbitrary

precision using a fixed number of FFT points. However, the number of points in the FFT must be sufficiently

large so as to seperate the frequencies corresponding to distinct eigenvectors. This is how the estimate of 6 or

7 qubits (64 or 128 FFT points) is made.

Quantum Parallelism, QFFT and Interference. Consider the sequence      1,,1,0 Qfff  , where

kQ 2 ; we shall use quantum parallelism to find its period. We start with a set of initially spin-down

particles which we group into sets (two quantum registers, or quantum variables):

 ,,;,,0,0  , the first set having k bits; the next having sufficient for our need. (In fact

other registers are required, but by applying Bennett`s solution to space management they may be suppressed

in our discussion here.) On each bit of the first register we perform the 2/U one-bit operation, yielding a

superposition of every possible bit-string of length k in this register: 





1

0

0;
1 Q

a

a
Q

. The next stage is

to break down the computation, corresponding to the function  af , into a set of one-bit and two-bit unitary

operations. The sequence of operations is designed to map the state 0;a to the state  afa; for any

input a . Now we see that the number of bits required for this second register must be at least sufficient to

store the longest result  af for any of these computations. When, however, this sequence of operations is

applied to our exponentially large superposition, instead of the single input, we obtain

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2017 год

10

 





1

0

;
1 Q

a

afa
Q

. An exponentially large amount of computation has been performed essentially for

free. The final computational step, like the first, is again a purely quantum mechanical one.

Consider a discrete quantum FFT on the first register: 





1

0

/21 Q

c

Qiac ce
Q

a 
. It is easy to see

that this is reversible via the inverse transform and indeed it is readily verified to be unitary. Further, an

efficient way to compute this transform with one-bit and two-bit gates has been described by Coopersmith

(Fig. 2). When this quantum FFT is applied to our superposition, we obtain

 









1

0

1

0

/2 ;
1 Q

a

Q

c

Qiac afce
Q


. The computation is now complete and we retrieve the state output from

the quantum computation by measuring the state of all spins in the first register (the first k bits). Indeed,

once the FFT has been performed the second register may even discarded.

nX






















nie 22
000

0100

0010

0001



2

U

2

U
1X

2X 1X
2

U

1ka

2ka

3ka

Figure 2. Circuit for QFFT of the variable 011 aaak  using Coppersmith`s FFT approach. The two-bit

“
nX ” gate may itself be decomposed into one-bit and XOR gates

Suppose  af has period r so    afraf  . The sum over a will yield constructive interference

from the coefficients








Q

iac2
exp only when

Q

c
 is a multiple of the reciprocal period

r

1
. All other values

of
Q

c
 will produce destructive interference to a greater or lesser extent. Thus, the probability distribution for

finding the first register with various values is shown schematically by Fig. 3.

0 1/r 2/r 3/r c/q

prob (c)

Figure 3. Plot of the probability of each result prob (c) versus c/q. Constructive interference produces

narrow peaks of the inverse period of the sequence 1/r

One complete run of the quantum computation yields a random value of /c q underneath one of the

peaks in the probability of each result prob(c). That is, we obtain a random multiple of the inverse period. To

extract the period itself we need only repeat this quantum computation roughly
k

r
loglog times in order to

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2017 год

11

have a high probability for at least one of the multiplies to be relatively prime to the period r - uniquely

determining it. Thus, this algorithm yields only a probabilistic result. Fortunately, we can make this

probability as high as we like.

Quantum Computing: Unified Approach to Fast Unitary Transforms

Discrete orthogonal transforms and discrete unitary transforms have found various applications in

signal, image, and video processing, in pattern recognition, in bio-computing, and in numerous other areas.

Well-known examples of such transforms include the discrete Fourier transform (DFT), the Walsh-

Hadamard transform, the trigonometric transforms such as the Sine and Cosine transform, the Hartley

transform, and the Slant transform. All these different transforms find applications in signal and image

processing, because the great variety of signal class, occurring in practice, cannot be handled by a single

transform.

On a classical computer, the straightforward way to compute a discrete orthogonal transform of a signal

vector of length N takes in general O(N
2

) operations. An important aspect in many applications is to achieve

the best possible computational efficiency. The examples mentioned above allow an evaluation with as few

as O(N log N) operations or – in the case of the wavelet transforms – even with as little as O(N) operations.

In view of the trivial lower bound of)(N operations for matrix-vector-products, we notice that these

algorithms are optimal or nearly optimal.

Remark: The rules of the game change dramatically when the ultimate limit of computational integration

is approached, that is, when information is stored in single atoms, photons, or other quantum mechanical

systems. The operation manipulating the state of such a computer have to follow the dictum of quantum

mechanics. However, this is not necessarily a limitation.

A striking example of the potential speed-up of quantum computation has been given by Shor in 1994.

He showed that integers can be factored in polynomial time on a quantum computer. In contrast, there are no

polynomial time algorithms known for this problem on a classical computer. The quantum computing model

does not provide a uniform speed-up for all computational tasks. In fact, there are a number of problems,

which do not allow any speed-up at all. For instance, it can be shown that a quantum computer searching a

sorted database will not have any advantage over a classical computer. On the other hand, if we use the

classical algorithms on a quantum computer, then it will simply perform the calculation in a similar manner

to a classical computer. In order for a quantum computer to show its superiority one needs to design new

algorithms, which take advantage of quantum parallelism.

A quantum algorithm may be thought of as a discrete unitary transform, which is followed by some I/O

operations. This observation partially explains why signal transforms play a dominant role in numerous

quantum algorithms. Another reason is that it is often possible to find extremely efficient quantum

algorithms for the discrete orthogonal transforms mentioned above. For instance, the discrete Fourier

transform (DFT) of length N = 2
n

can be implemented with O(log
2

N) operations on a quantum computer.

A quantum computer directly manipulates information stored in the state of quantum mechanical

systems. The available operations have many attractive features but also underlie severe restrictions, which

complicate the design of quantum algorithms. We are present a divide-and-conquer approach to the design of

various quantum algorithms. The class of algorithm includes many transforms, which are well known in

classical signal processing applications. We show how fast quantum algorithms can be derived for the DFT,

the Walsh-Hadamard transform, the Slant transform, and the Hartley transform. All these algorithms use at

most O(log
2

N) operations to transform a state vector of a quantum computer of length N.

Divide-and-Conquer methods. We have seen that a number of powerful operations are available on a

quantum computer. Suppose that we want to implement a unitary or orthogonal transform UU(2
n

) on a

quantum computer. The goal will be to find an implementation of U in terms of elementary quantum gates.

Usually, our aim will be to find first a factorization of U in terms of sparse structured unitary matrices U
i
,

1 2 kU U U U , where, of course, k should be small. It is often very easy to derive quantum circuits for

structured sparse matrices. For example, if we can find an implementation with few multiply controlled

unitary gates for each factor U i , then the overall circuit will be extremely efficient.

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2017 год

12

Remark. The success of this method depends of course very much on the availability suitable

factorization of U. However, in the case orthogonal transforms used in signal processing, there are typically

numerous classical algorithms available, which provide the suitable factorizations. It should be noted that, in

principle, an exponential number of gates might be needed to implement even a diagonal unitary matrix.

Fortunately, we will see that most structured matrices occurring in practice have very efficient

implementations.

In fact, we will see that all the transforms of size 2
n
2

n
 discussed in the following can be

implemented with merely O(log
2

2
n

) = O(n
2

) elementary quantum gates. We discuss a simple – but novel –

approach to derive such efficient implementations. This approach is based on a divide-and-conquer

technique. Assume that we want to implement a family of unitary transforms U
N

, where N = 2
n

 denotes the

length of the signal. Suppose further the family U
N

 can be recursively generated by a recursive circuit

construction. We will give a generic construction for the family of pre-computation circuits Pre- and the

family of post-computation circuits Post. This way, we obtain a fairly economic description of the

algorithms.

Example: Assume that total of P(N) elementary operations are necessary to implement the pre-

computation circuit Pre
2/N
. Then the overall number T(N) of elementary operations can be estimated from

the recurrence equation T(N) = T(N/2) + P(N). The number of operations T(N) for the recursive

implementation can be estimated as follows:

LEMMA: If    log ,pP N N then    1log pT N O N .

Fourier transform. We will illustrate the general approach by way of some examples. The first example

is the DFT. A quantum algorithm implementing this transform found a most famous application in Shor’s

integer factorization algorithm.

Example: Algorithm and Physical Interpretation of Fast Fourier Transform (FFT). Consider a signal

(any quantity that is a function of time, perhaps pressure in the air) affecting a system (anything that responds

to a signal, like a microphone). The outcome of this interaction is called, naturally, the response of the system

to the signal. The question is. How are we to compute such response digitally? In many applications (in

which often the horizontal axis is not time, but also space, e. g. in image processing) it is of great interest to

compute the system response, thereby simulating the system. The following is a rough description of how

this is done.

First we digitize the signal, by sampling it often enough. Then we must know how the system behaves.

It turns out that, if the system is time invariant (does not change its behavior over time) and linear (roughly,

gives twice the response to twice the signal), then its behavior is completely captured by its impulse response

- a description of what it does over time if it is given a sudden unit “jerk” at time zero. If we know that, since

any signal is the sum of such jerks happening at various times, and since we know that the system is time-

invariant and linear, then all we have to do is calculate the responses at various times, and add them to get

the total system response.

Remark: To do the algebra, suppose that the signal is the sequence (a
0
,…,a 1T) of real numbers, and

the system impulse response is (b
0
,…,b 1T) (assume that they both have the same time horizon, that is, they

both die after T time unit. Then at time 0 we have the system response a 0 b
0
 - only the first pulse of the

signal has arrived, and has only gotten the immediate response b
0
. At time 1 we have the system response

a
0
b 1 + a 1 b

0
, because now a 1 gets the immediate response, while a

0
 causes the delay-1 response of the

system, and the two are added. After two steps, then the system response is a 0 b 2 + a 1 b 1 + a 2 b
0
.

What is the system response after t time units? If t < T, that is, if the signal keeps arriving at time t, then

it is c
t
 = it

t

i iba  1
. If t T – that is, if the signal has died out – then the system response keeps coming,

since the system keeps responding to the signal in the past: The system response is then c
t
 =

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2017 год

13

it

T

Tti iba 




1

1
. Finally, at t = 2T – 1 we have c 22 T = a 1T b 1T , and thereafter c

t
 = 0: the system response

has died out.

This sequence of formulas for c
0
,…,c 22 T are precisely the formulas for the coefficients of the product

of product of two polynomials.

































 22

0

1

0

1 T

i

i

i

T

i

i

i

T
i

i xcxbxa

This is not a coincidence: We can think of both the signal and the system response as two polynomials

in x, where x can be thought of as a unit delay, x
2

 two delays, etc. Then the product of the two polynomials

is, naturally enough, the system response.

Conclusion: It is of great interest to compute very fast the coefficients c
t
, t = 0,…, 2T – 2, of the prod-

uct of two given polynomials of degree T – 1.

Unfortunately, just by looking at the formulas, the number of operations required to compute the c
t
’s

seems to be  (T
2

): The number of terms increases from 1 to T and then down to 1 again, for a sum of

about T
2

. How can we calculate the c
t
’s much faster?

Remark: The c
t
’s are the coefficient of the polynomial C(x) = 





22

0

T

i

t

t xc = A(x)B(x), where A(x) =






1

0

T

i

t

t xa , and B(x) =
tT

i t xb




1

0
. And here is a scheme for calculating these coefficients:

1 Calculate the values of A(x) and B(x) at enough points x 1 ,…, x
n

where n2T - 1.

2 Calculate the values of C(x) at these points as C(x
i
) =    ii xBxA  , i=1,…, n

3 Now that we know at least 2T – 1 values of the 2T – 2-degree polynomial C(x), we can

interpolate and recover the coefficients. (Recall that there is a unique d-degree polyno-

mial that goes through d+1 points.)

But there are problems with this approach: Although step (2) is easy (it only requires n multiplications),

step (1) seems to still require  (n
2

) operations, and step (3) seems even harder. Have we accomplished

nothing with this clever manoeuvre?

It turns out that we need another trick: Pick the points x 1 ,…, x
n

 on which to evaluate A(x) and B(x) so

that the n evaluations can be done together very fast. It turns out that the most clever way to choose these

points is to find n different points x 1 ,…, x
n

 such that the equation x
n

= 1 holds for all of them.

Remark: Obviously, there are at most two real numbers that satisfy this equation: 1, if n is odd, and

perhaps –1, if n is even. But there are exactly n complex numbers that do: The n complex roots of unity. They

are n points lying, in the complex plane, on the unit circle. And since on the unit circle rising to the nth

power means multiplying the angle by n, all n of these numbers are mapped to the real unity when raised to

the nth power. Let us call then x 1= 1, x 2 = w, x
3
= w

2
, x 4 = w

3
,…, x

n
= w

1n
. What we need to remember

from now on about these numbers is that w is some number satisfying w
n

= 1 – nothing else. Except one

thing: If we take a root of unity like w
i
, and add its powers 1+w

i
+w

i2
+…+w

in)1(
 then we get 0 – because

the powers of w
i
 are just points around the origin, “pulling it in all different directions.” With one exception:

If i = 0, then of course the sum is 1+1+…+1 = n.

We conclude that we want to find a fast way to compute these n values:

 A(w
i
) =

ij
n

i

iwa




1

1

, j =0,…, n – 1. (1)

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2017 год

14

In this equation (1), j varies over 0,…, n – 1 to define the n points x 1 ,…, x
n

 on which to evaluate A(x),

and the summation is the value A(x
1j
) = A(w

j
). We need to remember all the time that w

n
= 1 – this is the

fact that is going to save us from the  (n
2

) algorithm.

We are going to compute all n values in (1) together, by divide-and-conquer. Assume that n is a power

of two – presumably the next power of two above 2T – 2. Then, we divide the sequence of coefficients

a
0
,…, a

1n
 into two subsequences: The even subsequence a

0
, a 2 , a 4 ,…, a

2n
, and the odd subsequence

a 1 , a
3
, a

5
,…, a

1n
. Then we can write (1) as

A(w
j
)

= 




1
2

0

2

2

n

i

ij

iwa +
jij

n

i

i wa 






2

1
2

0

12

= ij

n

i

i wa)(2

1
2

0

2




+ w
j ij

n

i wa)(2

1
2

12




Now this equation is just two problems of the same kind applied to sequences of length
2

n
 (compute

the values of a degree
2

n
 - 1 – polynomial at the

2

n
-nd roots of 1 – notice that is 1, w

2
, w

4
,…, w

22 n
 are

precisely the
2

n
-nd roots of unity). To obtain the A(w

j
) from the results of the conquered subproblems, we

just multiply the j mod
2

n
-th result of the second evaluation by w

j
 and add it to the corresponding j mod

2

n
-th result of the first. The points on which we need to evaluate the subproblems are just

2

n
, because this is

the number of the possible values of (w
2

)
j
. This is quintessential divide-and-conquer, with recurrence

T(n) = 2T(
2

n
) + n

Here the O(n) term is the work required to “put together” the results of the conquered parts (n

multiplications and additions). The total complexity of the algorithm is, as we know, O(n log n).

Remark: This algorithm, which computes the values of an n-degree polynomial at the n n-th roots of

unity in O(n log n) time by divide-and-conquer is called the Fast Fourier Transform (FFT). It is perhaps one

of the most important and widely used algorithms; it was discovered by Cooley and Tuckey in the 1950’s.

Example: Notice that the FFT, as described so far, only takes care of Step 1 of this scheme: Evaluating

A(x) and B(x) at n points. How are we to carry out Step (3) – recovering the coefficients of C(x) from these n

values? The amazing fact is that this can be can be done with another FFT – but this time w
1
 playing the

role of w.

This is just algebra. Suppose that we apply this “inverse” FFT to the values of C(w
j
), j=1,…,n – 1,







1

0

)(
n

j

jkj wwC
=

jk
n

j

n

i

ij

i wwc 








 )(
1

0

1

0

 =

 

















1

0

1

0

)(
n

i

n

j

kij

iwc

Consider however the inner sum of the last line, for some fixed values of i and k. If these values are the

same, then the parenthesis contributes n. If they are not, then the powers of w
ki  1 cancel each other. So,

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2017 год

15

the above sum is just
jkn

j

j wwC 

)(
1

0
=c

k
 - it recovers the coefficients of C(x). To summarize, the three

steps of polynomial multiplication algorithm now are these:

Step1: Compute the FFT of a
0
,…,a

1n
 top obtain the sequence A

0
,…,A

1n
. Repeat with

b
0
,…,b

1n
 top obtain the sequence B

0
,…,B

1n
.

Step2: Compute C
i
:= iA B

i
, i = 0,…, n – 1 (note that these are complex number multi-

plications.)

Step3: Compute the inverse FFT (FFT with w
1
 in the place of w), and then divide the

results by n, to obtain c
0
,…, c

1n
.

Remark: We often need to solve the system response problem when the input signal is periodic – that is,

it is repeated after n time units. The system response then is found by an FFT with half the points (n = T).

Remark: Also, since all we needed from w is the equations w
n

= 1 and   0iw , we could use any

arithmetical domain where these equations hold – not necessarily the complex numbers with their slow

multiplications. We shall see in good time that there are domains in which we are computing modulo a large

integer, in which such equations hold.

Example: The FFT Circuit. As with all divide-and-conquer algorithms, it is worthwhile to unravel the

recursion, to see what the algorithm really does. If we do this, the algorithm becomes the circuit shown in

Fig. 4.

Remark: A word of explanation: The nodes are complex variables. The nodes on the left are the inputs

(but in a funny order), and those on the right are the outputs. An arrow labeled with the integer j (unlabeled

arrows are labeled “0”) from x to y can be though of as carrying the value xw
j
 to y. The two arrows coming

into a node (other than the input nodes) are added together. Under this interpretation, Figure 4 shows the FFT

of eight points.

Figure 4. The recursive structure of the quantum Fourier transform

Notice these properties of this circuit:

 There are 3 = log n levels, with n variables each, and four complex operations per

variable (actually, seven real operations), for a total of 7n log n operations.

 There is a unique path between every input node and every output node.

 The path between a
i
 and A(w

j
) has label sum equal to ij modulo 8 (and it makes sense

to take powers of w modulo 8, since we know that w
8
= 1).

 The previous two facts ensure that the circuit correctly computes the FFT.

 The inputs are mixed up this weird order. (Compare the binary representations of the

indices of an input and an output that are opposite one another).



Notice how neatly arranged this circuit is for parallel evaluation. Indeed, the FFT is a

natural for parallelism, and can be carried out in log n short parallel stages. Often the

FFT is computed by specialized embedded parallel hardware.

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2017 год

16


Each stage of the FFT consists of

2

n
 “butterfly” operations – a typical butterfly is the

subcircuit shown in bold in Fig. 4.

Recall that the DFT F
N

 of length N = 2
n

 can be described by the matrix

F
N

 =

N

1
( jk

) '1,...,0,  Nkj

Where  denotes a primitive N-th root of unity,  =exp(2 i/N). And i denotes a square root of –1.

Remark: The main observation behind the fast quantum algorithm dates at least back to work by

Danielson and Lanczos in 1942 (and is implicitly contained in numerous earlier works). They noticed that

the matrix F
N

 might be written as

F
N

 =

2

1
P
N 









 2/2/2/2/

2/2/

NNNN

NN

TFTF

FF

Where P
N

 denotes the permutation of rows given by P
N
bx = xb with x an n – 1-bit integer, and b a

single bit, and T
2/N
:=diag(1, , 2

,…, 12/ N
) denotes the matrix of twiddle factors.

This observation allows to represent F
N

 by the following product of matrices:

F
N

 = NP

  










2/

2/

0

0

N

N

F

F










2/

2/

0

01

N

N

T 2

1















 2/2/

2/2/

11

11

NN

NN
=

= P
N

(1 2  F
2/N
) 









2/

2/

0

01

N

N

T
 2/2 1NF 

This factorization yields an outline of an implementation on a quantum computer.

Remark: It remains to detail the different steps in this implementation. The first step is a single qubit

operation, implementing a butterfly structure. The next step is slightly more complicated. We observe that

T 2/N is a tensor product of diagonal matrices D j = diag(1,
12 j

). Indeed, T 2/N = D 1n
 … D 2  D 1 .

Thus, 1
2/N
 T

2/N
 can be realized by controlled phase shift operations (see Fig. 5 for an example).

We then recurse to implement the FT of smaller size. The final permutation implements the cyrlic

rotation of the quantum wires.

Example: The complexity of the QFT can be estimated as follows. If we denote by R(N) the number of

gates necessary to implement the DFT of length N = 2
n

on a quantum computer, then implies the recurrence

relation R(N) = R(N/2) +  (log N), which leads to the estimate R(N) = O(log
2

 N).

It should be noted that all permutations P
N

(1 2  P 2/N)…(1 2N
 P 4) at the end can be combined

into a single permutation of quantum wires.

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2017 год

17

Figure 5. Implementation of the twiddle matrix
8 81 T

The resulting permutation is the bit reversal, see Fig. 6.

Figure 6. The bit reversal permutation resulting from
8 2 4 4 2(1)(1)P P P 

The Walsh – Hadamar transform

Example: The Walsh-Hadamard transform W
N

 is maybe the simplest instance of the recursive

approach. This transform is defined by the Hadamard gates W 2 = H in the case of signals of length 2. For

signals of larger length, the transform is defined by W
N

= (1 2  W
2/N
)(H 1

2/N
).

This yields the recursive implementation shown in Fig. 7.

Figure 7. Recursive implementation of the Walsh-Hadamard transform

Since P(N) = (1), the Lemma 3 shows that the number of operations T(N)O(log N). It is of course

trivial to see that in this case exactly log N operations are needed.

The Slant transform

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2017 год

18

Example: The Slant transform is used in image processing for the representation of images with many

constant or uniformly changing gray levels.

Remark: The transform has good energy compaction properties. It is used in Intel’s ‘Indeo’ video

compression and in numerous still image compression algorithms.

The slant transform S
N

 is defined for signals of length N= 2 by the Hadamard matrix

S 2 = H =
2

1









11

11
, and for signals of length N = 2

k
, N >2, by

 S
N

 = Q
N 









2/2/

2/2/

0

0

NN

NN

S

S
, (2)

where 0
2/N
 denotes the all-zero matrix, and Q

N
 is given by the matrix product

 Q
N

 = P
a

N (1
2/N
 NQ̂)(H 1

2/N
)P

b

N . (3)

The matrices in (3) are defined as follows: 1
2/N
 is the identity matrix, H is the Hadamard matrix, and

P
a

N realizes the transposition (1,N/2), that is,

 P
a

N 1 = 2/N P
a

N 2/N = 1 and P
a

N x = x otherwise.

The matrix P
b

N is defined by P
b

N x = x for all x except in the case x= N/2+1, where it yields the

phase change P
b

N 12/ N = - 12/ N . Finally NQ̂ =






















2

2

10

0

N

NA

, A
N

 = 








 NN

NN

ab

ba
, where

a
N

 and b
N

 are recursively defined by a 2 = 1 and b
N

 =

 22/41

1

Na

 and a
N

 = 2b
2/Na

N
. It is

easy to check that A
N

 is a unitary matrix.

Remark: The definition of the Slant transform suggests the following implementation. Equation (2) tells

us that the input signal of a Slant transform of length N is first processed by two Slant transforms of size

N/2, followed by a circuit implementing Q
N

. We can write equation (2) in the form

S
N

 = Q
N 









2/2/

2/2/

0

0

NN

NN

S

S
 = Q

N  2/21 NS .

The tensor product structure 1 2 2/NS is compatible with our decomposition into quantum bits. This

means that a single copy of the circuit S
2/N
 acting on the lower significant bits will realize this part. It

remains to give an implementation for Q
N

. Equation (3) describes as a product of for sparse matrices, which

are easy to implement. Indeed, the matrix P
b

N is realized by conditionally excerting the phase gate Z. The

matrix H 2/1N is implemented by a Hadamard gate H acting on the most significant bit. A conditional

application of A
N

 implements the matrix 1
2/N NQ̂ . A conditional swap of the least and the most

significant qubit realizes P
a

N , that is, three multiply controlled NOT gates implement P
a

N .

THEOREM: The Slant transform of length N = 2
k

 can be realized on a quantum computer

with at most O(log
2

 N) elementary operations (that is, controlled NOT gates and single qubit

gates), assuming that additional workbits are available.

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2017 год

19

Proof. Recall that a multiplied controlled gate can be expressed with at most O(log N) elemen-

tary operations as long as additional workbits are available. It follows from the Lemma that at

most O(log
2

 N) elementary operations are needed to implement the Slant transform.

The quantum circuit realizing this implementation is depicted in Fig. 8.

Figure 8. Implementation of the Slant transform

The recursive step is realized by a single Slant transform of size
/ 2NS . The next three gates implement

b

NP ,
/ 21NH  , and / 2

ˆ1N NQ , respectively. The last three gates implement
a

NP . Thus, the implementation

of
NQ totals five multiply controlled gates and one single qubit gate.

The Hartley transform

Example: the discrete Hartley transform H
N

 is defined for signals of length N=2
n

 by the matrix

    
1,...,0,2sin2cos

1
 NlkN klkl

N
H  .

Remark: The discrete Hartley transform is very popular in classical signal processing, since it requires

only real arithmetic but has similar properties. In particular, there are classical algorithms available, which

outperform the FFT algorithms. We derive a fast quantum algorithm for this transform, again based on a

recursive divide-and-conquer algorithm. A fast algorithm for the discrete Hartley transform based on a

completely different approach has been discussed by Klappenecker and Rotteler.

The Hartley transform can be recursively represented as

 H
N

=
2

1
N

N

N

NNN

NN
Q

H

H

BC 
























 2/

2/

2/2/2/

2/2/ 1

11

11
, (4)

where Q
N

is the permutation Q
N

bxxb  , with b a single bit, separating the even indexed samples and

the odd indexed samples; for instance Q
8
   tt

xxxxxxxxxxxxxxxx 7531642076543210 ,,,,,,,,,,,,,,  .

The matrix BC
2/N
 is given by

,
1

12/

2/ 









N

N
CS

BC with































 



11

14/14/

14/14/

11

1

NN

N

N

N

N

N

N

N

N

NN

cs

cs

sc

sc





The equation (4) leads to the implementation sketched in Fig. 9.

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2017 год

20

Figure 9. Recursive implementation of the Hartley transform.

Remark: It remains to describe the implementation of
2/NBC . It will be instructive to detail the action

of the matrix
2/NBC on a state vector of 1n qubits. We will need a few notations first. Denote by bx a

state vector of 1n qubits, where b denotes a single bit and x an 2n bit integer. We denote by x the

two’s complement of x. We mean by 0x the number 0 and by1 the number 12 22 n
, that is, 1 has all

bits set and 0 has no bit set. Then the action of
2/NBC on bx is given by

00002/ NBC , ysycyBC y

N

y

NN
 1002/ ,

01012/ NBC , ycysyBC y

N

y

NN 1012/


 ,

where  Nksk

N /2sin  and  Nkck

N /2cos  .

We are now in the position to describe the implementations of
2/NBC shown in Fig. 10. In the first step,

the least 2n qubits are conditionally mapped to their two’s complement. More precisely, the input signal

bx is mapped to xb  if b =1, and does not change otherwise. Thus, the circuit TC implements the

involuntary permutation corresponding to the two’s complement operation. This can be done with  nO

elementary gates, provided that sufficient workspace is available. In the next step, a sign change is done if

1b , that is, xx 11  , unless the input x was equal to zero, 1010  . The next step is a

conditioned cascade of rotations. The least significant bits determine the angle of the rotation on the

 stn 1 most significant qubit. The k-th qubits exerts a rotation,

   
    












 


NN

NN
R

kk

kk

k

/22cos/22sin

/22sin/22cos
2 


,

on the most significant qubit. Finally, another two’s complement circuit traditionally applied to the state.

Figure 10. Implementation of the matrix BCN/2

One readily checks that the implementation indeed maps
002/NBC

 to
00

 and
102/NBC

 to
10

.

The input
x0

 is mapped to
xsxc x

N

x

N
 10

, as desired. Assume that the input is
x1

 with 0x . Then

the state is changed to x1 by the circuit TC, and after that its sign is changed, which yields x 1 . The

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2017 год

21

rotations map this state to xcxs x

N

x

N



10 . The final conditional two’s complement operation yields the

state s xcx x

N

x

N 10


 , which is exactly what we want.

The initial permutation, the circuit
2/NBC and the Hartley gate in Fig. 9 can be implemented with

 (log N2
) elementary gates. It is crucial that additional work bits are available, otherwise the complexity

will increase to  (log N2
). The Lemma completes the proof of the following theorem:

THEOREM: There exists a recursive implementation of the discrete Hartley transform H
N

 on a quan-

tum computer with O(log N2
) elementary gates (that is, controlled NOT gates and single qubit gates),

assuming that additional work bits are available.

It should be emphasized that the divide-and-conquer approach is completely general. It can be applied to

a much larger class of circuits, and is of course not restricted to signal processing applications. Moreover, it

should be emphasized that many variations of this method are possible.

The method of the design of quantum algorithms takes advantage of a divide-and-conquer approach [1-

18]. We have illustrated the method in the design of quantum algorithms for the Fourier, Walsh, Slant and

Hartley transforms. The same method can be applied to derive fast algorithms for various discrete Cosine

transforms. One reason might be that the quantum circuit model implements only straight-line programs. We

defined recursions on top of that model, similar to macro expansions in many classical programming

languages. The benefit is that many circuits can be specified in a very lucid way.

References

1. Gruska J. Quantum computing. – Advanced Topics in Computer Science Series, McGraw-Hill Compa-

nies, London. – 1999.

2. Nielsen M.A. and Chuang I.L. Quantum computation and quantum information. – Cambridge Universi-

ty Press, Cambridge, Englandю – 2000.

3. Hirvensalo M. Quantum computing. – Natural Computing Series, Springer-Verlag, Berlinю – 2001.

4. Hardy Y. and Steeb W.-H. Classical and quantum computing with C++ and Java Simulations. – Birk-

hauser Verlag, Basel. – 2001.

5. Hirota O. The foundation of quantum information science: Approach to quantum computer (in Japa-

nese). – Japan. – 2002.

6. Pittenberg A.O. An introduction to quantum computing and algorithms. – Progress in Computer Scienc-

es and Applied Logic. – Vol. 19. – Birkhauser. – 1999.

7. Brylinski F.K. and Chen G. (Eds). Mathematics of quantum computation. – Computational Mathematics

Series. – CRC Press Co. – 2002.

8. Lo H.-K., Popescu S. and Spiller T. (Eds). Introduction to quantum computing and information. –

World Scientific Publ. Co. – 1998.

9. Berman G.P., Doolen G.D., Mainieri R. and Tsifrinovich V.I. Introduction to quantum computers. –

World Scientific Publ. Co. – 1999.

10. Rieffel E. and Polak W. An introduction to quantum computing for non-physicists // ACM Computing

Surveys. – 2000. – Vol. 32. – No 3. – pp. 300 – 335.

11. Hogg T., Mochon C., Polak W. and Rieffel E. Tools for quantum algorithms // International Journal of

Modern Physics. – 1999. – Vol. C10. – No 7. – pp. 1347 – 1361.

12. Uesaka Y. Mathematical principle of quantum computation (in Japanese). – Corona Publ. Co. Ltd. –

2000.

13. Marinescu D.C. and Marinescu G.M. Approaching quantum computing. – Pearson Prentice Hall, New

Jersey. – 2005.

Электронный журнал «Системный анализ в науке и образовании» Выпуск №3, 2017 год

22

14. Benenti G., Casati G. and Strini G. Principles of quantum computation and information. –Singapore:

World Scientific. – Vol. I. – 2004; – Vol. II. – 2007.

15. Nakahara M. and Ohmi T. Quantum computing: From Linear Algebra to Physical Realizations. – Taylor

& Francis. – 2008.

16. Stenholm S. and Suominen K.-A. Quantum approach to informatics. – Wiley- Interscience. A J.

Wiley&Sons, Inc. – 2005.

17. Jaeger G. Quantum Information: An Overview. – N.Y.: Springer Verlag. – 2007.

18. McMahon D.Quantum computing explained. – Wiley- Interscience. A J. Wiley&Sons, Inc. – 2008.

