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Основой квантовых вычислений являются три оператора квантовых когерентных состояний: 
суперпозиция, запутывание и интерференция. Когерентные состояния являются решениями соот-
ветствующих уравнений Шредингера, описывающих эволюционные состояния с минимумом неопре-
деленности (в предложении Гейзенберга это квантовые состояния с максимальными классическими 
свойствами), преобразование Адамара создаёт суперпозицию на классических состояниях, а кванто-
вые операторы как CNOT предают надёжность этим состояний, интерференция создаётся кван-
товым быстрым преобразованием Фурье. Описаны структуры этих операторов. 

Ключевые слова: квантовые вычисления, универсальные квантовые вентили, квантовые операто-

ры, матрицы преобразования 

Introduction 

The efficient implementations of a number of operations for quantum computation include controlled 

phase adjustment of the amplitudes in a superposition, permutation, approximations of transformations and 

generalizations of the phase adjustments to block matrix transformations. These operations generalize those 

used in quantum algorithms. Moreover, the Hadamard transform (H), the phase (Ph), and the CNOT generate 

the Clifford group. A quantum computation using only operations from this group can be simulated 

efficiently on a classical computer. The addition of just the Toffoli gate to this group is sufficient to make 

this group universal. We demonstrate application of this approach to the Benchmarks as Deutsch, Deutsch – 

Josza, Simon, Shor, and Grover algorithms [1-18].  

Physical Principles for Quantum Computation  

Here, are the five essential criteria, which we perceive for the physical implementation of quantum 

computing: 

1.Hilbert space control 

2.State preparation

3.Low decoherence

4.Controlled unitary transformations

5.State-specific quantum measurements

 

The first criterion means that the available states must be precisely enumerated, and it must be known 

how to confine the state vector of the quantum system to this part of Hilbert space. In addition, Hilbert space 

should be extendable, preferable with a simple tensor-product structure, by adding particles to the system. 

For example, n  spin-1/2 particles have a simple spin Hilbert space of 
n2  dimension. 

The second criterion. Within this Hilbert space, it must be possible to set the state vector initially to a 

simple fiducially starting state. A simple example of this, in the spin system, would be to set all the spins in 

the spin-down state. Frequently this only requires being able to bring the system to sufficiently low 

temperature that it is in its ground state. This is more difficult in some examples than in others. 

The third criterion. The coupling to the environment (i.e., to all the rest of the Hilbert space of the 

world) should be sufficiently weak that quantum interference in the computational Hilbert space is not 

spoiled. Given our current understanding of error correction and fault-tolerant quantum computation, and 

given fairly benign assumptions about the nature of the decoherence (e.g., that it acts independently on each 

quantum bit) reliable computation is possible if the decoherence time exceeds the switching time by 
610 . 

More clever fault-tolerant techniques may well in making this rather demanding threshold number more 

relaxed in the future. 
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The fourth principle. This is the fairly obvious central requirement of quantum computing: it must be 

possible to subject the computational system to a controlled sequence of precisely defined unitary 

transformations. The precision requirements are closely related to the decoherence threshold; imprecision of 

unitary operations is a form of a decoherence. For convenience of programming, it is very desirable that the 

elementary unitary transformations be implementable as discrete one- and two-qubit operations.   

The fifth principle.  The readout of a quantum computation, which would consist of some ordinary bit 

string, is to be the result of a sequence of quantum measurements performed on the computational quantum 

system. It is very desirable (although not necessary) that these measurements be the textbook projection 

subsystems of individual quanta. It is essential that these measurements can be made on specific, identified 

subsystems of the computational state; in the simplest case, this means that it should be possible to do a 

projection measurement on each qubit individually. If many identical copies of the quantum computer are 

available, then weaker, ensemble measurements, rather than projection measurements are adequate. It is still 

necessary that these ensemble measurements be subsystem-specific, though. 

Tools for Quantum Computation and Quantum Networks.  

To exploit the power of quantum computation and create algorithms of new complexity classes, we need 

to use building blocks that do not have classical analogs but instead take advantage of quantum parallelism 

through modifying and mixing amplitudes in superposition. Two sorts of tools have been used effectively in 

design of quantum algorithms that have been developed so far.  

First, transformations that can mixing amplitudes, such as the Walsh-Hadamard and Fourier transforms.  

Second, selective adjustment of the phases of certain states that, when combined with a mixing 

transform, promote amplitude cancellation or amplification. Such phase adjustments form the basis of search 

algorithms for NP problems.  

Here, we discuss efficient implementations of mixing transformations and of relative phase changes that 

combine amplitude from only a small number of states. The choice of phase and which states to mix depends 

on a classically efficient computable function f  that in general will remain necessarily abstract. We discuss 

implementations of approximations of transformations, of phase changes, of permutations, and 

generalizations of the phase change techniques to block matrix transformations. For each of these 

transformations, we describe the resources in terms of time, number of calls to f , and number of additional 

qubits needed for the implementation.  

We first concern with transformations that change the relative phases of components that make up 

superposition. Such transformations correspond to acting on the state with a diagonal matrix D . Conversely, 

because quantum operations are unitary, any operation described by a diagonal matrix will consist of such 

phase adjustments. Since a global phase change has no physical meaning, so the matrix is only well defined 

up to multiplication by a constant.  

In implementing quantum algorithms it will be useful to have a variety of techniques depending on 

whether number of bits or coherence time (number of operations) is the main limiting factor. For 

implementing relative phase changes to components of an n qubit quantum state several methods can be 

represented as 
nn 22   diagonal matrices D .  

If D  is decomposable, in that can be written as a tensor product of single qubit rotations, it can be 

implemented trivially in  nO  steps without any additional qubits or function calls.  

We describe a sufficient and necessary condition for the decomposability of the matrix D .  

In general form suppose that a unitary matrix U  is an NN   unitary matrix, where N  is an even 

number. Then one can always express U  in the form  

 
0 0

1 1

0 0

0 0

L R
U D

L R

   
    
   

, (1) 

where the left and right side matrices 1010 ,,, RRLL  are 
22

NN
  unitary matrices and  
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









1110

0100

DD

DD
D ,
















2

211100 ,, NCCCdiagDD  ,















2

211001 ,,, NSSSdiagDD  . 

For all 









2

,,2,1
N

i  , 
iiC cos  and 

iiS sin  for some angle 
i .  

Given any approximation CSD of U , it is possible to find another CSD of U for which the angles 
i  

are in non-decreasing order and they are contained in the interval  090,0 . If one partitions U  into four 

blocks ijU  of the size 
22

NN
 , then we can obtain jijiij RDLU  , for  1,0, ji . Thus, ijD  gives the 

singular values of ijU .  

Example. The operator D  (diffusion – inversion about average) in Grover algorithm is  

n

n

n

n
D



















































11

11

1000

000

0010

0001

11

11

2

1


 

and have the form (1).  

The availability of single quantum systems has fed the interest in quantum networks: A quantum 

computation is a network of individual quantum systems, where any two of the nodes can interact with each 

other. Most quantum private communication scheme is networks of two or three nodes. In addition to these 

information processing and communication related applications, networks avoided crossings in multilevel 

systems and have been considered in order to study higher dimensional quantum interference effects. Such 

networks can be experimentally realized by various active (energy-consuming) or passive (energy-

preserving) components. It is found that transitions do take place and we are able to give them a clear 

physical interpretation. For active systems the transition is related to quantum and classical, for passive 

systems to adiabatic and diabatic behavior of the network. The transition phenomenon is clearly reflected in 

observable quantities and shows a relation to symmetry, which can be of general significance for quantum 

networks.  

In general form the quantum network is represented in Fig. 1.  

 

A A 
B 

A A 
B 

A 
B 

A 
B 

A A 
B 

A 
B 

2M 

2N 

 
 

Figure 1: A quantum network where the nodes are connected to their neighbor. The boxes A and B denote 

the transitions performed at the nodes) 

And can be described by a 
nn 22  plane rotation matrix  , which is 
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cosh sinh cosh sinh
     ,   ,  coth cosh

sinh cosh sinh cosh

BA
B

B

A

B

B
BA

i i
A B

i i

   
 

   

  
   
   
   
   
   
    
  
   
   
   
        

   
     

    
 

The form of the matrix   suggests immediately a quantum-network analog. The matrices A and B can 

be interpreted to describe the evolution of a two-state or two-mode system. The matrix   is then the 

evolution operator over period in the network of Fig.1. The input of the network are mixed pair-wise 

according to the transition B , and then the pairs are let to interact with the neighboring ones by applying the 

shifted set of operations A . By repeating this l  times, a  ln 22 dimensional network can be constructed. 

Since   contains all the physical information of the quantum computation, i.e., the phase transitions, we 

may expect analogous phenomena in the quantum network described by  .  

Remark. The physical realization of the quantum network   can be divided into groups. When the angle 

  is real, A  and B  are )1,1(SU - type matrices describing energy – consuming (active) operations. 

Imaginary   leads to )2(SU matrices, which correspond to energy – preserving (passive) manipulations of 

the two modes or two states. Note that 2IA  when the angle  , and 2IB   when 0  ( 2I  

is the two-dimensional unit matrix). That is, in both of these limits the network decomposes into sets of non-

interacting modes. Thus   describes a quantum network where only nearest neighbors interact, and where a 

single parameter   determines the relative importance of the interactions, i.e., the network character of the 

system.  

The transitions in the network are determined by the eigenvalues of  . The only problem in 

diagonalizing   is the relative shift between the set of A  and B . This can be solved by the discrete FFT 

(see below) as     nnnkliF kl

kln //2exp   , because the FFT of the shift matrix 

  01,,1 lnklkklnS     is diagonal: DFSF nnn 
, where   kl

k

kl
D   .  

The whole network matrix   thus decomposes into  

   2

1

2

20

2 0

0

IF

K

K

IF n

n

n 



















 







 

where             n

nn SSCCKK 
 

2211
, coshC  and sinhiS   and 

            n

nn SCSCKK 
 

2112
.  

Example.  The usual Mach – Zehnder interferometer (see below) affects the input states by unitary 

transformation ZMU  , which can be formally written as  

   12

1

0

12
0

0
IF

K

K
IFU ZM 








 

 , 
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where  niKn exp is determined by a chosen phase  . Thus this network-type we consider acts like an 

n dimensional interferometer where, instead of one-mode phase shift, two-mode rotations are performed in 

between the n dimensional mixers 
nF  and 



nF . 

General Structure of Quantum Gates 

For this case we use coherent initial classical states and three quantum operators: superposition, 

entanglement, and interference. These operators are generators of Cliffird group, together with Toffoli gate 

are universal and can be efficiently realized on classical computer.  

Model Description of Three Quantum Operators. Quantum Algorithms are global random algorithms 

based on the quantum mechanics principles, laws, and quantum effects. In the quantum search, each design 

variable is represented by a finite linear superposition of classical initial states, with a sequence of 

elementary unitary steps manipulate the initial quantum state i  (for the input) such that a measurement of 

the final state of the system yields the correct output. It begins with elementary classical preprocessing, and 

then it applies the following quantum experiment: starting in an initial superposition of all possible states, it 

computes a classical function, applies a Quantum Fast Fourier Transform (QFFT), and finally performs a 

measurement. Depending on the outcome it may carry out one more similar quantum experiments, or 

complete the computation with some classical post-processing. Usually, three principle operators, i.e. linear 

superposition (coherent states), entanglement, and interference, are used in the quantum search algorithm 

and briefly described below.  

Linear Superposition. Linear superposition is closely related to the familiar mathematical principle of 

linear combinations of vectors. Quantum systems are described by a wave function  that exists in a Hilbert 

space.  

The Hilbert space has a set of states, i , that from a basis, and the system is described by a quantum 

state, 
i

iic  . The vector   is said to be in a linear superposition of the basis states i , and in 

the general case, the coefficients 
ic  may be complex. Use is made here of the Dirac bracket notation, were 

the ket   is analogous to a column vector, and the bra   is analogous to the complex conjugate transpose 

of the ket. In quantum mechanics the Hilbert space and its basis have a physical interpretation, and this leads 

directly to perhaps the most counterintuitive aspect of the theory. The counter intuition is this (at the 

microscopic level), the state of the system is described by the wave function  , that is, as a linear 

superposition of all basis states (i.e. in some sense the system is in all basis states at ones). However, at the 

macroscopic or classical level the system can be in only a single basis state. For example, at the quantum 

level an electron can be in a superposition of many different energies; however, in the classical realm this 

obviously cannot be. 

Remark: Coherence and Decoherence.  Coherence and decoherence are closely related to the idea of 

linear superposition. A quantum system is said to be coherent if it is in a linear superposition of its basis 

states. A result of quantum mechanics is that if a system is in a linear superposition of states interacts in any 

way with its environment the superposition is destroyed. This loss of coherence is called decoherence and is 

governed by the wave function  . The coefficients ic  are called probability amplitudes, and 
2

ic  gives the 

probability of   collapsing into state i  if it is decoherence. Note that the wave function  describes a 

real physical system that must collapse to exactly one basis state. Therefore, the probabilities governed by 

the amplitudes ic  must sum to unity. This necessary constraint is expressed as the unitary condition 

1
2


i

ic . In the Dirac notation, the probability that a quantum state   will collapse into an eigenstate 

i  is written 
2

i
 and is analogous to the dot product (projection) of two vectors.  
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Consider, for example, a discrete physical variable, called spin. The simplest spin system is a two-state 

system, called a spin–1/2 system, whose basis states are usually represented as   (spin up) and   (spin 

down). In this simple system the wave function   is a distribution over two values (up and down) and a 

coherent state   is a linear superposition of   and  .  

Example. One such state might be 
5

1

5

2
 . As long as a system maintains its quantum 

coherence it cannot be said to be either spin up or spin down. It is in some sense both at ones. Classically, of 

course, it must be one or the other, and when this system decoherence the results is, for example, the   

state with probability   8.0
2

5

2
2

 . A simple two-state quantum system, such that as the spin-1/2 

system just introduced, is used as the basis unit of quantum computation. Such a system is referred to as a 

quantum bit or qubit, renaming the two states 0  and 1  it is easy to see why this is so.  

Remark: The Operators. Operators on a Hilbert space describe how one wave function is changed into 

another. Here they will be denoted by a capital letter with a hat, such as A


, and they may be represented as 

matrices acting on vectors. Using operators, an eigenvalue equation can be written iii aA  


, where 

ia  is the eigenvalue. The solutions i  to such an equation are called eigenstates and can be used to 

construct the basis of a Hilbert space. In the quantum formalism, all properties are represented as operators 

whose eigenstates are the basis for the Hilbert space associated with that property and whose eigenvalues are 

the quantum allowed values for that property. It is important to note that operators in quantum mechanics 

must be linear operators and further that they must be unitary so that IAAAA


 **
, where I


 is the 

identity operator, and 
*A


 is the complex conjugate transpose, or joint, of A


. 

Interference. Interference is a familiar wave phenomenon. Wave peaks that are in phase interfere 

constructively (magnify each other’s amplitude) while those that are out of phase interfere destructively 

(decrease or eliminate each other’s amplitude). This is a phenomenon common to all kinds of wave 

mechanics from water waves to optics. The well known double slit experiment demonstrates empirically that 

at the quantum level interference also applies to the probability waves of quantum mechanics.  

Example.  As a simple example, suppose that the wave function described in (3) is represented in vector 

form as 









1

2

5

1
  and suppose that it is operated upon by an operator H


 (Hadamard transform) 

described by the following matrix, 











11

11

2

1
H


 The result is 




























1

3

10

1

1

2

5

1

11

11

2

1
H


 

and therefore now 
10

1

10

3
 . Notice that the amplitude of the   state has increased while 

the amplitude of the   state has decreased.  

This is due to the wave function interfering with itself through the action of the operator – the different 

parts of wave function interfere constructively or destructively according to their phases just like any other 

kind of wave. 

Entanglement. Entanglement is the potential for quantum states to exhibit correlation that cannot be 

accounted for classically. From a computational standpoint, entanglement seems intuitive enough (it is 

simply the fact that correlation can exist between different qubits) for example if one qubit is in the 1  state, 

another will be in the 1  state. What makes it so powerful is the fact that since quantum states exist as 

superpositions, these correlation somehow exist in superposition as well. When the superposition is 

destroyed, the proper correlation is somehow communicated between the qubits, and it is this 

‘communication’ that is the crux of entanglement. Mathematically, entanglement may be described using the 
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density matrix formalism. The density matrix   of a quantum state   is defined as   . For 

example, the quantum state 01
2

1
00

2

1
  appears in a vector form as 





















0

0

1

1

2

1
  

and it may also be represented as density matrix 





















0000

0000

0011

0011

2

1
 , 

while the state 11
2

1
00

2

1
 , is represented as 





















1001

0000

0000

1001

2

1
 , 

and the state 11
3

1
01

3

1
00

3

1
  as 





















1011

0000

1011

1011

3

1
 , 

where the matrices and vectors are indexed by the state labels 00,…11. Now, notice that   can be 

factorized as 






























11

11

00

01

2

1
 , where   is a normal tensor product. On the other hand,   

cannot be factorized. States that cannot be factorized are said to be entangled, while those that can be 

factorized are not. Notice that   can be partially factorized two different ways, one of which is  

1 1 0 1

1 1 0 0 1 0 0 01

1 1 0 1 0 0 0 03

1 0 0 0



  
  
     
           

  

  
 

(the other involves above equation and a different remainder); however, in both cases the factorization is not 

complete. Therefore,   is also entangled, but not to the same degree as   (because   can be partially 

factorized but   cannot). Thus there are different degrees of entanglement.  

Remark. It is interesting to note from a computational standpoint that quantum states that are 

superpositions of only basis states that are maximally far apart in terms of Hamming distance are those states 

with the greatest entanglement. For example,   is a superposition of only the states 00  and 11 , which 
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have a maximum Hamming spread, and therefore   is maximally entangled. Finally, it should be 

mentioned that while interference is a quantum property that has a classical cousin, entanglement is a 

completely quantum phenomenon for which is no classical analog. 

Quantum Networks. Quantum networks are one of the several models of quantum computation. Others 

include quantum Turing machines, and quantum cellular automata. In the quantum networks model, each 

unitary operator is modeled as a quantum logic gate that affects one, two or more qubits. Schematically this 

is represented as a set of quantum ‘wires’ entering and leaving quantum gates, reminiscent of classical logic 

networks.  

For example, Fig. 2 shows a network that operates on three qubits, which are represented as lines. 

 
 

B 
A 

C 

 

D 

C 
q2 

q3 

q1 

 

Figure 2. Quantum networks with three qubits. 

By convention the logic flows from left to right. The gates are represented as boxes and labeled with the 

operators that they represent. A dot on a quantum “wire” represents a conditional upon that qubit.  

Therefore, in the quantum network shown in Fig. 2 an operator A


 represents a single qubit quantum 

gate, B


 and C


 represent 2-qubit quantum gates, and D


 represents a conditional 3-qubit gate. Suppose that 

A


 is an operator that flips the state of qubit, B


 is an operator that exchanges the states of two qubits if they 

are equal, and D


 is an operator that exchanges the states of two qubits if a third qubit in the 1  state. 

When three qubits “enter” the quantum logic network, the one labeled 1q  first has its state flipped; then 1q  

and 2q  exchange states, 1q  and 
3q  have their states flipped if they are equal, and finally 2q  and 

3q  

exchange states if 1q  is in the state 1 . Of course, if the qubits “entering” the logic array did not exist in 

a superposition states, this would be no different than a classical logic sequence. However, the qubits do 

exist in a superposition of states; therefore, these gates or operations are applied to all the states in the 

superposition simultaneously, resulting in what has been called quantum parallelism. Recall that the 

quantum logic gate arrays are simply a schematic way to represent the time evolution of a quantum system. 

They are not meant to imply that quantum computation can be physically realized in a manner similar to 

classical logic networks. Alternatively, the network could be represented as a product of quantum operators. 

Since operators are applied right to left, the network of Fig. 2 would be represented as the operator product 

ABCD


 in what follows, both the network and the product of operator representations will be used. 

Interference and Quantum Parallelism. Because of the entanglement or quantum correlation between 

the n  quantum particles, the state of the system cannot be specified simply describing the state of each of the 

n  particles. Instead, the state of n  quantum bits is a complicated superposition of all 
n2  basis states, so 

n2  

complex coefficients are needed in order to describe it. This exponentially of a Hilbert space is a crucial 

ingredient in quantum computation. To gain more understanding of advantages of the exponentiallity of the 

space, consider the following superposition on n  quantum bits, 


1

0,,,

21
2

1

21

,,,
n

n

iii

niii


 . This is a uniform 

superposition of all possible basis states of n  qubits. If we now apply the unitary operation U  which 

computes f for this state, we will get, simply from linearity of quantum mechanics: 

 



1

0,,,

21
2

1

1

0,,,

21
2

1

2121

,,,,,,
n

n

n

n

iii

n

iii

n iiifiii


 . Applying the unitary operator fU  once, computes f  
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simultaneously on all the 
n2  possible inputs i , which is an enormous power of parallelism. It is tempting to 

think that exponential parallelism implies exponential computational power, but this is not the case. In fact, 

classical computations can be viewed as having exponential parallelism as well. The problem lies in the 

question of how to extract the exponential information out of the system.  

In quantum computation, in order to extract quantum information one has to observe the system. The 

measurement process causes the famous collapse of the wave function. In nutshell, this means that after the 

measurement the state is projected to only one of the exponentially many possible states, so that the 

exponential amount of information, which has been computed, is completely lost. In order to gain advantage 

of exponential parallelism, one needs a combine it with another quantum feature, known as interference. 

Interference allows the exponentially many computations done in parallel to cancel each other, just like 

destructive interference of waves or light. The goal is to arrange the cancelation such that only the 

computations, which we are interested in remain, and all the rest canceled out.  

The combination of exponential parallelism and interference is what makes quantum computations 

powerful and plays an important role in quantum algorithms. The Fourier transform indeed manifests 

interference and exponentiallity. 

Logic Gates and Quantum Computations. In classical computations and in digital electronics, one deals 

with sequences of elementary operations (operations such as AND, OR and NOT). These sequences are used 

to manipulate an array of classical bits. The operations are elementary in the sense that they act on only of 

few bits (one or two) at a time. We will (some times) refer to sequences as products and to operations as 

operators, matrices, instructions, steps and gaits. Further more we will introduce the sequences of elementary 

operations as basis of quantum computation. In quantum computation one also deals with sequence of 

elementary operations - SEO (with operations such as controlled-NOT’s and qubit rotations), but for 

manipulating qubits instead of classical bits. Quantum sequences of elementary operations are often 

represented graphically by qubit circuits. In quantum computation, one often knows the unitary operator U  

that describes the evolution of an array of qubits. One must then find a way to reduce U  into the sequence of 

elementary operations. The algorithm can be applied to any unitary operator U . It is useful to define certain 

unitary operator 
BNU  for all  ,3,2,1BN , where 

BNU  is a BB NN
22   matrix and BN  is the number of 

bits. Some 
BNU  are known to be expressible as a sequence of elementary operations whose lengths (i.e. 

whose number of elementary operations) is a polynomial in BN . Two examples are the BN  bit Hadamard 

transform (HT) matrix and the BN  bit discrete Fourier transform (DFT) matrix. The HT matrix is known to 

be expressible as a sequence of elementary operations of lengths Order ( BN ). The DFT matrix is known to 

be expressible (using the Fast Fourier Transform (FFT) algorithm) as a sequence of elementary operations of 

lengths Order (
B

N 2
). Presented algorithm achieves both of these sequences of elementary operations (SEO) 

lengths as benchmarks. Even better the SEO often called the “Quantum FFT algorithm” is exactly 

reproduced by this algorithm. 

Previously another algorithms have described for reducing a unitary operator into SEO, and their 

algorithm can be applied to any unitary operator U . However, it is very unlikely that their algorithm can be 

efficient in producing short SEO’s unless farther optimizations are added to it. And such optimizations, if 

they exist, have not been specified by anyone. 

Benchmarks of Quantum Gates for Quantum Algorithm’s Design 

We represent the general approach to design of quantum gates for quantum algorithms. The results of 

this approach are described in Table 1.  

Table 1: Benchmarks of Quantum Gates for Quantum Algorithms 
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   

 
   

1

int sup

2

supint

g  :

1;

;

1;

0

;

;

;

0

entanglement
n

n n

F

erference erposition

entanglement
n n

n n n

F

erpositioerference

Name Al orithm Gate Symbolic Form

m

Detsch Int H I
H I U H

Jozsa k

h

m n

Int H H
Simon H H U H

k O n

h





  
  







 
  





 
   

 

   

2

2

supint

1

int sup/2

;

;

;

0

;

;

1;

2

n

entanglementn

n n n

n F

erpositionerference

h
entanglement

n
n

n F

erference erpositionn

m n

Int QFT H
Shor QFT H U H

k O n

h

m n

Int D I
Grover D I U H

k

h O





 
  






 

 
 

  
 
  



 

Using this approach the methodology of quantum algorithm simulation on classical computer is 

developed. The concrete result of simulation Deutsch – Jozsa, Simon, Shor and Grover algorithms are 

described in main text. The results of this approach in Table 1 are described. 

Any relations with Walsh-Hadamard Transformation. The Hadamard (rotation) transformation is one of 

the simplest and most common fault-tolerant operations. The gate equation is 
 

   tUt
i

t

tU







, which 

is subject to initial condition   IU 0 and target condition   0UTU  . Here 
0U  is the matrix of the 

desired gate.  

The wave function  t  is related to the evolution operator  tU  and the initial wave function  0  

by      0 tUt  . We choose the various quantum gates from physics point of view in such a way that 

they can be described by simple Hamiltonians The gates correspond to the unitary operation 

( HRW  ) effected by the Hamiltonian   







 1

2

1

2
zxWH 


 acting for one unit at time. 

Similarly the gate 











11

11

2

1
yU  generated by the Hamiltonian 

yy 


4
  acting for one unit of 

time. The solutions of corresponding Schrodinger equations with these types of Hamiltonians are described 

the evolution with coherence states (with minimum of uncertainty), i.e., the gates are robustness and fault-

tolerant. 

Remark: Physical and Geometrical Interpretations of Walsh-Hadamard Transformations. It is natural to 

think of quantum computations as mutiparticle processes. Just as classical computations are processes 

involving several “particles” or bits. It turns out that viewed quantum computation as multiparticle 

interferometry leads to a simple and unifying picture of known quantum algorithms. In this language 

quantum computation are basically multiparticle interferometers with phase shift that result from operations 

of some quantum logic gates. To illustrate this point consider, for example, a Mach-Zehndler interferometer 

in Fig. 3a. 
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0 

1 

1 

0 





(a) 

H H 



(b) 

 

Figure 3. Scheme of a Mach-Zehnder interferometer with two phase shifter  

The interference pattern depends on the difference between the phase shifts in different arms of the 

interferometer. (a) The corresponding quantum network representation. (b) mirror which directs the particle 

to one of the two detectors. Along each path between the two half-silvered mirrors is a phase shifter. If the 

lower path is labelled as state 0  and the upper one as state 1 , then the state of the particle in between the 

half-silvered mirrors and after passing through the phase shifters is a superposition of the type Principle 

Description of Mach-Zehnder Interferometer. A particle, say a photon, impinges on a half-silvered mirror, 

and, with some probability amplitudes, propagates via two different paths to another half-silvered 

  10
2

1
01  


i

e , where 0  and 1  are the setting of the two phase shifters. The phase shifters in the 

two paths can be tuned to effect any described relative phase shift 01    and to direct the particle 

with probabilities  cos1
2

1
  and  cos1

2

1
 , respectively, to detectors “0” and “1”. The second half-

silvered mirror effectively erases all information about the path taken by the particle (path 0  or path 1 ) 

which is essential for observing quantum interference in the experiment.  

Physical Interpretation of Walsh-Hadamard Transformation. According to this description let us now 

rephrase the experiment in terms of quantum logic gates. We can identify the half-silvered mirrors with 

single-qubit Walsh-Hadamard transform. We view the phase shifter as a single-qubit gate (see Fig. 3, b). The 

phase shift can be “computed” with the help of an auxiliary qubit (or a set of qubits) in a prescribed state u  

and some controlled-U  (c-U ) transformation where ueuU i  (see Fig. 3, b). Here, the controlled -U  

transformation depends on the logical value of the control qubit; for example, we can apply the identity 

transformation to the auxiliary qubits (i.e. do nothing) when the control qubit is in state 0  and apply a 

prescribed U  when the control qubit is in state 1 . The controlled -U  operation must be followed by a 

transformation which brings all computational paths together, like the second half-silvered mirror in the 

Mach-Zehnder interferometer. This last step is essential to enable the interference of different computational 

paths to occur – for example, by applying a Walsh-Hadamard transformation. In this example, we obtain the 

following sequence of transformations on the two qubits:  

   
1 1

0 0 1 0 1
2 2

1 1
         cos 0 sin 1

2 2

H c U i

H i

u u e u

i e u



 


   

    
     

    

 

The state of the auxiliary register u , being an eigenstate of U , is not altered along this network, but 

its eigenvalue 
ie  is “kicked back” in front of the 1  component in the first qubit. This sequence is the 

exact simulation of the Mach-Zehnder interferometer and the kernel of quantum algorithms.  
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Geometrical Interpretation of Walsh-Hadamard Transformation. The Hilbert space of one qubit  (i.e. a 

two-dimensional Hilbert space) equipped with a standard basis denoted by  1,0  The dual basis of 

  denoted by  1,0   is defined by   10
2

1
0  ,    10

2

1
1  . Thus IH 2

 and H  

interchange the standard and dual bases. In terms of real geometry, the dual basis lies on the 45
0
 lines 

between the orthogonal directions 0 and 1  (see, Fig. 4) and H  is the transformation given by reflection 

in a line at angle 
8

1
to the 0  direction. Thus the eigenvectors of H  (parallel and perpendicular to the 

mirror line) are 1
8

1
sin0

8

1
cos 

















 belonging to 1 , respectively.  

 
1  

0  

 10
2

1   

 10
2

1   
 

Figure 4. The relations between standard and dual bases 

If  nxxx ,1  and  nyyy ,1  are in 
n , then by the inner product between two bit strings x  

and y , we mean the inner product modulo 2, that is:    nn yxyxyxyx  11, . This value can 

also be viewed as the parity of a subset of the bit string 
nyy 1

 (the parity of the number of places where x  

and y  both have a bit value of 1).This subset is described by the characteristic vector x  and its size equals 

the Hamming weight x  of the bit string nxx 1 . The parity basis is the now familiar result of the one bit 

Hadamard gate (see, Fig. 4). 

The Hadamard transformation of a sequence of bits 
nyy 1

 and the inner product function are closely 

related to each other: for any  n
y 1,0  it holds that   

 



 
n

n

x

yx

n
xyH

1,0

,
1

2

1
. 

Because H  is its own inverse, we can apply again a sequence of n  Hadamard transforms on the these 

states and thus obtain the original bit string nyy 1
 again:   

 

yxH
n

n

x

yx

n




 )1
2

1
(

1,0

,
. The above 

leads to the observation that if we want to know the string nyy 1 , it is sufficient to have a superposition 

with phase values of the form   yx,
1 , for every  n

x 1,0 . This is a well-known result in quantum 

computation and has been used several to underline the differences between quantum and classical 

information processing. 

The scalar product modulo 2 as      nn yxyxyxyx  11,  is the XOR of the bitwise 

AND of the two strings x and y , and equivalent to performing a one-qubit Hadamard transform on each of 

the n  qubits individually. 

Applications of Walsh-Hadamard Transformation in Mixing Operations. For effective quantum 

algorithms, we also need to be able to effective mix amplitudes in a superpositions so as to increase the 

change of a desired reading being made. One way to achieve this mixing is to combine an efficiently 

implementable diagonal matrix with a decomposable mixing matrix. For instance, a number of existing 

algorithms make use of mixing matrices of the form HDH where D  is a diagonal matrix and H  is the 
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Walsh-Hadamard transformation given by   yx

n
xyWH


 1

2

1
. We have described below efficient 

implementations for certain diagonal matrices that can be combined with the Walsh-Hadamard 

transformation or other mixing matrices to achieve desireable amplitude interference.  

Remark. More general form of Walsh-Hadamard transform is the n-bit Sylvester-Hadamard matrix is 

defined by 

111

110

1022

1





H ;

111111

111110

111101

111100

1110010044

2









H ; rr HHH  11 ; nn nIH 2
. 

The desired nH  gate acts on a quantum register by sending each qubit individually into a separate 1H  

gate. The unitary transformation induced by an nH  is given by the formula 
1HH nn  . If 1n  then a 

nice recursive definition is defined as  



















11

11

11

nn

nn

nn
HH

HH
HHH . 

Simple Operations of Hadamard Transform with Simple gates. Let us see what an H  gate does to 

,,YX  and Z   

ZHXH 

















 












10

01

11

11

11

11

2

1
; XHZH 






























01

10

11

11

11

11

2

1
;

YHYH 






























01

10

11

11

11

11

2

1
. 

Therefore, applying H  bitwise will switch all the sX   and all the sZ  , and give a factor of –1 for each 

Y . This is a valid fault-tolerant operation. 

Thus, the Hadamard gate implements the Hadamard transform ; it is the single qubit gate H performing 

the unitary transformation (see, Fig. 5) 













11

11

2

1
WH        xxHx

x
 11  

Figure 5: The Hadamard gate representation. The diagram on the right provides a schematic representation 

of the gate H acting on qubit in state x , with 1,0x  

Consider the following unitary transformation (and associated gate): 













10

01
P      )1()1(  P  

If a qubit is set to 0 nothing happens, but if is set to 1 the amplitudes is multiplied by –1. This gate 

“encodes” the value of the qubit into the sign of the amplitude.  

Another same common bitwise operation is the i  phase: 









i0

01
. On the basic operations ,,YX  

and Z  it acts as follows: 
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iY
i

ii

i
X 







 








 








 

0

0

01

0

0

01
; Z

ii
Z 



























 

10

01

0

01

0

01
;

iX
i

ii

i
Y 

























 

0

0

01

0

0

01
. 

This switches X  and Y , but with extra factors of i , so there must be a multiple of 4 sX   and sY   for 

this to be a valid operation. Note that a factor of i  appears generically in any operation that switches Y with 

X  or Z , because 12 Y , while 122  ZX . These operations actually permute Pauli matrices: 

ZX Zx   , , and iYY  . The most general single qubit operation can be viewed as a rotation of the 

Bloch sphere permuting the three coordinate axes.  

Remark. The one-qubit operations correspond to the six automorphisms of the group 4D  of products of 

,,, YXI  and Z (or direct product of copies of 4D  for multiple-qubit gates) given by 

 2,,,,, TPQTHPPQPHI   . So all one-qubit operations are covered. Given any such 

automorphism, we first substitute iY for Y to get the actual transformation. For instance, consider the cyclic 

transformation XZiYXT  . Since XZ  ,   10
2

1
0  . Also, iYX  , so 

 10
2

1  Y
i

 =  10
2


i

. Thus, the matrix for T  is 






 


i

i
T

1

1

2

1
.  

We can perform a similar procedure to determine the matrix corresponding to a multiple-qubit 

transformation. 

Example. We can make a copy of entering qubit. The superposition is now  1100
2

1
 , i.e. 

entangled state. If we let the first bit go through the Hadamard gate and do nothing to the second one, the 

result becomes:  

       1101
2

1
1000

2

1
1100

2

1









 IH  

Each vector has equal norm so we will observe, after measuring, each vector with probability 
4

1
, and in 

particular the firat bit will be perfectly random. Now let us see what happens if we also make the copy bit go 

through a Hadamard gate. Will it affect the randomness of the output? 

            

 1100
2

1

1010
2

1
1010

2

1
1100

2

1

2 32 3











 HH

 

Randomness of the first bit remains intact. 

Controlled Two - Bit Gates. The two-bit gates of the network correspond to controlled phase shift. 

These are represented in the canonical basis  11,10,01,00  by the unitary operator 

























1000

0100

0010

0001

U , generated by the Hamiltonian 
ji

PP
,1,1

  , where i  and j  designate the two 

qubits on which the gate acts and  zP  1
2

1
1

 is the projector on state 1 . In this case a state ji,  
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picks up a phase   if and only if (iff) both qubits are in state 1 . Variants on this gate can be obtained by 

replacing either or both of the projectors with 
0

P  in the definition of the Hamiltonian. 

The conditional phase shift is the two-bit gate (see, Fig. 6) 

 





























ie

P

000

0100

0010

0001

)(  yxeixy  

x  

y  

 

Figure 6. The two-bit conditional phase shift gate. The matrix written in the basis 

 11,10,01,00 .The diagram on the right shows the structure of the gate 

Controlled Two - Qubit Gates. To see how such unitary operators may be constructed from a few 

elementary ones we must also consider the controlled-NOT (or XOR) gate. Just as any classical computation 

can be expressed as a sequence of one- and two-bit operations (e.g., NOT and AND gates), any quantum 

computation can be expressed as a sequence of one- and two-qubit quantum gates, i.e., unitary operations 

acting on one or two qubits at a time (see, Fig. 7).  

 A  A  

B  AB   
 

Figure 7. Quantum circuit diagram for an XOR gate. The lower bit B  is flipped whenever the upper bit 

A  is set 

The standard two-qubit is the controlled-NOT or XOR gate, which flips its second (or “target”) input if 

its first (“control”) input is 1  and does nothing if the first input is 0 . In other words its interchanges 10  

and 11  while leaving 00  and 01  unchanged. Writing the two-particle basis states as the vectors  























0

0

0

1

00 ; 























0

0

1

0

01 ; 























0

1

0

0

10 ; 























1

0

0

0

11 , 

we may represent the XOR gate by 44  unitary matrix as a unitary operator  





































NOT

I
CNOTU XOR

0

0

0100

1000

0010

0001

. 

1011

1110

0101

0000

:









CNOT . 

The XOR gate is a prototype interaction between two quantum particles (systems),  and illustrate several 

key features of quantum information, in particular the impossibility of “cloning” an unknown quantum state, 

and the way interaction produces entanglement. Here the first particle acts as a conditional gate to flip the 

state of the second particle. It is easy to check that the state of the second particle corresponds to the action 

of the XOR gate. The quantum circuit for the XOR gate is illustrated in Fig. 8. This circuit is equivalent to 

the elementary instruction: if  1x  then )( yNOTy  , which may be thought of as example of 

quantum computer code.  
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























0100

1000

0010

0001

CNOT  

x  x  

y  yx  

 

Figure 8. Quantum circuit diagram for an CNOT (XOR) gate. The lower bit y  is flipped whenever the 

upper bit x is set 

Remark. The quantum controlled-NOT gate is not a universal quantum gate but a universal quantum 

gate can be constructed by a combination of the controlled-NOT and simple unitary operations on a single 

qubit. This means that the XOR gate, together with the set of one-bit gates, from a universal set of primitives 

for quantum computation; that is, any quantum computation can be performed using just this set of gates 

without an undue increase in the number of gates used. Unlike one-qubit gates, two-qubit gates are difficult 

to realize in the laboratory, because they require two separate quantum information carries to be brought into 

strong and controlled interaction (see below).  

If the CNOT (XOR) is applied to Boolean data in which the second qubit is 0 and the first is 0 or 1 (see 

also, Fig. 8) the effect is to leave the first qubit unchanged while the second become a copy of it: 

xxxUCNOT ,0,   for 0x  or 1. One might suppose that the CNOT operation could also be used to copy 

superpositions, such as 10   , so that 0,CNOTU  would yield  , , but this is not so. The 

unitary of quantum evolution requires that the superposition of input states evolve to a corresponding 

superposition of outputs. Thus the result of applying 
CNOTU  to 0,  must be 1100   , an entangled 

state in which neither output qubit alone has definite state. If one of the entangled output qubit is lost (e.g., 

discarded, or allowed to escape into the environment), the other thenceforth behaves as if it had acquired a 

random classical value 0 (with probability 
2

 ) or 1 (with probability 
2

 ). Unless the lost output is 

brought back into play, all record of the original superposition   will have been lost. This behavior is 

characteristic not only of the CNOT gate but of unitary interactions generally: their typical effect is to map 

most non-entangled initial states of the interacting systems into entangled final states, which from the 

viewpoint of either system alone causes an unpredictable disturbance.  

Remark. The classical controlled – NOT gate is a reversible logic gate operating on the two bits 1  and 

2 ; 1  is called the control bit and 2  - the target bit. The value of 2  is negated if 1 =1, otherwise 2  is 

left unchanged (in both cases the control bit 1  remains unchanged). The quantum controlled – NOT gate 

12C  is the unitary operation on two qubits, i.e. state in 2 , which in a chosen orthonormal basis  1,0  

reproduced the controlled – NOT operation: 21121
12  

C
, where   denotes addition 

modulo 2. Here and in the following the first subscript of ijC  always refers to the control bit and the second 

to the target bit. Thus, for example, 21C  denotes the unitary operation defined by 

22121
21  

C
. 

The properties of controlled – NOT gate. Let us specify any interesting properties of the quantum 

controlled – NOT gate. The CNOT gate is the idealized discrete operation for producing entangled states. 

The quantum controlled-NOT gate transforms superpositions into  

Quantum entanglement, 

 12

    

: 0 1 0 0 1 1

quantum
entanglement

C a b a b


    
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As Fig. 9 indicates, a particular product-state input to the gate as shown, using two states from non-

orthogonal bases (related by a Hadamard transform), produces at the output the non-product 

state:  1001
2

1
 , a state equivalent to EPR –Bohm pair.  

 

1  

10   
EPR-Bohm 

pair: 

1001   

 

C12 

 
11

102 2

1




 

2
0  





























2

1

2

1

1

1

0

0
2 2

1

 

 

Figure 9. CNOT produces perfectly entangled quantum states from unetangled ones (a); The CNOT gate 

applied to two qubits. The right hand state entangled; it is not possible to associate a definite state with one 

qubit independent of the other, as is the case for the left hand side. The reversibility of the gate means that it 

can be run left to right or right to left (b) 

Thus it acts as “the measurement gates” because if the target bit 2  is initially in state 0  then this bit 

is in effect an apparatus that performs a perfectly accurate non-perturbing (quantum non-demolition (QND) 

measurement type) measurement of 1 . This is illustrated in Fig. 10: if the object is to measure state of the 

upper qubit (that is , whether it is in the 0  state or the 1  state ), we may CNOT it with a second bit 

started in the 0  state; then a measurement of the second bit will reveal the desired outcome.  

 
10   or  

0  
M 1  0 or  

10   or  

 

Figure 10. CNOT functions as an ideal non-demolition measurement apparatus for a qubit. 

This may not appear to be much of a advantage over measuring the first qubit directly. However, it has 

the feature of being a “non-demolition” measurement in which the original quantum state remains in 

existence after the measurement. It only remains undistributed if it started in the 0  or the 1  state; if it 

started in a superposition, then the state is “collapsed” by the measurement. 

Example. To appreciate the real power of the non-demolition capability of the CNOT gate, consider the 

simple quantum circuit of Fig. 11.  

 

 a 

b 

c 

0  

abcΨ  

M 

Measures operator zczbza   on abcΨ  
 

Figure 11. A circuit of CNOTs can be used to do a non-demolition measurement of the three-particle opera-

tor shown 
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The effect of the three successive CNOTs followed by a measurement of the target qubit is to 

accomplish a highly non-trivial non-demolition measurement of the three-particle Hermitian operator 

zczbza  . Previous discussions of such three-particle operators always assumed that it would necessarily 

be done in a “demolishing” fashion where each of the one-particle operators were measured separately.  This 

property forms the basis of the use of the CNOT gate in the implementation of error correction and hence in 

fault-tolerant quantum computation. 

This transformation of superpositions into entanglements can be reversed by applying the same 

controlled-NOT operation again. If we define a conjugate qubit basis by   10
2

1
0   and 

  10
2

1
1  , then it is easy to show that when both input qubits are considered in the conjugate basis, 

then the effective gate action is an CNOT but with the source and target bits reversed. Hence it can be used 

to implement the Bell measurement on the two bits by disentangling the Bell states.  

For the four Bell states we get for product states  

   12

1 1
0 0 1 1 0 1 0

2 2

disentangled

C    ;    12

1 1
0 1 1 0 0 1 1

2 2

disentangled

C    . 

Thus the Bell measurement on the two qubits is reduced to the simple sequence of two independent two 

dimensional measurements: in the basis  1,0  for the control qubit and in the basis  10
2

1
  for the 

target qubit. The realization of the Bell measurement is the main obstacle in the practical implementation of 

quantum teleportation and the dense quantum coding. If just the target bit is represented in the conjugate 

basis, then the action of the CNOT is completely symmetric on the two qubits, having the form 

























1000

0100

0010

0001

U . This “phase-shift” form of the gate (controlled-Rotation - CROT) is the one which 

has been discussed in the cavity quantum-electrodynamic implementation of a two-bit quantum gate by 

Turchette, 1995.  

The XOR gate allows us to move information around as illustrated in Fig. 12.  

 

 
A  

B  

B  

A  

 122112 CCC  

 

Figure 12. Circuit for swapping a pair of bits 

Quantum state swapping can be achieved by cascading three quantum controlled-NOT gates for 

arbitrary states   and  . 

Remark: The quantum controlled-NOT gate is not a universal gate, however, the universal quantum gate 

can be constructed by a simple extension of the controlled-NOT gate to the controlled-controlled-NOT gate 

combined with simple unitary operations on a single qubit (see Theorem 1).  

It is straightforward to show that the CNOT gate induces the following transformation:  

ZZZIXIXI

IZIZXXIX
CNOTCNOT

CNOTCNOT

  

  
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It is easy to see here how amplitudes are copied forwards and phases are copied backwards. For two 

arbitrary unitary transformations 1U  and 2U , the “conditional” transformation 21 1100 UU   is 

also unitary. The CNOT gate can defined by 

XICNOT  1100 . 

The transformation CNOT is unitary since CNOTCNOT 
 and ICNOTCNOT  . The CNOT 

gate cannot be decomposed into tensor product of two single-bit transformations. A CNOT-operation can be 

performed in an ion trap by a sequence of three operations: Controlled-ROT Gate, Controlled-SWAP Gate, 

and Basis Transformations.  

Another types of controlled U  gates can be described as in Table 2. 

 

Table 2. Typical controlled U gates and Its Matrix Representation Forms 

           

       

    

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

Title Matrix

of Presentation

Operations Forms

CNOT

CROT

SWAP

 
 
 
 
 
 

 
 
 
 
 

 

 
 
 
 
 
   

Using the operations from the Table 2 it is possible defined the new operations as in Table 3.  

In general form this gate can be written as the unitary transformation in matrix form as in Fig. 13.  

 

Table 3. Relations between the Operations CROT and SWAP 

       

       xyCNOTyxCNOTxyCNOTxySWAP

xySWAPyxCROTxySWAPyxCROT

Forms

onpresentati

Operations

of

Title

,,,,

,,,,

Re



  

 

 

   
    






















22

22

cossin00

sincos00

0010

0001

)(






i

i
Rx  

)(xR  
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Figure 13. CROT gate and its Graphical Representation Form 

This gate rotates the target (lower) qubit by  xR  (angle   about the x axis, if control (upper) qubit 

is 1 ), otherwise it does nothing. This gate can be implemented using to CNOT gates and two single qubit 

rotations. 

Basis Transformations and Reduction of Any Unitary Matrices. State Permu-
tations.  

We introduce short definitions of permutation theory and applications to the reduction problem of any 

unitary matrix into product of qubit rotations and CNOT`s. 

Permutations. A permutation is a 1 – 1 onto map from a finite set X  onto itself. The set of 

permutations on set X  is a group if group multiplication is taken to be function composition. nS , the 

symmetric group in n  letters, is defined as the group of all permutations on any set X  with n  elements. If 

nZX ,1 , then a permutation G  which maps Xi  to Xai   (where ji  implies ji aa  ) can be 

represented by a matrix with entries    jaG iji ,,  , for all Xji , . Note that all entries in any given 

row or column equal zero except for one entry which equals one. Hence, the rows of G  is an orthogonal 

matrix. An alternative notation for G  is 









naaaa

n
G





321

321
. The product of two symbols of the 

this type is defined by function composition.  

Example. For example, 



























321321321

321 321321

bbbaaabbb

aaa
. 

A cycle is a special type of permutation.  

If nSG  maps 113221 ,,,, aaaaaaaa rrr   , where ji   implies ji aa   and 

nr  , then we call G  a cycle.  

Another way to represent G  it is by  raaaG ,,, 21  . We say that the cycle has in this case length 

r . Cycles of length 1 are just the identity map. A cycle of length 2 is called a transposition. The product of 

two cycles need not be another cycle.  

Example. For example,    









562314

654321
6,5,4,15,1,2  cannot be expressed as a 

single cycle.  

Any permutation can be written as a product of cycles.  

Example. For example,  

  2,4,16,5
562314

654321









. 

The cycle on the right side of this equation is disjoint; i.e., they have no elements in common. Disjoint 

cycles commute. 

Any cycle can be expressed as a product of transpositions (assuming a group with   two elements), by 

using identities such as:  

      nnn aaaaaaaaa ,,,,,, 1322121   ,       2131121 ,,,,,, aaaaaaaaa nn   . 

Another useful identity is      pabppaba ,,,,  . This last identity can be applied repeatedly.  
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Example. For example, applied twice, it gives  

           1212211111 ,,,,,,,,, pappbppppapabppaba  . 

Since any permutation equals a product of cycles, and each cycles can be expressed as a product of 

transpositions, all permutations can be expressed as a product of transpositions (assuming a group with   

two elements). The decomposition of a permutation into transpositions is not unique. However, the number 

of transpositions whose product equals a given permutation is always either even or odd. An even (ditto, 

odd) permutation is defined as one, which equals an even (ditto, odd) number of transpositions.  

Basis Transformations and Reduction of Any Unitary Matrices. Unlike ideal classical gates, ideal 

quantum gates do not have high-impedance inputs. In fact, the role of “control” and “target” are arbitrary – 

they depend on what basis you think of a device as operating in. We have given the truth table for a CNOT 

and shown the control qubit does not get changed in the classical 00, 01, 10, 11 basis. However, in reality, 

the control qubit does change: its phase flipped depending on the state of the “target” qubit. One of example 

is demonstrated in Fig. 14.  

 

 

H 

H H 

H 

= 

 

Figure 14. Basis Transformation of Hadamard gates and CNOT. 

In order to realize arbitrary unitary transformations, single bit rotations need to be included. It was 

shown that CNOT with all one-bit quantum gates is a universal gate set. It suffices to include the following 

single bit rotations and phase shift transformations  










 



cossin

sincos
, 













 



i

i

e

e

0

0
, 

















i

i

e

e

0

0
. 

We consider in this section the method that can to reduce any unitary matrix into a product of qubit 

rotations and CNOT`s. A qubit rotation acts on a single qubit at a time. We will discuss gates as CNOT`s 

that are state permutations that act on two bits at a time. Consider first the case when there are only two bits. 

Then there are four possible states: 00, 01, 10, 11. With these four states, one can build six distinct 

transpositions:  

      1

210

2

001,00
n

xx

x
IPP

I












   (1) 

      0

012

10

01
110,00

n

xx PPI
PP

PP
 








  (2) 

  


















1

1

11,00 2I , (3) 

  


















1

1

10,01 x , (4) 

      0

102

01

10
110,00

n

xx PPI
PP

PP
 








  (5) 

      1

120

2
001,00

n

xx

x

PIP
I












 , (6) 
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where matrix entries left blank should be interpreted as zero. The rows and columns of the above 

matrices are labelled by binary numbers in increasing dictionary order. Note that the four transpositions 

(Positions (1), (2), (5), and (6)) change only one bit value. The other two transpositions (Positions (3) and 

(4)) change both bit value.  

We will call (00, 11) the Twin - to – Twiner and (01, 10) the Exchanger. Expressions such as    


n

x  

where    are a special case of    22

11




M
M , which was defined above. In this case    


n

x  equals 

  x when it acts on a state for which   1n , whereas it equals 1 if   0n ;   is called the control 

bit and   the flipper bit.  

Remark. The Exchanger has four possible representations as a product of CNOT:   

                 

                 

                 

                 010

010

101

101

10111,0110,1111,0110,01

10100,1001,0000,1010,01

01011,0101,1111,0110,01

01000,0110,0000,0110,01

4

3

2

1

n

x

n

x

n

x

n

x

n

x

n

x

n

x

n

x

n

x

n

x

n

x

n

x

















 

Note that one can go from Position 1 to Position 2 by exchanging n  and n ; from Position 1 to Position 

3 by exchanging bit positions 0 and 1; from position 1 to Position 4 by doing both, exchanging n  and n , 

and exchanging bit positions 0 and 1. 

We will often represent Exchanger by  1,0E . It is easy to show that  

     

   

  11,03

0,11,02

1,01,01,01

2

1





 

E

EE

EEE T

 

Furthermore, if X and Y  are two arbitrary 22  matrices, then, by using the matrix representation of 

Exchanger, one can show that     XYYXE 1,0 . Thus, Exchanger exchanges the position of 

matrices X and Y in the tensor product.  

Twin – to – Twiner operator also has four possible representations as a product of CNOT. One is 

                 101
01001,0011,0101,0011,00

n

x

n

x

n

x  . As with Exchanger, the other three 

representations are obtained by exchanging: (1) n  and n ; (2) bit positions 0 and 1; (3) both. 

Toffoli Gate. Tom Toffoli (1980) inspired by Bennet reversibility, investigate how reversible computing 

could be done in the traditional language of Boolean logic gates. He showed that a set of modified gates 

could be used in place of the traditional Boolean logic gates like AND, OR, etc. One of these, which has 

turned out to be of central importance in the subsequent quantum gate work is the CNOT gate and was 

discussed above. The simple retention of the source bit makes the CNOT gate reversible – the input is a 

unique function of the output. The target bit is transformed to the exclusive – NOT (XOR), while the source 

bit is unchanged. The CNOT gate is not universal for Boolean computation. Toffoli sought another reversible 

gate, which could play the role of a universal gate.  

Remark. A “universal ” logic gate is one from which one can assemble a circuit which will evaluate any 

arbitrary Boolean function. In ordinary (irreversible) Boolean logic, NAND (or AND supplemented by NOT) 

is one choice for the universal gate.  

The Toffoli gate (double CNOT) requires three bits, symbolized in Fig. 15.  
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 a 

b 

c 

b 

a 

b)(ac   

 

Figure 15. The three – bit Toffoli gate is universal for reversible Boolean logic. The action of the gate on the 

three input bits is indicated 

Any universal reversible Boolean logic gate must have at least three bits. In essence, this gate is an 

AND gate in which both input bits are saved; as Fig. 15 indicates, bits a  and b  are unchanged, while bit c  

is “toggled” by ba  . The Toffoli gate is reversible classical gate which is universal for classical 

computation. The XOR is also a classical gate, but the only classical functions that can be constructed with it 

are linear Boolean functions; it takes three bits to provide a reversible classical gate, which is universal for 

classical computation (recall that all quantum gates must be reversible).  

We will show to do both 2/  rotations and Toffoli (T) gates fault – tolerant. The three – bit controlled 

– controlled –NOT (Toffoli) gate is also an instance of this conditional definition:  

T = CNOTII  1100 . 

T can be used to construct complete set of Boolean connectives in that it can be used to construct the 

NOT and AND operators in the following way:  

yxyxyxT

xxT





,,0,,

,1,1,1,1
 

The quantum Toffoli gate is a three – qubit gate, as follows: 

110111

111110

101101

100100

011011

010010

001001

000000

















 

The T gate is sufficient to construct arbitrary combinatorial circuits.  

Example. Consider the trivial example of a double controlled – NOT (Toffoli) gate, T, that computes the 

conjunction of two values as in Fig. 16. 

 
x  

y  

0  

x  

y  

yx   
 

Figure 16. Calculation scheme of the conjunction of two values with Toffoli gate 

Now take as input a superposition of all possible bit combinations of x  and y  together with the 

necessary 0: 
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   

 110100010000
2

1

010
2

1
10

2

1
000



 HH

 

Superposition of inputs leads to superposition of results, namely  

T    111100010000
2

1
000 HH  

The resulting superposition can be viewed as a truth table for the conjunction, or more generally as the 

graph of a function. In the output the values of yx, , and yx  are entangled in such a way that measuring 

the result will give one line of the truth table, or more generally one point of the function graph. Note that the 

bits can be measured in any order: measuring the result will project the state to a superposition of the set of 

all input values for which the function f  produces this result; measuring the input will project the result to 

the corresponding function value.  

Example. Consider the application of T gate in quantum computation. Suppose we want to build a 

dedicated quantum device to factor large integers. The quantum factorization contains two major operations: 

quantum exponentiation (computing Na x mod ) followed by the Quantum Fourier transform. Quantum 

exponentiation can be decomposed into a sequence of squaring, 1
1

1
1

0
0 222 



 l
l xxxx aaaa  , where 

,, 10 xx  are the binary digits of x . Squaring is achieved by multiplication and multiplication by  a 

sequence of additions. Following this reduction procedure we end up with a quantum adder as a basic unit 

for the whole network. However, a quantum adder is different from a classical adder. Any unitary operation 

is reversible which is why quantum network for basic arithmetic cannot be directly deduced from their 

classical Boolean counterparts (classical logic gates such as AND or OR are clearly irreversible – reading 1 

at the output of the OR gate does not provide enough information to determine the input which could be 

either (0,1) or (1,0) or (1,1) ). Quantum arithmetic must be build ab initio from the reversible logical 

components.  

A simplified quantum adder shown in Fig. 17.  

 

 
x  

y  

z  

x  

y  

zxy  

x  

y  

0  

x  

yxSUM  

xyCARRY  

Toffoli 

gate 

Quantum adder  

Figure 17. Diagrammatic representation of the Toffoli gate and a simplified quantum adder. States yx ,  

and z  belong to the computational basis 0,, zyx  or 1 and both addition   and multiplication yx   

are performed modulo 2 

The Toffoli gate is a basic unit which features prominently in the network implementing elementary 

quantum arithmetic, i.e. in quantum adders, multipliers etc. It can be decomposed and written as a quantum 

network of elementary two – qubit and one – qubit gates. The following quantum circuit, for example, 

implements a 1 bit full adder using T and CNOT gates (Fig. 18): 
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c  

x  

y  

s  

c  

c  

x  

y  

0  

0  
 

Figure 18. An one – bit full adder using Toffoli and CNOT gates 

Where x  and y  are the data bits, s  is their sum (modulo 2), c  is the incoming carry bit, and c  is the 

new carry bit. It is possible define more complex circuits that include in – place addition and modular 

addition. 

A simplified quantum adder is a starting point for constructing more elaborate networks.  

Example. How do we construct the Toffoli gate? One major problem with this gate is that it requires 

three bits in and three out. Quantum mechanically, this seems to correspond to a scattering process involving 

three – particle collisions calling for a (possible) unreasonable control of the particles. Fortunately, the 

Toffoli gate may be constructed by two – particle scattering processes. In particular, we show a construction 

here involving the CNOT gate and some one – bit gates U  (Fig. 19).  

 
A  

 CAB .  

A  

B  
4

U  
4

U  
4

1


U  
4

1


U  

C  C  
 

Figure 19. The Toffoli gate built from two – bit CNOT gates plus some one – bit gates. This circuit intro-

duced some extra signs in the unitary matrix CNOTU  which may be removed at a later stage 

Not only is the CNOT sufficient for all logic operations in quantum computation, but it can be used to 

construct arbitrary unitary transformations on any finite set of bits.  

The Fredkin Gate (F). The F gate is a “controlled SWAP” and can be defined as  

SIIF  1100  

where S  is the SWAP operation: 1111011010010000 S . The Fredkin (F) gate 

has the truth table as in Fig. 20. 
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111111

011011

110101

001001

101110

010010

100100

000000

CBACBA

OutputsInputs



   



















C

B

A

C

B

A

F  

Figure 20. The truth table of Fredkin gate 

The following table shows that F, like T, is complete for combinatorial circuits: 

xyxyxyxF

xyxyxyxF

xxxxF







,,,0,

,,1,,

,,1,0,

 

The CNOT gate can be constructed from two Fredkin gates.  

While the T and F gates are complete for combinatorial circuits, their cannot achieve arbitrary quantum 

state transformations. In order to realize arbitrary transformations, single bit rotations need to be included.  

Decomposition of controlled - VU ,  Gates and Universality for Quantum Gates. As claimed above, the 

CNOT gate, when supplemented by a repertoire of one – bit quantum gates, is sufficient to perform any 

arbitrary quantum computation. Many important quantum computations are formulated quite naturally using 

this repertoire. This repertoire (CNOT plus one – bit gates) is “universal” for quantum computation in the 

sense that the Toffoli gate above is universal for reversible Boolean computation. We were able to make use 

of another important early discovery of Deutsch (1989), which was that three – qubit gates DU  are universal 

for quantum gate constructions, where DU  has the “double - controlled” form  



































2221

1211

000000

000000

00100000

00010000

00001000

00000100

00000010

00000001

uu

uu

U D  

Here the iju  constitute a generic  2U  matrix. This gate is a quantum generalization of the Toffoli gate. 

It is fortunate for the prospects for physical implementation of quantum computation that, unlike in Boolean 

reversible computation, the Deutsch gate can indeed be broken down into simple parts. The simplest means 

of achieving this decomposition is shown in Fig. 21.  
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U V V
† 

V 

= 

Sleator – Weinfurter 

construction: 
V

2
 = U 

 

Figure 21. The construction showing the Deutsch three – qubit gate can be broken down into a series of two 

– qubit operations. 

The first step of the decomposition, discovered by Sleator & Weinfurter, uses two CNOT gates and 

three “controlled - V” gates, whose matrix description is  























2221

1211

00

00

0010

0001

VV

VV
UV  

Here V is a  2U  matrix such that UV 2
. These two –bit controlled – V gates could be further 

broken down, as shown in Fig. 22. 

 

 

V A 

E 

B C 

= 

 

Figure 22. Decomposition of the controlled – V gate into CNOT`s and one – bit gates 

Here A, B, C, and E are one – bit gates for which can be obtained explicit formulae (see 

abovementioned description).  

Thus, the circuits, elements which would be needed in any quantum computation in which we are 

currently interested can be readily be simulated by short sequences of two – bit gates.  For instance, the 

Toffoli gate, which would be the basis of much of the ordinary Boolean logic which is needed for large 

sections of, for example, Shor prime factoring, can be obtained with just six CNOT`s and eight one – bit 

gates by using the constructions above (this is shown in Fig. 23).  

 

 

F 

= 

G 

J 

G
† 

J
†
 

G 

J 

H 
 

Figure 23. Simplest decomposition of the Toffoli gate into six CNOT gates and eight one – bit gates (opera-

tions F, G, H, and J in text are described) 

The unitary operators for one – bit gates in this construction are  
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It may be noted that in this construction the gates can be grouped into a sequence of just five two – bit 

operations: first a 2 – 3 operation, then 1 –3, 1 – 2, 2 – 3 and finally 1 – 3 (numbering the qubits 1 – 2 – 3 

from the top). Simulations have indicated that the Toffoli gate can be obtained with no fewer than five two – 

bit quantum gates of any type.  

In a related result, Margolus has found an “almost” Toffoli gate which requires even less resources, as 

shown in Fig. 24: just three CNOT`s and four one – bit gates (three two – bit gates over). 

 

 

  

G G
† 

G
† 

G 
 

Figure 24. Margolus`s simplified Toffoli gate construction, if just one of the quantum phases is allowed to be 

changed 

It is “almost” in the sense that one of the matrix elements of the Tofffoli gate is changed from 1 to – 1 

(the one corresponding to the 100  state). This is not generally acceptable for quantum computation, where 

all the phases must be correct. However, in many quantum programmes the Toffoli gates appear in pairs, so 

that the “wrong” phase of the Margolus construction can be arrange to cancel out.  
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