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Квантовая механика требует, чтобы операции квантовых вычислений были унитарными, и де-
лает важным иметь общие методы для разработки быстрых квантовых алгоритмов вычисления 
унитарных преобразований. В работе представлена квантовая подпрограмма для вычисления обоб-
щённого произведения Кронекера. Приложения для вычисления Уолша-Адамара и квантового преоб-
разования Фурье включают в себя также проектирование соответствующей сети. 

Ключевые слова: квантовые вычисления, обобщённое произведение Кронекера, квантовое пре-

образование Фурье, квантовые алгоритмы 

Introduction 

The fundamental object is the unitary transform, which then can be considered a quantum or a classical 

(reversible) algorithm. With point of view, the problem of finding an efficient algorithm implementing a 

given unitary transform U into small number of “sparse” unitary transforms such that those sparse transforms 

should be known to be efficiently implementable. As an example of this, the quantum networks implement-

ing the quantum versions of the discrete Fourier transforms can be easily derived from the mathematical 

descriptions of their classical counterparts [1-18].  

Remark. For simplicity, we will use Kronecker product. The other two names: direct product and tensor 

product are also similar [19, 20]. 

Remark. More generally, unitary transform can be expressed as a certain generalized Kronecker product 

(defined below) then, given efficient quantum network implementing each factor in this expression, we also 

have an efficient quantum network implementing U. The expressive power of the generalized Kronecker 

product includes several new transforms. 

Generalized Kronecker products  

All matrices through this Section are finite. Recall that a square matrix is unitary if it is invertible and its 

inverse is the complex conjugate of its transpose. The complex conjugate of a number c is denoted by c . 

Let us introduce any definitions. 

 

Definition 1. Let c be a  p q  matrix and C a  k l  matrix. The left and right Kronecker product of 

 p q  and C are  pk ql matrices 

mailto:tyatushkina@mail.ru
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respectively. 

Definition 2. Given two tuples of matrices, a k  tuple  
1

0

k
i

i
A




Ά  of  p q  matrices and q   tuple 

 
1

0

q
i

i
C




Ć  of  k l  matrices, the generalized right Kronecker product is the  pk ql matrix D = 

Ά
R Ć  where 

,

v x

ij uk v xl y ux vyd d a c    

with  0 , 0 , 0 ,u p v k x q       and 0 y l  . 

Definition 3. The generalized left Kroneker product is the  pk ql matrix D = Ά
L Ć  where 

 ,i j  th entry holds the value 

,

u y

ij up v xq y vy uxd d a c    

with  0 , 0 , 0 ,u k v p x l       and 0 y q  . 

 

Remark. The left Kronecker product denoted by A
L C and the right Kronecker product denoted by 

A
R C. when some property holds for both definitions, we use A C. The Kronecker product is a binary 

matrix operator as opposed to the tensor product which is binary operator defined for algebraic structures 

like modules. The Kronecker product can be generalized in different ways. We use the generalized Kroneck-

er product defined in Definition 1.  

Remark. The generalized right Kronecker product can be found from the standard right Kronecker prod-

uct by, for each sub-matrix 
uxa C in Definition 1 substituting it with the following sub-matrix 

0 0 0

00 01 0, 1

1 1 1

10 11 1, 1

1 1 1

1,0 1,1 1, 1

x x x

ux ux ux l

x x x

ux ux ux l

k x k x k x

ux k ux k ux k l

a c a c a c

a c a c a c

a c a c a c





  

   

 
 
 
 
 
 
 

. 

Remark. As for standard Kronecker products, we let Ά  Ć  denote either of the two definitions. If the 

matrices 
iA A are all identical, and also 

iC C, the generalized Kronecker product Ά  Ć  reduced to 

the standard Kronecker product A C. Denote Ά  C the generalized Kronecker product of a k  tuple Ά  

of  p q  matrices, and q   tuple Ć  of  k l  identical matrices C. Denote A Ć  similarly.  

Example. Let us consider the differences between left and right Kronecker products.  
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Thus, as result 
RA LA , i.e., left and right Kronecker products are non-commutative relation.  

To analyze generalized Kronecker products we need the shuffle permutation matrix of dimension 

 mn mn , denoted 
mnΠ  (as shorthand for  ,m n

Π ), defined by 

,rs dn l d m l dl d l         , 

where 0 , ; 0 ,d l m d l n     , and 
xy  denotes the Kronecker delta function which is zero if x y , 

and one otherwise. It is unitary and satisfies 
1 T

mn mn mn

     . Given two tuples of matrices, k-tuple 

 
1

0

k
i

i
A




Ά  of  p r  matrices and k   tuple  

1

0

q
i

i
C




Ć  of  r q  matrices, let Ά  Ć  denotes the 

k   tuple where the i-th entry is the  p q  matrix 
i iA C , 0 i k  . For any k   tuple Ά  of matrices, let 

 diag Ά denote the direct sum 
1

0

k
i

i
A




  of matrices 

0 1, , kA A 
. The generalized Kronecker products satisfy 

the following important diagonalization theorem. 

Theorem (Diagonalization theorem): Let  
1

0

k
i

i
A




Ά  be a k  tuple  p q  matrices and 

 
1

0

q
i

i
C




Ć  a q  tuple of  k l  matrices. Then 
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R pk kq

L kq ql

diag diag
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Ά Ć Ά Ć

Ά Ć = Ά Ć
.  (1) 

 

Corollar1: Let  
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k
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Ά  be a k  tuple  p q  matrices and  
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
Ć  a q  tuple of  k l  

matrices. Then 

 

 

 
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


    

   

Ά Ć Ά Ć

Ά Ć = Ά Ć

  (2) 
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Remark. Until now, we have not assumed anything about the dimension of the involved matrices. In the 

text theorem, we assume that the matrices involved are square matrices. The theorem is easily proven from 

Diagonalization theorem. For any k  tuple  
1

0

k
i

i
A




Ά  of invertible matrices, let 

-1Ά denote the k  tuple 

where i-th entry equals the inverse of 
iA , 0 i k  . 

Corollary: Let Ά,Ć  be m-tuples of  n n  matrices, and ,Đ Ě  be n-tuples of  m m  matrices. 

Then 

             m nΆĆ ĐĚ Ά I Ć Đ I Ě  . (3) 

Furthermore, if the matrices in the tuples Ά  and Ć  are invertible, then 

  
 

   

1

1

R nm R mn L

L mn L nm



 



 
       
 
 

      

-1 -1 -1 -1

-1 -1 -1 -1

R

Ά Ć Ć Ά Ć Ά

Ά Ć Ć Ά Ć Ά

 (4) 

If Ά  and Ć  are unitary then so is Ά Ć .  

Quantum routines (A method for constructing a quantum network for computing any given generalized 

Kronecker product.) A primary application of this method is a tool to find a quantum network of a given 

unitary matrix.  

As our quantum computing model, we adopt the now widely used quantum gate arrays. Let  

: , ,u v u v u    denote the two-bit exclusive-OR operation, and U  the set of all one-bit unitary 

operations. By a basic operation we mean either a U  operation or the   operation. The collection of basic 

operations is universal for quantum networks in the sense that any finite quantum network can be approxi-

mated with arbitrary precision by a quantum network Q consisting only of gates such operations. Define the 

one-bit unitary operations 

0 1 1 0 0 1 1 11

1 0 0 1 1 0 1 12
X Z Y H

       
          

        
 

Given a unitary matrix , let     , , ,j x k  denote the transform where we apply  on the k-th 

register iff the j-th register equals x. Given an n-tuple  
1

0

n

i




Ci

 of unitary matrices, let     , , , i

i
j i k C  

denote          1 0, 1 , , ,0 , ,nj n k C j k C   . Given a k-th root of unity, say  , let    denote 

the unitary transform given by 
uvu v u v . If the first register holds a value from 

n
, and the 

second holds a value from 
m

, then      ,n m
    can be implemented in  log logn m  

basic operations. 

Example: Typical matrix operations. Let us consider the implementation of the following operations. 

 

1. Quantum shuffle transform 

Let the operation 
mDM  perform the unitary transform 0 modk k divm k m , for every m > 1. 

Let SWAP denote the unitary transform 
SWAP

u v v u . Then 
mn  can be implemented on a 

quantum computer by one application of 
mDM , one SWAP operation, and one application of 

1

mDM 
, 

i.e., 
mn  1

mDM 
 SWAP

mDM . 
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2. Quantum direct sum 

Let  be an n-tuple of  m m  unitary matrices. It is true that  Diag  can be implemented as fol-

lows, 

      1 1, , 2, i

n m
i

Diag DM i C DM  . 

In general, the time to compute the direct sum is proportional to the sum of the computation times of each 

of the conditional 
iC  transforms. However, if parts of these can be applied in quantum parallel, this 

improves the running time. 

3. Quantum Kronecker product 

Let Ά  be an m-tuple of  n n  unitary matrices and Ć  be an n-tuple of  m m  unitary matrices. By 

the Diagonalization theorem, the generalized Kronecker product can be applied by applying two direct 

sums and two shuffle transforms. Removing canceling terms we get 

         1 2, , 1, 1, , 2,i i

R m m
i i

DM i A i C DM   Ά Ć  

         1 1, , 2, 2, , 1,i i

L n n
i i

DM i A i C DM   Ά Ć . 

Thus, an applications of a generalized right Kronecker product can be divided up into the following four 

steps: in the first step, we apply 
mDM . In the second step, we apply the controlled 

iC  transform on the 

second register, and in the third step, the controlled 
iA  transforms on the first register. Finally, in the last 

step, we apply 
1

mDM 
 to the result.  

Example. Let Ά  be a 4-tuple of  2 2  unitary matrices, and Ć  a 2-tuple of  4 4  unitary matrices. 

The generalized Kronecker product
RΆ Ć can be implemented by a quantum network. The dots and the 

circles represents control-bit: if the values with the dots are one, and if the values with the circles are zero, 

the transform is applied, otherwise it is the identity map. The least (most) significant bit is denoted by LSB 

(MSB). Note that the most of the transforms are orthogonal, and thus the gates commute.  

Remark. Following the ideas of Griffiths et all, a semi-classical generalized Kronecker product trans-

form can be defined.  

Properties of the Kronecker product in quantum information theory  

We will discuss the properties and applications of Kronecker product in quantum theory that is studied 

thoroughly. The use of Kronecker product in quantum information theory to get the exact spin Hamiltonian 

and the proof of non-commutativity of matrices, when Kronecker product is used between them is also 

given. The non-commutativity matrices after Kronecker product are similar or they are similar matrices.  

Remark. The use of Kronecker product in quantum information theory is used extensively. But the rules, 

properties and applications of Kronecker product are not discussed in any quantum textbooks. Even books on 

mathematical aspects of quantum theory are discussed the properties and applications of Kronecker product 

in very short without any explanations of its rules. That is, why we applying Kronecker product left/right to 

any spin operator, why not left or why not right only. They are applying Kronecker product without any 

explanation. Mathematicians were also not able to give any concrete answer to these questions in more 

generalized way. We can find textbooks on algebra, where the mathematical aspects are considered in more 

rigorous and detail. But many books on algebra do not consider the physical aspects of Kronecker product, 

which are very important in quantum theory. So, we will discuss answers to all of the abovementioned 

questions, which are now very important in quantum information theory to write exact spin Hamiltonian. 

Mathematical aspects of Kronecker product  
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Let Â  and B̂  are two linear operators defined in the finite dimensional L and M vector spaces on field 

F. Â  B̂  is the Kronecker product of two operators in the space L M. Kronecker product of two matrices 

are given by the rule:      
   1, 1 2, 2 1, 2 , 1, 2m n m n m m n n

A B C  . After the Kronecker product the dimensions of 

the finite space becomes N M, where N and M are dimensions of finite spaces on which operators A and B 

are defined. 

Properties of the Kronecker products. Let the operators ˆ ˆ ˆ ˆ1, 2, 1, 2A A B B  and Ê  (unity matrix) are de-

fined in finite dimensional vector spaces L1, L2, M1, M2 and Ê  is defined in L1, L2, M1, M2 on the field F. 

The properties of the Kronecker product can be written as following (see Table 1).  

Table 1. The properties of the Kronecker product 

     

     
   

              

              

1, 1 1, 1

1, 1 2, 2 1, 1 , 2, 2

1, 1 2, 2 1, 1 1, 1 1, 1 2, 2 1, 1

1, 1 1, 1 2, 2 1, 1 1, 1 1, 1 2, 2

1 1 0 0 1 0 0

2

3 1 2 1 1 1 2 1

4 1 1 2 1 1 1 2

5

m n m n

m n m n m n m n

m n m n m n m n m n m n m n

m n m n m n m n m n m n m n

N Kronecker product property

A B is zero matrix

E E E

A A B A B A B

A B B A B A B

   

 

     

     

         

        

                   

         

1, 1 1, 1 1, 1 1, 1

1 1 1

1, 1 1, 1 1, 1 1, 1

1, 1 1, 1 2, 2 2, 2 1, 1 2, 2 1, 1 2, 2

1, 1 1, 1 1, 1 1, 1

1 1 1 1 ,

6 1 1 1 1

7 1 1 2 2 1 2 1 2

8 1 1 1 1

m n m n m n m n

m n m n m n m n

m n m n m n m n m n m n m n m n

m n m n m n m n

s A t B s t A B s t are constants

A B B A

A B A B A A B B

A B B A

  

      

  

      

  

 

Example. We will prove only one property (8), which is used in quantum information theory. The others 

can be proved easily by analyzing the proof of property (8). 

Theorem: The Kronecker product of two matrices are non-commutative, i.e.  

         1, 1 1, 1 1, 1 1, 1
1 1 1 1

m n m n m n m n
A B B A   . 

Proof. Let two linear operators Â  and B̂  with bases a and b are defined in finite vector spaces L and M 

vector spaces on field F. The operators can be written into the form of matrices (A) and (B). First we will 

write the L.H.S part of the Kronecker product, i.e.,    A B  and then R.H.S    B A . Then, we will 

compare all the elements of both the L.H.S and R.H.S matrices. If even one of the element with same indices 

of both the matrices differ then these matrices are not equal or non-commutative. 

   

     

     

     

   

     

     

     

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

(5)

nm n m n m n

nm n m n m n

m n m n

m m m nm n m n m n

nm n m n m n

nm n m n m n

m n m n

m m m nm n m n m n

A B A B A B

A B A B A B
A B

A B A B A B

B A B A B A

B A B A B A
B A

B A B A B A

  

  

 

  

  

  

 

  

 
 
  
 
 
 
 



 




(6)






 
 



 

The elements of both matrices are not equal. It means that these matrices are non-commutative. 

Remark. Only the Kronecker product of two unity matrices are equal, i.e., they are commutative. 
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Similar operators (matrices)  

Let two linear operators Â  and B̂  with bases a and b are defined in finite vector spaces L and M vector 

spaces on field F. The question arises, when operators Â  and B̂ are considered similar. Since, we are inter-

ested in the similarity of these operators, so we will study the action of these operators on different bases in 

different vector spaces. 

 

Definition:  The operators ˆ :A L L  and ˆ :B M M  are called similar operators, if they are defined 

on field ˆ ˆ, dim dimF A B and exist isomorphism ˆ :f L M , i.e.,    1ˆ ˆˆB̂ b f A f b . 

For this case we have the following theorem. 

Theorem: If operators Â  and B̂  with bases (a) and (b) are defined in vector spaces L and M on field F 

then the matrices of operators Â  and B̂  in their corresponding bases a and b are similar, i.e., 

   
a b

A B . 

Proof. Let the bases 
1

ˆ : , , na a a  and    1
ˆ: , , nb f L M a a a    of linear operators Â  and B̂  are 

defined in vector spaces L and M on field F then 

   

     

     

,

, , ,

ˆ

ˆ ˆ ˆˆ ˆ

ˆ ˆ

j i j i

i

j j j

i j i i j i i j i

i i i

A a A a

B b B f a f A

f A a A f a A a



 

  



  

. 

Hence, A and are similar matrices 

 

Example: More simplified proof of theorem. Let the linear operator Ĉ defined in vector space L and M 

changes the bases a into b, i.e.,  

, ,
ˆ(7) (8)j i j i j i j i

i i

b C a Aa A a    

The operator Â  acts on basis b gives the matrix ,i jD  and basis vector jb  

, ,
ˆˆ (9) (10)j i j i j i j i

i i

Bb B b Ab D b    

By putting (7) into L.H.S. of (10) 

  
, , , ,

ˆ ˆ
k j k k j k i k k j i

k k k i

A C a C A a A C a     (11) 

By putting (7) into R.H.S. of (10) 

 , , , , ,k j k k j i k i i k k j i

k k i k i

D b D C a C D a     . (12) 

The R.H.S. of  (11) and (12) are equal 

, , , ,i k k j i k k jC D A C  

or 

       
1

D C A C


   . 

The theorem is proved. 
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Physical aspects of Kronecker product and its applications in quantum infor-
mation theory 

The Kronecker product in group theory is widely used, especially with Wigner D-function. The main 

purpose of its use in physics is to get the higher dimensional vector space. For example, in atomic physics, 

when we want to calculate the eigenvalues and eigenvectors of a system of spins ½ or spin Hamiltonian. 

We analytically or with help of PC diagonalize spin Hamiltonian and find eigenvectors and eigenvalues 

with two methods: 

1 
We should numerate each operator (matrix) of corresponding spin without multiplying (ordinary 

matrix multiplication) them with each other. By doing this, we can label each matrix of corresponding 

spin and each operator acts on their corresponding eigenvector. 

2 
By applying the Kronecker product different spins matrices, e.g., two matrices (dimensions 

2 2 ) of spins ½ , we will get the matrix of dimensions ( 4 4 ). This method is very compact, which 

means we can use the computer to get the eigenvectors and eigenvalues of matrix after applying 

Kronecker product for higher number of spins, e.g., for the system of spins ½.  

Remark. But there are some mathematical and physical problems during the process of Kronecker prod-

uct. These problems are can be described as following. 

(a) As it seen from the non-commutative nature of Kronecker product that we do not have right to take 

Kronecker product for two different spins freely (because they are non-commutative). Then how 

Kronecker product can be applied in quantum theory. 

(b) The non-commutative matrices        A B B A      after the Kronecker product are called 

similar matrices. It means, the eigenvalues of matrix  

     AB A B   and      BA B A   

are similar. But eigenvectors of some eigenvalues are misplaced with their neighbourhood eigenvec-

tors. This misplacement can be removed by applying the similar matrix method, which is proved 

earlier. The similar matrix method becomes more complicated as the dimensions of the vector space 

increases (number of spins increases). 

We will be discussed all of these problems below. 

Applications in quantum theory  

At the moment the Kronecker product is extensively used in quantum information theory. So, we con-

centrate on the applications of Kronecker product in information theory. All the applications of Kronecker 

product in quantum information theory can be easily applied to any other branch of quantum theory where it 

requires. Examples of Kronecker product are discussed below. 

Example A2.1: Hamiltonian of n spins ½ in Nuclear Magnetic Resonance (NMR). 

Let 
1
ˆ ˆ, , n   are linear spin operators defined in the finite dimensional 

1, , nS S  vector spaces on field 

F. 
1 2
ˆ ˆ ˆ

n     are defined in linear space 
1 2 nS S S  . All the matrices of spin operators 

1
ˆ ˆ, , n   are 2 2  dimensions. For simplicity, we are taking 1.  

1. Case n = 2 spins ½. 

Hamiltonian of two spins 
1̂  and 

2̂  defined in linear space 
1 2,S S . 

1
ˆ

z  and 
2
ˆ

z  coupling with hyper-

line interaction 
12J  are placed parallel to applied constant magnetic field 0B   axis: 

         2 0 1 2 0 1 2 12 1 2 12 1 2 12 1 2
ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

z z x x y y z zH B E B E J J J                      . 

2. Case n = 3 spins ½. 

Hamiltonian of three spins  
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     

     

3 0 1 2 3 0 1 2 3 0 1 2 3

12 1 2 3 23 1 2 3 31 3 1 2

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ

z z z

x x

H B E E B E E B E E

J E J E J E

     

     

            

        
 

Hamiltonians of higher spins ½ can be written in the same way as for 2 and 3 spins ½.  

Kronecker product in quantum information theory to get the spin Hamiltonians 

To write the spin Hamiltonian, first of all we should write 
2ˆ ˆ ˆ ˆ, , ,x y zS S S S  and then add them with their 

corresponding factors, we will get the spin Hamiltonians (e.g., 2Ĥ  and 3Ĥ ). We will proof this later. 

Example.  Let we want to write the spin Hamiltonian of n spins in NMR: 

 

 

 

 

 

 

 

 

 

1 

 

Total projection of n spins ½ on z-axis is conserved: 

 

                

3

2
1 1 2

4

1 2 3

ˆ , 3
ˆ , 2 ˆˆ ˆ 1 2

1 1 0 2

1ˆ
2 ˆ , 3

ˆ ˆ ˆ 1 3

0 3

n

in i

i
i

z z

z
n

i
i

z

E if n

E if n
E if n

if n if n

S

E if n

E E if n

if n

 









  
    

     
      

      
   

 
   

 
   

  
      

  
  
  

             (13) 

 

The first term in Eq.(13) contains first spin 
1
ˆ

z  with Kronecker product of ˆ iE  unit matrices of other 

spins, i.e., second, third and so on. The second term contains first factor unit matrix ˆ iE with Kroneck-

er product of second spin 
2
ˆ

z and unit matrix of other spins. The third and forthcoming terms are 

written analytically by analyzing preceding. ˆ
xS  and ˆ

yS  can be written by putting ˆ
x  and ˆ y  in 

place of ˆ
z . 

 

 

2 

 

The square of the total spin  2ˆ ˆ ˆ 1S S S   is conserved and 

   2 2 2 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ14 15x y z x y zS iS jS kS S S S S       

 

 

3 
Equations (14) and (15) are constant of motion. That is 

2ˆ ˆ, 0zS S  
 

. It means that the eigenvalues 

and eigenvectors of (13) and (15) are identical.  

4 The Hamiltonians 2Ĥ  and 3Ĥ  are consist of two parts (13) and (15) with their corresponding factors. 

Example: Proof of 2Ĥ . To proof 2Ĥ , that it consists of (13) and (15), we should take two spins 1Ŝ  and 

2Ŝ  with constants , , ,ia i x y z . To write ˆxS , ˆ
yS  and ˆzS , we use (13), i.e., 

  1 2 1 2
ˆ ˆ ˆˆ ˆ ,z z z zS a E E      (16) 

 
2 2 2 2

1
ˆ ˆ ˆ ˆ

x y zS S S S     (17) 

where 
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     

     

     

2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ

x z z z z

x x z x

x z x x

S E E E E

E E E E

E E E E

   

   

   

     

     

     

. (18) 

 

By using the property (A2.8), we can simplified Eq. (18) to  

 

    2 2

1 2 1 2
ˆ ˆ ˆ ˆ ˆ2x x x xS a E E      

 
.  (19) 

Similarly, we can calculate 
2ˆ
yS  and 

2ˆ
zS  

    2 2

1 2 1 2
ˆ ˆ ˆ ˆ ˆ2x y y yS a E E      

 
, (20) 

    2 2

1 2 1 2
ˆ ˆ ˆ ˆ ˆ2z z z zS a E E      

 
. (21) 

Now we will add (16), (19), (20), and (21) as following 

 
     

       

2 2 2 2

1 2 1 2 1 2 1 2

2 2

1 2 1 2 1 2 1 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ2 2

z x x x z z z x x x

y y y z z z

S S S S a E E E E

a E E a E E

    

   

           
 

          
   

 (22) 

By analyzing (22) and 2Ĥ , we can see that they are same, only we have to choose corresponding 
ia . 

The term  2

1 2
ˆ ˆ2 ia E E  does not have meaning, since it is unit matrix. We have proved that 2Ĥ  can be 

correctly chosen with help of ˆzS  and 
2Ŝ  using the properties 

1 2 2 1

1 2 2 1

1 2 2 1

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

x x x x

y y y y

z z z z

   

   

   

  

  

  

. 

The proof of 3Ĥ  can be written similarly by applying property (8). 

Similar matrices in quantum computation 

Tensor product, which is very widely, used in quantum theory plays an important role not only for ob-

taining the higher dimensional Hilbert space but also to optimize the experimental technique. Since, the 

tensor product is non-commutative in nature, i.e., it cannot be applied freely to any operator without any 

knowledge of the constituents of the physical system. One very important property of tensor product is 

similar matrices, which have two optimization properties: reduces the number of pulses to realize some 

operator in physical experiment; and provides different choices of pulse propagations along different 

directions of axes. These two properties will be discussed with concrete physical realization of CNOT 

operator and how we can optimize its realization. We present theoretical result, which is based on the linear 

algebra (similar operators). The obtained theoretical results optimize the experimental technique to construct 

quantum computation e.g., reduces the number of steps to perform the logical CNOT (XOR) operation. The 

present theoretical technique can also be generalized to the other operators in quantum computing and 

information theory. 

CNOT operator gates and CNOT’s similar matrices in quantum computing.  

CNOT gates or similar matrices play an important role in the construction of quantum computation. All 

the complex quantum algorithms are based on the computation of NOT and CNOT logical gates or matrices 
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in quantum computation. Here, we will not discuss the NOT logical gate or matrix, which is very simple 

negation operation. We will go in deep the mathematical and physical nature of CNOT logical gates. The 

other complex gates can be constructed on the basis of CNOT logical gates. Moreover, the construction of 

CNOT matrices plays an important role in quantum computation. Here, we will show that CNOT-matrices 

can be optimized by using the similar matrices, i.e., we can find different CNOT matrices with the same 

mathematical properties but some different experimental or physical realization. For better insight to 

understand the physical nature of similar matrices, we will discuss in the whole item the system of two spins 

1

1
ˆ

2
   and 

2

1
ˆ

2
   with slightly different resonance frequencies 

1  and 
2 , and having scalar coupling 

12 . The Hamiltonian of the two spins aligned along the z-axis with the constant magnetic field  

  1 1 2 2 1 2 12 1 2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ

z z z zH e e             ,  (23) 

where 
îe ,  1,2i  is identity matrix with 2 2 -dimensions .  

Physical differences between the CNOT matrices.  

Let us consider the CNOT matrix that contains additional spin 
1̂  rotation around the z-axis, which is 

unnecessary and which complicate the experimental realization of the CNOT as compare to the CNOT matrix 

used in NMR-quantum computation (Gershenfeld and Cory, 1997 – 2002; Jones, 1998 - 2002). In the 

mathematical viewpoint, CNOT matrices have in this case different mathematical properties, i.e., CNOT 

matrices are not similar matrices due to the additional rotation of spin 
1

ˆ
z  around z-axis. 

Remark. Moreover, additional rotation takes more time to fulfill the CNOT operation, which slows 

down the computation of quantum algorithms. The CNOT matrix for Hamiltonian (23) obtained by 

Gershenfeld is  

 

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

GC i

 
 
  
 
  
 

. (24) 

Physically, the 
GC  matrix was obtained by the following pulse sequences 

  

2 1 2 12 2

1 2 1 2 1 2

1 2 1 2

4 4 4 4 4

ˆ ˆ ˆ ˆ ˆ ˆexp exp exp
4 4 4

ˆ ˆ ˆ ˆexp exp
4 4

G y z z z y

y z z

z z z

C R R R R R

i e i e i e

i i e

    

  
  

 
  

         
            

         

     
           

     

   
     

   

,  (25) 

where R is rotation matrix around the different axes along with the different angles around different axes. 

The physical interpretation of the matrix R is just the rotation of our physical reference system or quantum 

tomography.  

Remark. The two CNOT matrices for Hamiltonian (23) obtained by Cory are 

  1 2

1 0 0 0 1 0 0 0

0 1 0 0 0 0 0 1

0 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0

C CC C

   
   
    
   
          

  (26) 
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In the experiment of NMR, the CNOT matrices (26) are called Pound-Overhauser operators, i.e., 

transformation of spin polarization from one spin to other spin. 

The 
1CC  and 

2CC  matrices were obtained with the following pulse sequences 

1 2 2 12 12 2

1 2 1 2 1 2 1 2

2 1 1 12 12

4 4 4 4 4

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆexp exp exp exp
4 4 4 4

4 4 4 4

C x z z z x

x z z z z

C x z z z

C R R R R R

i e i e i i e

C R R R R

    

   
    

   

         
            

         

       
             

       

       
         

       
1

1 2 1 2 1 2 1 2

4

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆexp exp exp exp
4 4 4 4

x

x z z z x

R

i e i e i i e



   
    

 
  

 

       
             

       

 

Mathematical differences between the CNOT matrices (24) and (26). Since, the Hamiltonian of the 

CNOT matrices (24) and (26) are the same but they are not similar matrices. To check the mathematical 

nature of (24) and (26), first of all we will write six mathematical properties of similar square matrices A and 

B of dimensions 4 4 on the Hilbert space . 

1 Determinant of A is equal to determinant of B 

2 Trace of A is equal to trace of B 

3 If A and B are nonsingular than 
1A
 and 

1B
 are also similar matrices 

4 A and B are similar matrices, if there exist nonsingular matrix P such that  
1B P AP  or 

1PBP A   

5 Matrices A and B have the same eigenvalues 

6 
egv egvPB A , where egvB  and egvA  are the eigenvectors of the matrices A and B 

The proof of above six properties of similar matrices is very simple and can be found in the course of 

linear algebra.  

By applying six properties of similar matrices to the CNOT matrices (24) and (26), we will find that the 

properties second, fourth, fifth and six are not satisfied between CNOT matrices (24) and (26). Thus, the 

matrices (24) and (26) are not similar.  

Physical interpretation of similar matrices 

The similar matrices are very important part of the linear algebra in quantum computation. For example, 

by finding all similar matrices, we can get all the CNOT matrices or operators, which will reduce our 

mathematical and physical realization of quantum computing. If we apply all the six properties of similar 

matrices to CNOT matrices (26), we will see that matrices (26) are similar matrices. Now, if we apply 

operators 
1CC  and 

2CC  to the state 0,0 0,1 1,0 1,1a b c d     , of Hamiltonian (23). We will 

obtain 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 1

2 2

0,0 0,01 0 0 0

0,1 0,10 1 0 0

1,0 1,10 0 0 1

1,1 1,00 0 1 0

0,0 0,01 0 0 0

0,1 1,10 0 0 1

1,0 1,00 0 1 0

1,1 1,00 1 0 0

C

C

a a

b b
C

c d

d c

a a

b d
C

c c

d b

 

 

    
    
      
    
              

    
    
      
    
            



  (27) 
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the state 
1,2 , which is obtained by operating 

1CC  and 
2CC , and which gives us simple picture of the state 

before and after the CNOT operation. We can find all the CNOT matrices or similar matrices of (26).  

Remark. Similar matrices of CNOT matrix (24) are have additional rotation, which complicates CNOT 

operation and which is not required for the CNOT operation. So, we are will find the similar matrices (26), 

which minimize CNOT operation in quantum computing. 

CNOT similar matrices. As it is seen from the Eqs (27) that the state 0,0  in   is not used by the 

CNOT matrix. It means, we have still more options to use the possibility to get other CNOT matrices or 

similar matrices. This can be done by considering the six similar matrix properties. 

 

11 51

22 52

31 61

1 0 0 0 1 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0

1 0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0 0

0 1 0 0 0 0 0 1

0 0 0 0 0 1

0 0 0 1

C C

C C

C C

i
C C

i

i i

i
C C

i

i i

i

C C
i

   
   


    
   
          

   
   


    
   
         

 
 


  
 
  
 

32 71

11 72

41

0

0 1 0 0

0 0 0 0 1 0 0

0 0 0 1 0 0 0

0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1

1 0 0 0 0 0 1 0

0 1 0 0 0 1 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1

C C

C C

C

i

i
C C

C C
i

i

C

 
 
 
 
  
 

    
   

    
   
      
   

   
   
    
   
         

 
 
 
 
 
 

81

42 82

0 0 0

0 0 0

0 0 1 0

0 0 0 1

0 1 0 0 0 0 0

1 0 0 0 0 1 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0 1

C

C C

i

i
C

i

C C
i

 
 
 
 
   
 

   
   

    
   
      
     

We have obtained 16 CNOT matrices or operators, which are obtained by using the similar matrices 

properties. It means we can perform the CNOT operation on qubits with different pulse rotations around the 

different axes according to this convenience. The technique of similar matrices is very closely related to the 
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tensor product, which was above described. The similar matrices method can be applied to the other 

branches of quantum theory.  

The Quantum Fourier Transform and Algorithms Based on It: From DFT to 
QFT 

The classical discrete Fourier transform (DFT) on N input values (28), is defined as  

 
1

0

1
,0 1

N
jk

k j N

j

y x k N
N






    ,  (28) 

with 
2: i N

N e    denoting the 
thN  root of unity. Its inverse transformation is 

1

0

1 N jk

j k Nk
x y

N


 


  .  

Remark. In some quotations the coefficient is 1 N  instead of1 N . In this case, the inverse 

transformation has no factor 1 N . If the 
jx  are values of a function f  at some sampling points, it is often 

written 
jf  instead of 

jx  and ˆkf  instead of
ky .  

Considering the different notations the quantum Fourier transform (QFT) corresponds exactly to the 

classical DFT in (28). Here, the QFT is defined to be the linear operator with the following action on an 

arbitrary n-qubit state: 
1 1

0 0

N N

j k

j k

x j QFT y k
 

 

   

Remark. In literature the definition of the Fourier transform is not consistent. The DFT and its inverse 

transform are interchanged. In most original papers the QFT is defined as above. However, both the classical 

Fourier transform and its inverse transform can be deduced from the general form of a Fourier transform 

with 2nN  . The 
ky  are the Fourier transforms of the amplitudes jx  as defined in Eq. (28). In product 

representation, the QFT looks like 

 
    1 1 22 0. 2 0. 2 0.

1 2

0 1 0 1 0 1
,...,

2

n n n ni j i j j i j j j

n n

e e e
j j

   
   

 . (29) 

This leads to an efficient circuit for the QFT which is shown in Fig. 1.  

 

Figure 1. A Quantum circuit for QFT 

The gate 
kR  corresponds to the phase gate  2 2kPH  . At the end of the circuit, swap gates reverse 

the order of the qubits to obtain the desired output. The circuit uses  1 2n n    Hadamard and conditional 

phase gates and at most 2n  swap gates in addition. Therefore, this n-qubit QFT circuit has a 

   2 2logn N   runtime. Of course, QFT-1 can be performed in  2n  steps, too. In contrast, the best 

classical algorithms (like the Fast Fourier Transform) need  2nn  classical gates for computing the DFT 
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on 2n
 elements. That is, the speedup of the QFT compared with the best classical algorithms is exponential. 

Note that the size of the circuit can be reduced to   logO npoly n   by neglecting the phase shifts of the 

first few bits as this amounts only requires only  logO n n  . Nevertheless, there are two major problems 

concerning the use of the QFT: first, it is not known how to efficiently prepare any original state to be 

Fourier transformed, and second, the Fourier transformed amplitudes cannot be directly accessed by 

measurement. 

Phase Estimation  

An important application of the QFT is the phase estimation on which in turn many other applications 

are based. Given a unitary operator U with eigenvector (or eigenstate) u , the phase estimation problem is to 

estimate the value   of the eigenvalue  2 2i ie U u e u    . To perform the estimation it is assumed that 

black-boxes (so-called oracles) are available which prepare the state u  and perform the controlled-
2l

U  

operation for integers 0l   .  

Figure 2 shows the phase estimation procedure. It works on two registers, a n-qubit register initially in 

state 0  (n depends on the number of digits of accuracy in the estimate for   and the probability that the 

procedure is successful) and a register in the initial state u .  

 

Figure 2. A quantum circuit for the face estimation procedure 

The circuit begins by applying the n-qubit Hadamard transform 
nH
 to the first quantum register, 

follows by the application of controlled U-operations on the second register, with U raised to successive 

power of two. This sequence maps 

2 1 2 1
2

2 2
0 0

1 1
0

2 2

n n

j i j

n n
j j

u j U u e j u 
 

 

   . 

With 
10. ... n    this state may be rewritten in product from which is equivalent to the product 

representation (Eq. (29)). If   is exactly expressed in n qubits the application of the inverse QFT to the first 

qubit register leads to the state 1... n   , or a good estimator   otherwise.  

Computing QFT-1 can be seen as the actual phase estimation step.  

Quantum Algorithm: Quantum phase estimation 

 

1. Create the equally weighted superposition:
2 1

2
0

1
0

2

n

n
j

u H j u




  
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2. Apply the quantum oracle:
2 1 2 1

2

2 2
0 0

1 1

2 2

n n

j j i j

n n
j j

U j U u e j u 
 

 

   

 

3. 

Calculate the inverse quantum Fourier transform and measure the first register: 
1

1MQFT

u 



   

A final measurement of the first register yields to the result   or   respectively. To estimate  with k-

bit accuracy and probability of success at least1 , choose  1
2

log 2n k      .  

This algorithm, summarized below, computes the approximation u  to 
u  using  2O n  operations and 

one query to the controlled-
jU  oracle gate.  

Even if the eigenvector u  is unknown and cannot be prepared, running the phase estimation algorithm 

on an arbitrary state 
uu

c u   (written in terms of eigenstate u ) yields a state 
u uu

c u , 

where u  is a good approximation to 
u . Assuming that n is chosen as specified above, the probability for 

measuring 
u  with k-bit accuracy is at least  

2
1uc  . 

Order-Finding and Other Applications  

The order-finding problem reads as follows: for , ,x N x N  ,  gcd , 1x N  , determine the least 

r , such that 1modrx N . It is believed to be a hard problem on classical computers. Let 

logn N     be the number of bits needed to specify N. The quantum algorithm for order-finding is just the 

phase estimation algorithm applied to the unitary operator modU y xy N  with  0,1
n

y  

and 1u  , a superposition of eigenstates of U (for 2 1nN y    , define mod :xy N y ). 

The entire sequence of controlled-
2l

U  operations can be implemented efficiently using modular 

exponentiation: It is  

 
t-1 0 0t-1 t-1

t-1 0 0z 2 z 2 z 2z z 2 2z U y = z U ...U = z x ×...×x ymod N = z x ymodN . 

In a first step modular multiplication is used to compute successively (by squaring) 
2 modjx N  from 

2 1jx 
 for all 1... 1j t  . In a second step modzx N   is calculated by multiplying the t 

terms    
01 1

0 22 mod ... mod
t t zzx N x N
 

. On the basis of this procedure the construction of the quantum 

circuit computing 
2: modzU z y z x N  is straightforward, using  3O n  gates in total.  

To perform the phase estimation algorithm, an eigenstate of U with a nontrivial eigenvalue or a 

superposition of such eigenstates has to be prepared. The eigenstates of U are 
1

0

1
mod

r
sk k

s r

k

u x N
r








  , 

for 0 1s r   . Since 
1

0
1 1

r

ss
r u




  it is sufficient to choose 1u  . 

Now, applying the phase estimation algorithm on  2 1 log 2 1 2t n       qubits in the first 

register and a second quantum register prepared to 1  leads with a probability of a least  1 r  to an 

estimate of the phase s r   with 2 1n   bits accuracy.  
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From this result, the order r can be calculated classically using an algorithm, known as the continued 

fraction expansion. It efficiently computes the nearest fraction of two bounded integers to , i.e. two integers 

', 's t  with no common factor, such that ' 's r s r . Under certain conditions this classical algorithm can 

fail, but there are other methods to circumvent this problem.  

An application of the order-finding quantum subroutine is Shor’s factorization algorithm. Other 

problems which can be solved using the order-finding algorithm are period-finding and the discrete 

logarithm problem. These and some other problems can be considered in a more general context, which will 

be explained in the following two subsections.  

 

Quantum Algorithm: Order-finding 

1. Create superposition: 

 

2 1

2
0

1
0 1 1

2

tnH

t
j

j

 



   

 

 

 

2. 

Apply the black-box oracle 
, : modj

x NU j k x k N , with x co-prime to N: 

 

, 2 1 1 2 1
2

2 2
0 0 0

1 1
mod

2 2

t t
x NU r

j isj r

st t
j s j

j x N e j u
r


  

  

    

 

 

 

3. 

Calculate the inverse QFT of the first register and measure this: 

 
1

11

0

1 r MQFT

s

j

s r u s r
r

 



   

 

Fourier Transform on Arbitrary Groups  

The more general definition of the Fourier transforms 
GFT  on an arbitrary group G needs some 

background in algebra and in representation theory over finite groups.  

Let G be a finite group of order N and :f G  . The Fourier transform of f at the irreducible 

representation   of G (denoted  f̂   ) is defined to be the d d   matrix 

      
G

d
f f

N


 



 
g

g g . (30) 

Remark. A representation   of a finite group G is a homomorphism  :G GL V  , where V is a -

vector space. The dimension of V is called the dimension of the representation  , denoted d .   is said to 

be irreducible, if no other subspaces W are G-invariant, i.e.   ,W W G   g g  , expect 0 and V. Up to 

isomorphism, a finite group has a finite number of irreducible representations. G  denoted such a set of 

irreducible representations, which is a complete system of representatives of all isomorphism classes.  

The collection of matrices  
G

f





  is designated as the Fourier transform of f. Thus, the Fourier 

transform maps f into G   matrices of varying dimensions which have totally 
2d G
  entries. This 

means that the G  complex numbers  
G

f
g

g   are mapped into G  complex numbers organized into 
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matrices. Furthermore, the Fourier transform is linear in       1 2 1 2f f f f f      and  f   is 

unitary for all G   .  

If G is a finite Abelian group, all irreducible representations have dimension one. Thus, the 

representations correspond to the G  (irreducible) characters :G   of G. It is    ˆ, ,G G  . This is 

quite useful to simplify the notation by choosing an isomorphism 
g

g . 

With the operation       1 2 1 2     g g g  the set Ĝ  of all characters of G is an Abelian group, 

called the dual group of G. Any value   g  is a 
th

G  root of unity, i.e.   1
G

 g  . For instance, if 

NG   then the group of characters is the set   , 0... 1jk

k Nj j k N     and the Fourier transform 

corresponds to the classical DFT. For 
2

nG   the Fourier transform 
2
nFT  corresponds to the Hadamard 

transform
nH
. 

By the structure theorem of infinite Abelian groups, G is isomorphic to products of cyclic groups 
ipZ  of 

prime power order with addition modulo 
ip  being the group operation i.e. 

1
...

mp pG   . Any Gg  

can be written equivalently as  1,..., mg g , where
ip

i
g . This naturally leads to the description of the 

characters 
ip

i
g  on G as the product of the characters 

pi  on 
ip
. It is 

   
 2

1 1

i i ip ii

i

m m
i h qG

h h i

i i

e


 
 


  

g

g g , 

Remark. The following mapping is used:    1 1
,..., pi

i

m

m h ii


g g g . With  1,..., mh h h  

and :i iq N p . Note that    h 
g

g h . With Eq. (30) the Fourier transform of a function :f G   

may be written as      
1ˆ

G

f h f h
N




  g

g

g , with h G . Using the conventional notation, the QFT on 

an Abelian group G acts on the basis states as follows:  
1

G

G

QFT h h
G




  g

g

g . 

The Hidden Subgroup Problem  

Nearly all know problems that have a quantum algorithm which provides an exponential speedup over 

the best known classical algorithm can be formulated as a hidden subgroup problem (HSP). Problem 

instances are for example order-finding, period-finding and discrete logarithm. The HSP is: Let G be a 

finitely generated group, H G  a subgroup, X a finite set and :f G X  a function such that f is constant 

on cosets H G H g g  and takes distinct values on distinct cosets, i.e.    1 2f fg g  for 
1 2g g . 

Find a generating set for H.  

Definite   : : 1,H G h h H    
g

g , also called the annihilator group of H. Note that H  is 

equivalent to the subgroup  : kerH H    , which in turn is isomorphic to the dual 

of  : kerH H    . The algorithm for solving the HSP uses the following two properties of the 

Fourier transform over G.  

 

 The FT of the convolution   of two vectors is the pointwise product of the FT of each vec-

tor:  
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 k l k l

k l k l

QFT k l G QFT k QFT l   
      

        
      
    . (31) 

 The superposition state, uniform on H, is mapped to H :  

 
1 QFT

h H k H

H
h k

GH  

  . (32) 

Using this, it follows for a coset state 01
h H

H h
 g : 

0 0

1 1
h H h H

h h
H H

 
  g g  

 

      
, (32)

0 0

GHQFT EQ

kG k H k H

H H
k k

G G
 

  

   
   gg

g g g . 

So, the QFT takes a coset state to the annihilator group states of the corresponding subgroup where the 

coset is encoded in the phase of the basis vectors. 

Assume that G is Abelian. A hybrid algorithm to solve the Abelian HSP consists of the following 

quantum subroutine:  

 

Quantum Algorithm: Abelian HSP 

 

 

1. 

Create a random coset state:  

  
2

0

1 1 1
0 0 0

fG
UQFT I M

G G h H

f h
G G H



  

    
g g

g g g g  

 

 

2. 

Fourier sample the coset state: 

 
1

0

1 GQFT M

k i

h H k H

H
h k k H

GH


 

   0
g g  

iM  denotes the measurement of the i-th quantum register. The process of computing the Fourier 

transform over a group G and measuring subsequently is also called Fourier sampling. After applying
2M  , 

it is sufficient to observe the first register. The last measurement results in one out of G H  elements 

ik H  with probability
H

G
 . Repeating this process  logt poly G  times leads to a set of element 

which describe the i H  . Thus, H can be classically computed as the intersection of the kernels 

of
1

0: kert

i i iH 

 .  

The efficient quantum circuit for the Abelian HSP is shown in Fig. 3.  

 

Figure 3. A quantum circuit for the Abelian HSP 
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Generalizations of the Abelian HSP quantum algorithm to the non-Abelian case have been attempted by 

many authors, unfortunately only with limited success. Up to now, the problem is still open, except for only 

a few particular instances.  

A coarse outline on QFT-based algorithms  

Table 2 shows an overview on problems efficiently solvable by means of quantum algorithm based on 

the QFT.  

Table 2. The quantum Fourier transform and algorithms based on it.  

Problem Runtime 

 

(discrete) QFT 
 2n  or 

 logO n n  resp. 

Deutsch
†
 1 oracle query 

Deutsch-Jozsa
†
 1 oracle query 

Bernstein-Vazirani 1 oracle query 

Simon
†
  O n  repet. with 

1 oracle query each 

Period-finding
†
 

f with    f x r f x  , 

0, ,0 2nx r r   , 

a periodic function, output r! 

1 oracle query, 

 2O n  operations 

Phase estimation  2O n  +1 oracle query 

Order-finding
†
  3O n  

Factoring
†
  3O n  operations, 

 2 log log logO n n n  

Discrete logarithm
†
 

given: , modsa b a N  

determine s 

polyn. time QA 

Hidden linear function problems
†
 polyn. time QA 

Abelian stabilizer
†
 polyn. time QA 

Shifted Legendre symbol problem 

and variants 

polyn. time QA 

Computing orders 

of finite solvable groups 

polyn. time QA 

Decomposing Finite 

Abelian Groups 

polyn. time QA 

Pell’s Equation & 

Principal Ideal Problem 

polyn. time QA 

Problems marked with 
†
 are special instances of the HSP. The parameter n  is the input length of the 

given problem. 

The following explanations and annotations refer to single problems given below in the table.  

Abelian group stabilizer problem: Let G be an Abelian group acting on a set X. Find the stabilizer 

 :xG G x x   g g
 for x X .  
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Decomposing finite Abelian groups: Any finite Abelian group G is isomorphic to a product of cyclic 

groups. Find such a decomposition. For many groups no classical algorithm is known which performs this 

task efficiently.  

The quantum algorithm mainly uses the quantum algorithm for HSP to solve a partial problem. The rest 

is done classically.  

An application of this algorithm is the efficient computing of class numbers (assuming the generalized 

Riemann Hypothesis).  

Deutsch’s problem: Determine whether a black-box binary function 
   : 0,1 0,1f 

 is constant (or 

balanced).  

Hidden linear function problem: Let : kf S  be a function for an arbitrary range S with 

   1 1 2 2,..., ...k k kf x x h x x x    
 for a function h with period q and i 

. Recover the values of 

all the 
 modi q

 form an oracle for f. This problem is an instance of the HSP.  

Inner product problem (Bernstein-Vazirani): For
 0,1

n
a

, let 
   : 0,1 0,1

n

af 
 be defined 

by
 af x a x 

. Calculate a. This problem is not directly an instance of the HSP. Nevertheless, Fourier 

sampling helps finding a solution, too. 

Orders of finite solvable groups: The problem is described.   

Pell’s Equation: Given a positive non-square integer d, Pell’s equation is
2 2 1x dy  . Find integer so-

lutions. The quantum algorithm calculates the regulator of the ring
d

 , which is a closely related prob-

lem. The quantum step in this algorithm is a procedure to efficiently approximate the irrational period S of a 

function in time polynomial in ln S .  

Principal ideal problem: Given an ideal I, determine (if existing) an 
 d

 such 

that
I d

. The algorithm reduces to a discrete log type problem.  

Shifted Legendre symbol problem (SLSP): Given a function sf  and an odd prime p such 

that
   x s

s p
f x 

, for all px
 , find s! Variants of this problem are the shifted Jacobi symbol problem 

and the shifted version of the quadratic character 


 over finite fields q  (shifted quadratic character prob-

lem). The classical complexities of these problems are unknown.  

Simon’s problem: Let 
 0,1

n
a

 and 
   : 0,1 0,1

n n
f 

 a function with 
   f x a f x 

 ( : 

bitwise XOR). Calculate a. Simon’s problem was the first that was shown to have an expected polynomial 

time quantum algorithm but no polynomial time randomizes algorithm. Brassard and Hoyer an exact quan-

tum polynomial-time algorithm to solve this problem. 

Two other transformations which can be recovered from the DFT are the discrete cosine transformation 

and the discrete sine transformation. Klappenecker and Rotteler show that both transformations of 

size N N   and types I-IV can be realized in 
 2logO N

 operations on a quantum computer instead of 

 logO N N
 on a classical computer. Another class of unitary transforms, the wavelet transforms, are 

efficiently implementable on a quantum computer. For a certain wavelet transform, a quantum algorithm is 

designed using the QFT.  
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Quantum Search Algorithms 

Search problems are well-known and intensively investigated in computer science. Generally spoken, a 

search problem is to find one or more elements in a (finite or infinite, structured or unstructured) search 

space, which meet certain properties. 

Suppose, a large database contains 1N  items in a random order. On a classical computer it takes 

 O N
 comparisons to determine the items searched for. However, there is a quantum search algorithm, also 

called Grover’s algorithm, which required only 
 O N

 operations.  

Grover’s algorithm is optimal for unstructured search problems.  

Also in some cases of structured search spaces quantum algorithms can do better than classical as 

demonstrated by Hogg’s algorithm for 1-SAT and highly constrained k-SAT.   

Grover’s Algorithm  

It is assumed that 2nN  . The database is represented by a function f which takes as input an integer 

,0 1x x N    (the database index), with 
  1f x 

 if x  is a solution to the search problem and 

  0f x 
 otherwise. Let  be the set of solutions, i.e.,

    1, 0,..., 1x f x x N   
 and 

M 
 

the number of solutions. Furthermore, let be 

1

x

x
N M








,     

1

x

x
M




 
 and  

1

0

1 N

x

N M M
x

N N N
  






    . 

This algorithm works on two quantum registers
x y

, where 
x

 is the index register and 
y

 is a 

single ancilla qubit. Let 
U  be the black-box which computes f. Then applied to the 

state
 1 2 0 1x 

 , the oracle “marks” all solutions by shifting the phase of each solution. Ignoring the 

single qubit register, the action of 
U  may be written as 

 
 

1
f x

x x 
 or 

2U I   
. 

Geometrically, 
U  induces a reflection about the vector 


 in the plane defined by 


 and


. An-

other important operation, denoted with
U , is the so-called inversion about the mean:  

  2 0 0 2n nU H I H I       . (33) 

Applying U  to a general state 
kk

k   leads to 

 2 2 2k k

k k k

U s s a a A k a k A a k           

using state 

1

2
2

n

n

kk
s a a A 

, where 

1

2n kk
A a 

 is the mean of the amplitude. Thus, the 

amplitudes are transformed as
: 2k kU a A a  

, i.e., the coefficient of 
k

 is reflected about the mean 

value of the amplitude. In other words,
U   is a reflection about the vector   in the spanned by 


 and 


  

The combination of both operator 
U  and 

U  leads to the Grover operator, defined to be 

    2 0 0 2n n

GU U U H I H I          (34) 
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(see Fig. 4).  

 

 

Figure 4. A quantum circuit for the Grover operator 

Thus, the product of the two reflections U
 and U  is a rotation in the two-dimensional subspace 

spanned by   and   rotating the space by an angle , defined by sin 2 M N  , as shown in Fig.5.  

 

 

Figure 5. Geometric visualization of the single step of the Grover iteration 

Repeating the Grover operator  4T N M O N M   times rotated the initial system state   

close to   . Observation of the state I the computational basis yields a solution to the search problem with 

probability at least 1 2p  . When M N  this probability is at least1 M N , that is nearly 1. 

Figure 6 illustrates the entire quantum search algorithm. It should be mentioned that the quantum search 

algorithm is optimal, i.e. no quantum algorithm can perform the task of searching N items using fewer than 

 N  accesses to the search oracle.  
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Figure 6. Quantum circuit for the QSA 

A concluding note: In the basis  ,   the Grover operator may also be written as 

cos sin

sin cos
GU

 

 

 
  
 

 

where 0 2   , assuming without limitation that 2M N . Its eigenvalues are
ie 

. If it is not known 

whether 2M N , this can be achieved for certain by adding a single qubit to the search index, doubling 

the number of items to be searched to 2N . A new augmented oracle ensured that only those items are 

marked which are solutions and whose extra bit is set to zero.  

Remark. A generalization of the Grover iteration to boost the probability of measuring a solution state is 

called amplitude amplification. According to Gruska, there are at least two (only slightly different) methods 

which meet this condition, one proposed by Grover, the other by Brassard et al. The most general version of 

a Grover operator is presented by Biham at al. All methods have in common, that they use an arbitrary 

unitary transformation U instead of the Hadamard transformation 
nH
 as in the original Grover operator 

(Eq. (1.7)). The following transformation might be deemed as the generalized Grover operator: 
1

G s fU UI U I   , 

where  1sI I e s s      is a rotation of a fixed basis state s  by an angle   and 

 f x

f x
I e x x  is a rotation by an arbitrary phase .  

Quantum Counting: Combining Grover Operator and Phase Estimation.  

Provided that M is known, Grover’s algorithm can be applied as described above. If M is not known in 

advance, it can be determined by applying the phase estimation algorithm to the Grover operator
GU , 

estimating one of its phases   .  

Figure 7 shows a quantum circuit for performing approximate quantum counting.  
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Figure 7. Circuit for the quantum counting algorithm 

An application of the phase estimation procedure to estimate the eigenvalues of the Grover operator UG 

which enables to determine the number of solutions M to the search problem. The first register contains n 

qubits and the second register contains t qubits, sufficient to implement Grover’s operator on the augmented 

search space of size 2N. The state of the second register is initialized to 
x

x  by 
nH
.  

But this is a superposition of the two eighenvectors of UG with corresponding eighenvalues 
ie 

 and 
(2 )ie  

. Therefore applying the phase estimation procedure, results in the estimate for   or 2   which 

is equivalent to the estimate for  2 2sin ( / 2) sin ((2 ) / 2)      From the equation 

 2sin 2 2M N   and the estimate for  it follows as estimate for the number of solutions M.  

Remark. The search space is expanded to 2N  to ensure that 2M N . As already described above this 

is done by adding a single qubit to the search space.  

Further analysis shows, the error in this estimate for M is less than  12
2 2k

kNMN 

 , provided that   

has a k-bit accuracy.  Summarizing, the algorithm requires  O N  oracle calls to estimate M to high 

accuracy. Finding a solution to a search problem when M is unknown requires to apply both algorithms, first 

the quantum counting and then the quantum search algorithm. Errors arisen in the estimate for   and M 

affect the total probability to find a solution to the search problem. However, the probability can be increased 

close to 1 by a few repetitions of the combined counting-search algorithm.  

Counting the number of solutions and, consequently, determining the solvability of a search problem 

has many applications, including decision variants of NP-complete problems. 

Applications of Grover’s Algorithm  

The quantum search algorithm or at least its main operator can be applied to solve many kinds of search 

problems. Table 3 presents a survey of these problems. Some of them are now described briefly.  

 

Table 3. Algorithms based on quantum searching. 

Problem Runtime 

Quantum database search  

(Grover’s algorithm) 
 O N quadratic speedup 

Quantum counting  O N  

Scheduling problem  3 4 logO N N  
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Minimum-finding  O N  

Database retrieval  2N O N  

String matching  2log log logn
m

O n m m m  

Weighing matrix problem 2 oracle queries 

Element distinctness 

Collision funding 

Claw finding 

Triangle-finding 

 

comparison complexity always better 

than classical 

 

Claw finding: Given two functions :f X Z  and :Y Zg , find a pair  ,x y X Y   such 

that    f x y g . 

Collisions finding: Given a function :f X Y , find two different  1 2 1 2,x x x x , such 

that    1 2f x f x   under the promise that such a pair exists.  

Database retrieval: Given a quantum oracle which returns , kk y X  on an 1n   qubit query ,k y , 

the problem is to obtain all 2nN   bits of
kX . 

Element distinctness: given a function :f X Y , decide whether f maps different x X  to differ-

ent y Y . 

Minimum-finding: Let  0... 1T N   be an unsorted table of N (distinct) items. Find the index y  of an 

item such that  T y  is minimal. 

Scheduling problem: Given two unsorted lists of length N each. Find the (promised) single common en-

try. The complexity is measured in quantum memory accesses and accesses to each list.  

String matching: Determine whether a given pattern 
p

 of length m  occurs in a given text t  of length n  

. The algorithm combines quantum searching algorithms with deterministic sampling, a technique from 

parallel string matching. Grover’s search algorithm is applied twice in conjunction with a certain oracle in 

each step.    

Triangle-finding: Given an undirected graph
 ,G V E

, find distinct vertices , ,a b c V  such 

that
     , , , , ,a b a c b c E

 . 

Weighing matrix problem: Let M be a 
 ,W n k

 weighing matrix. 

Remark. A matrix 
 1,0, 1

n n
M


  

 is called a weighing matrix, iff 
T

nM M k I  
 for 

some ,0k k n   .  

A set of n  functions 
   1,..., 1,0, 1M

sf n   
 for 

 1,...,s n
 is defined by

  :M

s sif i M
. De-

termine s. 

Quantum Search and NP Problems 

Solving problems in the complexity class NP may also be speed up using quantum search. The entire 

search space of the problem (e.g. orderings graph vertices) is represented by a string of qubits. This strings 

has to be read as defined by the problem specifications (e.g. the string consists of blocks of the same length 
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storing as index of a single vertex). In order to apply the quantum search algorithm, the oracle which de-

pends on the problem instance must be designed and implemented. It marks those qubit strings which repre-

sent a solution. As the verification of whether a potential solution meets the requirements is much easier than 

the problem itself, even on a classical computer, it is sufficient to convert the classical circuit to a reversible 

circuit. Now, this circuit can be implemented on a quantum computer. Thus, the quantum counting algorithm 

which determines whether or not a solution to the search problem exists requires the square root of the num-

ber of operations that the classical “brute-force” algorithm requires. Roughly speaking, the complexity 

changes from 

  2
n

O


 to 

  2
2

n
O



, where   is some polynomial in n . Nonetheless, the complexity is 

still exponential and in the sense of complexity theory these problems are not efficiently solved.  

Hogg’s Algorithm  

Certain structured combinatorial search problems can be solved effectively on a quantum computer as 

well, even outperforming the best classical heuristics. Hogg introduced a quantum search algorithm for 1-

SAT and highly constrained k-SAT.   

The satisfiability problem (SAT). A satisfiability problem (SAT) consists of a logical formula in n 

variables
1,..., nv v   and the requirement to find an assignment    1,..., 0,1

n

na a a   for the variables that 

makes the formula true. For k-SAT the formula is given as a conjunction of m clauses, where each clause is a 

disjunction of k literals 
iv  or v  respectively with  1...i n . Obviously there are 2nN   possible 

assignments for a given assignment are called conflicts. Let  c a  denote the number of conflicts for 

assignment a. A k-SAT problem is called maximally constrained if the formula has the largest possible 

number of clauses for which a solution still exists. Thus, any conceivable additional clause will prevent the 

satisfiability of the formula. For 3k   the satisfiability problem is NP-complete and in general, the 

computational costs grow exponentially with the number of variables n. For 1, 2k k  , and some k-SAT 

problems with a certain problem structure, there are classical algorithms which require only  O n   search 

steps, that is, the number of sequentially examined assignments. Also, quantum algorithms can exploit the 

structure of these problems to improve the general quantum search (ignoring any problem structure) as 

perform better than classical algorithms. 

Hogg’s quantum algorithm for 1-SAT. Hogg’s quantum algorithm for 1-SAT primarily requires n 

qubits, one for each variable. A basis state specifies the value assigned to each variable and consequently, 

assignments and basis state correspond directly to ach other. Information about the particular problem to be 

solved is accessible by a special diagonal matrix R (of dimension 2 2n n ), where 

 
 c a

aaR   (35) 

is the matrix entry at position (a,a). Thus, the problem description is entirely encoded in this input matrix by 

the number of conflicts in all 2n
 possible assignments to the given logical formula. For the moment it is 

assumed that such a matrix can be implemented efficiently. Further implementation details will be given in 

the next paragraph.  

Figure 8 exemplifies the input matrix R for a 1-SAT problem with 3n   variables. 
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Figure 8. Input matrix for he local formula 
1 2 3 1 2 3( , , )f v v v v v v   . The matrix has diagonal coefficients 

(
(000) (111),...,c ci i ). Off instance the assignment a=101 (

1 2 3, ,v true v false v true   ) makes two clauses 

false, i.e. c(101)=2 and i2= -1 

 

Furthermore, let U be the matrix defined by 
   

 ,422
d r si n mn

rsU e i
   , 

where  ,d r s  is the Hamming distance between two assignments r  and s , viewed as bit strings. U is 

independent f the problem and its logical formula. The first step of the quantum algorithm is the preparation 

of an unbiased, i.e. equally weighted, superposition. An already demonstrated, this is achieved by applying 

the Hadamard gate on the n qubits  nH 
initially is state 0 .  

Let   denote the resulting quantum state. Then, applying R and U to   gives UR  . 

It was proven that the final quantum state is the equally weighted superposition of all assignments a 

with   0c a   conflicts. Thus, considering a soluble 1-SAT problem, a final measurement will lead with 

equal probability to one of the 2n m
 solutions. If there is no solution of the problem, the measurement will 

return a wrong result. Hence, finally the resulting assignment has to be verified. 

Implementation. The matrices R and U have to be decomposed into elementary quantum gates to build a 

practical and implementable algorithm. The operation R can be performed using a reversible (quantum) 

version of the classical algorithm to count the number of conflicts of a 1-SAT formula and a technique to 

adjust the phases which are powers of . Therefore, two ancillary qubits are necessary which are prepared in 

the superposition 

 
1

00 01 10 11
2

     , 

where the local phases correspond to the four possible values of 
aaR  for any assignment a. As suggested by 

Hogg, the superposition   can be constructed by applying H on qubit 1 and  3 4xR   on qubit 0, both 

of the qubits being initially prepared to 1 . Then, the reversible operation 

 : , , mod 4F a x a x c a   

acts on ,   as follows 

 2, 2
c an

a

a     

performing the required operation R. To see this, further intermediate calculation steps are necessary. Note 

that after applying F, the ancillary qubits reappear in the original superposition form and can therefore be 

dropped, since they do not influence U. In a single application of  ,F c a  is evaluated once.  

The matrix U can be implemented in terms of two simpler matrices 
nH
 and , where   is diagonal 

with 
a

aa  . Here a   is the number of 1-bits in the string of assignment a. Using this definition, it is 

n nU H H   . For implementing , Hogg suggests to use similar procedures to those for the 

implementation of the matrix R, using a quantum routine for counting the number of 1-bits in each 

assignment instead of the number of conflicts. Thus, the elements of the matrix   can be computed easily 

and the operation U is efficiently computable in  O n   bit operations: 2n
 Hadamard gates plus another 

C n  elementary single qubit gates, with a constant 1C  , fir the computation of   (to give a rough 

estimation). It is shown as a result of the GP evolution of a 1-SAT quantum algorithm that  3 4
n

xU R 


  
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, and consequently it can be implemented even more efficiently by n elementary rotation gates. Once again, 

Hogg’s algorithm consists of the following steps: 

 

Quantum Algorithm: 1-SAT / maximally constrained k-SAT 

1. Apply 
nH
 on 0 . 

2. Compute the number of conflicts with the constraints (clauses) of the problem into the phases by 

applying the input gate R.  

3. Applying
n nU H H     results in an equally weighted superposition of solution states.  

 

An experimental implementation of Hogg’s 1-SAT algorithm for logical formulas in three variables was 

demonstrated.  

Performance. The matrix operations and the initialization of   contribute  O n  bit operations to the 

overall costs. Evaluating the number of conflicts results in costs of  O m  for a k-SAT problem with m  

clauses. In total the costs of the quantum algorithm amount to  O n m . This corresponds to the costs of a 

single search step of a classical search algorithm which is based on examinations of neighbors of assign-

ments. While the quantum algorithm examines all assignments in a single step, the best (local search based) 

classical algorithm needs  O n  search steps.  

A slide modification of Hogg’s algorithm for 1-SAT can also be applied to maximally and highly 

constrained k-SAT problems for arbitrary k to find a solution with high probability in a single step. For all 1-

SAT and also maximally constrained 2-SAT problems, Hogg’s algorithm finds a solution with probability 

one. Thus, an incorrect result definitely indicates the problem is not soluble. 

Note that a comparison of Hogg’s algorithm with any classical algorithms according to the number of 

search steps is only permissible, if the classical algorithms are based on local search, especially on the 

examination of the number of conflicts. Otherwise, the comparison must be based on a more fundamental 

measure. Local search is not always the best solution. For instance, it is unreasonable to solve 1-SAT using 

local search since it is trivial to find an assignment satisfying the given Boolean formula in  O m .  

Quantum Simulation 

The third class of quantum algorithms consists of those algorithms which simulate quantum mechanical 

systems. Commonly, the problem of simulating a quantum system is classically (at least) as difficult as 

simulating a quantum computer. This is due to the exponential growth of the Hilbert space which comprises 

the quantum states of the system. Therefore, simulation of quantum systems by classical computers is 

possible, but in general only very inefficiently. A quantum computer can perform the simulation of some 

dynamical systems much more efficiently, but unfortunately not all information from the simulation is 

accessible. The simulation leads inevitable to a final measurement collapsing the usually superimposed 

simulation state into a definite basis state. Nevertheless, quantum simulation seems to be an important 

application of quantum computers.  

A rough outline of the quantum simulation algorithm is presented now. Further reading matter are the 

original papers dealing with the simulation of quantum physical systems on a quantum computer.  

Simulating a quantum system means “predicting” the state of the system at some time ft  (and/or 

position) as accurately as possible given the initial system state. Simulation is mainly based on solving 

differential equations. Unfortunately, the number of differential equations increases exponentially with the 

dimension of the system to be simulated. The quantum counterpart to the simple differential equation 

 dy dt f y  in classical simulations is i d dt H   for a Hamiltonian H. Its solution for a time-

independent H is    0iHtt e  . However, 
iHte

 is usually difficult to compute. High order solutions 
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are possible especially for those Hamiltonians which can be written as sums over local interactions: 

1

L

kk
H H


  , acting on a n-dimensional system,  L poly n  where each Hamiltonian 

KH  acts on a 

small subsystem. Now, the single terms
iHte

 are much easier to approximate by means of quantum circuits 

than
iHte

. How to calculate 
iHte

 from kiH t
e


 ?  

In general kiH tiHt

k
e e

   because of , 0j kH H    . Instead, approximate 
iHte

 with e.g. 

   2 2 3i A B t iA t iB t iA te e e e O t
       . 

This and other approximations are derived from the Trotter formula 

   
lim

n i A B tiAt n iBt n

n
e e e




 . 

Now, let the n-qubit state    approximate the system. Assume further, that the operators kiH t
e
 

 have 

efficient quantum circuit approximations. Then, the approximation of 
 kk

i H t

e


 can be efficiently 

implemented by a quantum circuit 
tU
. With it, the quantum simulation algorithm can be formulated as 

follows:  

Quantum Algorithm: Quantum simulation algorithm 

1. Initialization: 0  (initial system state at time 0t  ), 0j  ; 

2. Iterative evolution: do 
1 ; 1j t jU j j     ; until 

fj t t   

3. 
Output:  f jt   

Speedup Limits for Quantum Algorithms 

This section summarizes some theoretical results about the limitations of quantum computing. The 

methodologies to prove lower bounds for the complexity and the speedup of quantum algorithms are not the 

subject matter, but they can be read up in the given literature.  

An interesting result on limitations of quantum algorithm refers to black-box algorithms. Many quantum 

algorithms use oracle or black-box algorithm. Accessing the black-box can be thought of as a special 

subroutine call or query whose invocation only costs unit time. Speaking more formally, let 

 0 1,..., NX x x   be a such an oracle, containing N Boolean variables  0,1ix  . On input i  the oracle 

returns
ix . A property f of X which is any Boolean function    : 0,1 0,1

N
f   is only determinable by 

oracle queries. The complexity of a black-box algorithm is usually rated by the number of queries necessary 

to compute the property. Then, Beals et al. prove that black-box quantum algorithm for which no inner 

structure is known, i.e., for which no promises are made restricting the function. Then, the function is said to 

be total. Can achieve maximally a polynomial speedup compared to probabilistic and deterministic classical 

algorithm. In addition, they specify exact bounds for the (worst case) quantum complexity of AND, OR, 

PARITY and MAJORITY for different error models (assuming exact -, Las Vegas – and Monte-Carlo 

algorithms). For the exact setting (the algorithm returns the correct result with certainty) the quantum 

complexities are N for OR and AND, N/2 for PARITY and  N  for MAJORITY. The bound for the 

parity problem was independently obtained by Farhi et al.  

As shown by Buhrman at al. the following problems cannot be solved more efficiently on a quantum 

computer:  

Parity-collision problem: Given a function :f X Y , find the parity of the cardinality of the 

set       1 2 1 2 1 2,x x X X x x f x f x     . 
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No-Collision problem: Given a function :f X Y , find an element x X  that is not involved in a 

collision, i.e.,     1f f x x   . 

No-range problem: Given a function :f X Y , find an element y Y  such that  y f X .  

Hoyer at al. determined the quantum complexity for further problems.  

Ordered searching: Given a sorted list of N numbers  0 1 1 1, ,..., ,N i ix x x x x   and a number
1Ny x  , 

find the minimal index i such that
iy x . This problem can be regarded as a non-Boolean promise problem. 

The best known quantum lower bound is   1 ln 1N   queries. A quantum algorithm using 

     3 2log 1 0.631logN O N   queries is presented. A slightly better algorithm (  20.526log N  que-

ries) is given. 

Sorting: Given a list of numbers  0 1 1, ,..., Nx x x  , output a permutation   on the index set such that the 

list  
0 1 1
, ,...,

N
x x x   

 is in non-decreasing order. The quantum lower bound for this problem is given by 

 logN N  binary comparisons.  

Element distinctness: Given a list of numbers  0 1 1, ,..., Nx x x  . Decide whether they are all distinct. The 

problem has a quantum lower bound of  logN N  binary comparisons.  
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