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Introduction

Matrices have been the subject of much study, and large bodies of results have been obtained about
them. In this article we introduce main definitions of matrix theory and study the interplay between the
theory of matrices and the theory of orthogonal polynomials in quantum computing [1-7]. Interesting results
have been obtained for Krawtchouk polynomials and also for generalized Krawtchouk polynomials. More
recently, it was obtained conditions for the existence of integral zeros of binary Krawtchouk polynomials.
Also it was obtained properties for generalized Krawtchouk polynomials. Other generalizations of binary
Krawtchouk polynomials have also been considered. Generalized some properties of binary Krawtchouk
polynomials to g-Krawtchouk polynomials, derived orthogonality relations for quantum and g-Krawtchouk
polynomials and showed that affine g-Krawtchouk polynomials are dual to quantum gq-Krawtchouk polyno-
mials. In this paper, we define and study a generalization of Krawtchouk polynomials, namely, m-
polynomials [8-11]. Applications of Krawtchouk / Hadamard matrices in quantum algorithm’s design are
considered.

Krawtchouk matrices and quantum random walk

In quantum probability, random variables are modelled by self-adjoint operators on Hilbert space and
independence by tensor products. We can model a symmetric Bernoulli random walk as follows. Consider a

2-dimensional Hilbert space V = R? and two special 2x 2 operators

3o} ol

satisfying F2 =G? =1 , the 2x 2 identity. Recall the fundamental Krawtchouk/Hadamard matrix H
(see, Part 1, Egs (2) and (4)), which we shall now view as

11
H=F+G=
1 -1
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One can readily check that
FH=F(F+G)=(F+G)G=HG 1)

(use F2=G?=1). This, of course, can be viewed as the spectral decomposition of F and we can in-
terpret the Hadamard matrix as diagonalizing F .

Remark. Note that the exponentiated operator
exp(zF) = (

has the expectation value in the state e, equal

coshz sinhz
sinhz coshz

(e,,exp(zF )e,) = coshz

which coincides with the moment generating function for the symmetric Bernoulli random variable tak-
ing values 1. This shows that indeed we are dealing with the (quantum) generalization of the classical
model.

Remark. (Quantum computing interpretation). We can view V =span {eo,el} as a Hilbert space repre-

senting a simple two-state quantum system, e.g., a particle with possible spin-up (€,) and spin-down (e,)
states, respectively. In the context of “quantum computing”, these elementary states represent “qubits”. The
operator F represents a “spin flip” and G a “phase change”, both are thus basic qubit operations. Geomet-
rically, they are reflections in V through lines that form 45 degrees. The Hadamard matrix M is essentially
a “rotation by 45 degrees” (up to composition with reflection and scaling) and therefore ties them via (1).
Now, to perform quantum computing, one needs an assembly of N such independent systems — this consti-
tutes a simple quantum computer. The Hilbert space of computer states is represented by the N -th tensor

product of the original space V , that is, by the 2" -dimensional Hilbert space V ®" . This motivates our
further considerations.

Define the following simple operators (cf. Appendix 1)
[=F®I®--®I

L=19F®1® -®I

f,=1®1®--®F

each f, describing a “flip” at the i-th position. These are our quantum equivalents of the random walk

variables. Performing them independently would result in “running” a classical TV-bit computer. We shall
consider the superposition of these independent actions, setting

Xe=f+-+ 1.
Notation: For notational clarity, since N is fixed throughout the discussion, we drop N indices on
X ’s.
Analogously, we define:

9,=G®1® ]I

9,=19G®I® -]l
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9,=1®1®--®G

With X, =g, +--+0,. We also extend H to the N _fold tensor product, setting H,, = H®" . (This

(N)

isthe same as H'" of the previous sections.)

For illustration, consider a calculation for N = 3:
f1H3=(F®I ®I)(H ®H ®H)

~(HOH®H)(G®1®1)=H,g,

where the relation FH =HG s used. This clearly generalizes to f,H, =H,g, and, by summing

over K , yields an important relation:
XeHy =H X

Since products are preserved when reducing to the symmetric tensor space, we get
XeHy =H X,
the bars indicating the corresponding induced maps (see Appendix 2). We know how to calculate I-_|N

from the action of H on polynomials in degree N . Note that for symmetric tensors we have the compo-
nents x)' “x indegree N for 0<k <N .

Proposition. For each N >0, symmetric reduction of Hadamard matrices leads to H = ( ) That is,

H,, is the transpose of the Krawtchouk matrix @),

Proof: Writing (X, y) for (X, X, ), we have in degree N for the k ™ component:
(x+y)" " (x=y) ZHk,x 'y

Scaling out x" and replacing o =y/x yields the generating function for the Krawtchouk matrices

with the coefficient of v' equal to @lk M) Thus the result.

Now consider the generating function for the elementary symmetric functions in the quantum variables
f,. Thisis the N - fold tensor power

Fo(®)=(1+tF)™ =1V +1X, 4+
noting that the coefficient of tis X . Similarly, define
G (1) =(1 +tG)®N = 1N +tX g+
(1+tF)H =H (1 +1tG) we have
FH, =H.G, and FyH, =H,G,.

From

The difficulty is to calculate the action on the symmetric tensors for operators, such as X, that are not

pure tensor powers. However, from F, (t) and G, (t) we can recover X and X via

Xo= 3 0eF™, xo=3 (1+16)™

t=0 t t=0
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with corresponding relations for the barred operators. Calculating on polynomials yields the desired re-
sults as follows:
1t 1+t O
| +tF = , 1 +tG = .
t 1 0 1-t

Indegree N, using x and y as variables, we get the k ™ component for X, and X via

(X + ty)N_k (tx - y)k = ( N — k) XNf(k+1)yk+1 n kXN—(kfl)yk,l

t=0

and since | +tG is diagonal,
d

" (1+t)N7k (l—t)k X"y = (N = 2k)x"Hy"

t=0

For example, calculation for N =4 result in

04000 1 4 6 4 1
10300 12 0 -2 -1
X.={0 2 02 0|, H,=[1 0 -2 0 1]
00301 12 0 2 -1
00040 1 4 6 -4 1
400 0 O
020 0 O
Xs=|{0 00 0 O
000 -2 0
000 0 —4

We observe the spectrum of )?N is N,N—-2,...,2—N,—N , which coincides with the support of the
classical random walk.

(1+tF)™ a0 wik) . .o . . .
We note that the top row of is U where is the binary shuffling function of section

3. This is seen by noting that each time one tensors with I +1F the original top row is reproduced then it is
concatenated with a replica of itself modified in that each entry picks up a factor of t. Now, collapsing to the

symmetric tensor space, the top row will have entries k . This follows as well by direct calculation of

. . . X+t
the Oth component matrix elements in degree N namely by expanding ( y) .
To find the distributions, we must calculate expectation values. In the present context, expectation val-

ues in two particular states are especially interesting. Namely, in the state € and the normalized trace — the

uniform distribution on the spectrum. In the N _fold tensor product, we want to consider expectation values
000.. .0)

in the “ground state” and normalized traces. Then we can go to the symmetric tensors. Since

everything factors, one easily obtains the expectation value of exp(zXN) in the ground state |000"'0> to
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o (cosh z)" exp(zF)=2coshz . , trexp(zX ) =2"(cosh z)"

b . For the trace, tr

(coshz)"

mplie and, after normal-
izing, this yields

For the barred operators, we consider the symmetric trace. Here we can use the symmetric trace theo-
rem, detailed in Appendix 2. It tells us that the generating function for the symmetric traces of any operator

det(l _tA)il. Taking A= exp(zF) , We have

det(1 -te ) " =[ (1-te’)(1-te )|

= (1— 2tcosh z +t2)71.

A in the various degrees is

The latter is the generating function for Chebyshev polynomials of the second kind, so that the normal-
ized symmetric trace is

(N +1) " trl, exp(zF ) =U, (coshz)/(N +1).

This equals as well
(N4 g
(e —e)(N+1)

-z(N+1)

and that completes this study.

__ A®N
If A is represented by a matrix, given the matrix form A=A computed as an N _fold Kronecker

product, to reduce to Ay , We see that acting on polynomials, for a fixed row label in the full tensor space,
the column entries corresponding to basic tensors equivalent under permutation are summed to a single
column. Then the matrix elements are chosen, one row from each equivalence class of basic tensors. What if

(N +1)x(N +1)

d =2? Then row and column labels are single indices so that Ay is an matrix with
labels according to the exponent of X1 That is, the basis for polynomials in degree N js given by the mo-

N-k, k
nomials %0 % : 0<k<N Tphe binary shuffling function and contraction operations are exactly the reduc-
tion to symmetric tensors and then induced matrix, (see Table 1 and 2) respectively.

Table 1: Krawtchouk matrices

o =[1]
11 1
cp“):[l 1} o?=12 0 -2
1 -1
1 -1 1
11 1 1 1
11 1 1
4 2 0 -2 —4
w2t T Sells 0 2 0 6
3 -1 -1 3
4 2 0 2 -4
1 -1 1 -1
1 -1 1 -1 1
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11 1 1 1 1]
5 3 1 -1 -3 -5
o — 10 2 -2 -2 2 10
10 -2 -2 2 2 -10
5 3 1 1 -3 5
1 -1 1 -1 1 -1]
i 1 1 1 1 1 1]
4 2 0 -2 -4 -6
15 5 -1 -3 -1 5 15
»=120 0 -4 0 4 0 -20
15 5 -1 3 -1 -5 15
6 4 2 0 -2 4 -6
1 -1 1 -1 1 -1 1|
Table 2: Symmetric Krawtchouk matrices
3(0):[1]
S(l):[l 1}
1 -1
1 2 1
s@=l2 0 -2
1 -2 1
1 3 3 1
S0 _ 3 3 -3 3
3 -3 -3 3
1 -3 3 -1
1 4 4 1]
4 8 -8 -4
sW=l6 0 -12 0 6
4 -8 8 -4
1 -4 -4 1|
1 5 10 10 5 1]
5 15 10 -10 -15 -5
S _ 10 10 -20 -20 10 10
10 -10 -20 20 10 -10
5 -15 10 10 -15 5
1 -5 10 -10 5 1]
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1 6 15 20 15 6 1
6 24 30 0 -30 -24 -6
15 30 -15 -60 -15 30 15
s®=l20 0 60 0 60 0 -20
15 -30 -15 60 -15 -30 15
6 -24 30 0 -30 24 -6
1 -6 15 -20 15 -6 1

Let us consider the relationship between the structure of Simon’s algorithm and Walsh transforms.

Entropy and Hadamard matrices

We will define the entropy of an orthogonal matrix. It provides a new interpretation of Hadamard matri-
ces as those that saturate the bound for entropy. This definition play important role in QAs simulation, while
the Hadamard matrix is used for preparation of superposition states and in entanglement-free QAs. We
define the entropy of orthogonal matrices and Hadamard matrices (appropriately normalized) saturate the
bound for the maximum of the entropy. The maxima (and other saddle pointsO of the entropy function have
an intriguing structure and yield generalizations of Hadamard matrices.

Consider n random variables with a set of possible outcomes i=1,...,nhaving probabilities p;,

i=1...,n. We have i p; =1 and the Shannon entropy S* ( pi):—i p,Inp, .
i=1 i=1

We now define entropy of an orthogonal matriinj , 1, J=1,...,n. Here Oij are real numbers with the

n . : - - - -
constraint > 0}0, =5, . In particular, the jth row of the matrix is a normalized vector for each
i=1

i=1,...,n. We may associate probabilities pgi) :(Oij )2 with the i-th row, as i pgi) =1 for each i. We
j=1

define the Shannon entropy for the orthogonal matrix as the sum of the entropies for each row:

$*(0f)=~ ) (0] )2 In(0} )2'

ij=1

The minimum value zero is attained by the identity matrix Oij = 5} and related matrices obtained by in-

terchanging rows or changing the signs of the elements. The entropy of the i-th row can have the maximum

S . i 1 .
value Inn, which is attained when each element of the row is *—=. This gives the bound,

Jn
Sh i
s*"(0})<nInn.
In general, the entropy of an orthogonal matrix cannot attain this bound because of the orthogonality
n . .
ZO'J.O'k =0y
constraint i=t , Which constraints
1

(i)
] for different rows. In fact the bound is obtained only by

the Hadamard matrices (rescaled by \/ﬁ ). Thus we have the criterion for the Hadamard matrices (appropri-
ately normalized): those orthogonal matrices which saturate the bound for entropy.
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1
+ —

Remark. The entropy is large when each element is as close to ‘/ﬁ possible, i.e., to a main diagonal.
Thus maximum entropy is similar to the maximum determinant condition of the Hadamard. The peaks of the
entropy are isolated and sharp in contrast to the determinant.

Example. Matrix that maximizing the entropy for N = 3is

1 2 2
'3 3 3
2 1 2
3 3 3
2 2 1
3 3 3

L . . 2 .
For n =5, the result is similar: the magnitudes of the elements in each row are — repeated 4 times and
5
. . 3 . i o n-2 i
a diagonal element is a e This set can be generalized for any n. The matrix with ———— along the diag-
n

. 2 . . i .
onal and each off-diagonal as — is orthogonal. Each row is normalized as a consequence of the identity:
n
n’ :(n—2)2+22(n—1).
For each n, there are saddle points apart from maxima and minima.

Example. For n =3 there is a saddle point and the corresponding matrix is
1

2
0
1

WA

The entropy peaks quite sharply at all extrema. Thus the entropy has a rich set of sharp extrema.

Nlpﬁl‘l—\ N |-
N |- N |-
i

This result shows the important role of Hadamard operator in entanglement-free QA: with Hadamard
transformation it is possible introduce maximal hidden information about classical basis independent states
and superposition includes this maximal information. Thus, with superposition operator is possible created a
new QA without entanglement while in any cases superposition includes information about the property of
function f .

General properties of Walsh-Hadamard transformation W (a,b,q). (see Appen-
dix 3)

Let us consider a function W :NxNx{Z"

conditions:

n eZ*} —>{—L1} . The function satisfies the following

W (0,b,q) =1 W (a®c,b,q)=W (a,b,q)W(c,b,q)

W (a,b,q)=W(b,a,q) gw(a,c,q)w (c,b,q)=0q5,,




ONeKTPOHHbIN XXypHan «CUCTEMHBIN aHanu3 B Hayke n obpa3oBaHnm» Boeinyck Ne 3, 2017 roa
where the operator @ is a bitwise exclusive-OR (XOR). Moreover, we define the transform W, as fol-

1
Ja
—W (a,b,q)(unless otherwise specified, the rows and columns will be indexed beginning with 0), the

Ja

matrix is a unitary matrix because of the definition of W (a,b,q). Thus, the Quantum Turing Machine

g-1
lows: |a>L> > W (a,c,q)|c). When the a-th row and b -th column element of a matrix Uy, is
c=0

(QTM) can execute the transform W, .

Example. Let W(a,b,q=2”):(—1)a'b where a-b is an inner product of a and b, ie., for
a=in=2:a12‘ and bngizi a,b €{0,1}, a-bzgaibi(modz). Obviously, the function W (a,b,2")
satisfies the conditions above of W(a,b,q). In fact, by using W(a,b,Z”), in the Simon algorithm
W (s,c,2")=15-c=0.

Next, let us consider the case when W (a,b,q) is a discrete Walsh function. We will show that the

function W (a, b, 2”) is a kind of discrete Walsh function.
First, we describe Walsh functions and discrete Walsh functions. We define a function

1 0£x<l
r(x):R—{-11by r(x)= . 2
_1’E£X<1

and r(x+1)=r(x). Moreover, let I, (x)be a function r, (x) = r(2' x), where xeR,l e N. Then, a
Walsh function (more precisely, Walsh-Paley function) W, (x)is defined by W, (x)= 1 r (x)Ik , where
k=0
= 31,241, {0,

Remark. Every value of the function W, (x) is always a finite value because I, =0 for k that is suffi-
ciently large (in fact, each value of the Walsh-Paley function is either 1 or —1). Moreover, when let

aeN, beN,and qeZ", adiscrete Walsh-Paley function is defined by W, (EJ .
q

. b - . .
Example. Now, let g =2" (n € N). Then, the function W, (—j satisfies the following properties [so
q

that this function satisfies the properties of W (a,b,q)]:

10
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, 1 b . :
Namely, a matrix U, whose the a-th row and b -th column element is ——=W, (—j IS a unitary ma-
q

Ja “la
P 1 ot

trix. The transform P, :|a>—q>T >W, [Ej|c> correspond to the matrix U, - and can be computed in
q c=0 q

polynomial time of n.

1 1
Example. Let Hq be a q-dimensional Hadamard matrix(q = 2”), that is, when H, :(1 J then

H
H

q/2 Hq/2

H,=H,®H,, =
q 2 q/2 ( _quz

1
]. The QTM can execute the matrix THq in O(n) time. Further,
q
when let H,be the k-th row and j-th column element of H, then H,; =W, (lj where for
q

k= nfki 2' (k; €{0,1}),br (k)= nfjlkn_i_lzi (for a bit string, its reverse order is obtained). The QTM can
i-0 i-0

q/2

also execute this procedure in O(n) time. Consequently, the QTM can execute the transform P, in O(n)
time.

Relationships among some Walsh transforms

-1 .
For the value a:nZaiZ', a; €{0,1}, let
i=0

. gn—lzan—l
(1=01,...,n-1) = . :
0 ( ) {gi =a,®a (0<i<n-2)
. - n-1 i b b .
Gray code g(a) of a is defined by g(a)=Y g,2' . Now, when W a,a and H, a are dis-
i—0

crete Walsh-Paley function and Walsh-Hadamard function, respectively, the relationships among Walsh

functions are W (a, 9) =W, (EJ and H, [Ej =Wor(a) (Ej . Moreover, we can describe them by
q q q q

Simon’s problem and algorithm

Simon (1994, 1997) was the first to show a nice and simple problem with expected polynomial time QA
but with no polynomial time randomized algorithm.

The qualitative description of Simon’s problem

A function f:{0,1}" —{0,1}" is given as an oracle, with the promise that there exists an s e {0,1}"
(known as the “hidden secret”) such that f(x)=f(y) iff x®y=s. Notice that if s=0", then fisa

permutation, and otherwise f is two-to-one function. The problemis to tell if s=0".

11
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Simon’s algorithm works as follows. One starts with 2n qubits, separated into two n -qubit registers.
Originally one initializes the states to |¢0> = O”> 0”>. Next, one applies the Hadamard operator to the first

registr and then the oracle operator |x>|y)r—>|x>|y@f(x)>. The state  becomes

)= 39 ()

Next, the second register is measured and discarded:
o If s=0", then the measurement result is |¢,) =|x) for arandom x {0,1}";

o 1f $#0" then the measurement is 1 (|x)+|x69s>) for a random X

7
Next, a Hadamard operator is applied to the first register.
In the case s=0", the result is |¢,) =|y) for arandom y ; inthe case s=0", the result |4;) =|y) for

arandom y suchthat y-s=0.

Finally, one measurement the first register and obtain y .

Repeating the experiment O(n) times, one can solve for S by using Gaussian elimination and distin-

guish the case s=0" from the case s=0".

Mathematical model of Simon’s problem: Simon’s XOR Problem

Let f :{0,1}n - {0,1}n be a function such that either f is one-to-one and there exists a single non-

zero se {O,l}" such that Wvx = X’ ( f(x)=f(X)ex'= x@s). The task is to determine of the above
conditions for f and, in the second case to determine also S .

To solve the problem two registers are used, both with n qubits and the initial states

0”> , and (ex-

pected) O (n) repetitions of the following version of the Hadamard-twice scheme:

S Computational algorithm
tep

1 Apply the Hadamard transformation on the first register, with the initial value

L5 o)

XeOl

0”> , to produce the

superposition

Apply U, to compute |y/) =

F2 )

Apply Hadamard transformation on the first register to get in Z (—l)x'y
x,yefo,1)"

()

4 | Observe the resulting state to get a pair (v, f(x))

Case 1: f isone-to-one. After performing the first three steps of the above procedure all possible states

|y, f (x)> in the superposition are distinct and the absolute value of their amplitudes is the same, namely

12
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in. Therefore, n—1 independent applications of the scheme Hadamard-twice produce n—1 pairs

{yl, f (xl)},...,{yn_l, f (xn_l)}, distributed uniformly and independently over all pairs {y, f (x)}
Case 2: There is some s= 0" such that Vx = X’ (f (x)=f(X)=x'= x@s). In such a case for

each yand xthe states |y, f (x)) and |y, f (x@s)) are identical. Their total amplitude c(X,y) has the
value (X, y)= 2_1{(_1)” +(—1)(X®)'y] If y-s=0mod2,then x-y=(x®s)-ymod2 and therefore

a(x,y)=2""; otherwise a(X,y)=0. Therefore, n independent applications of the scheme Hadamard-
twice yield n—1 independent pairs {y,, f (X )},....{Vy4, f (X,)} such that y,-s=0mod2 for all
1<i<n-1.

Remark. In both cases, after n—1 repetitions of the scheme Hadamard-twice, n—1 vectors vy, ,
1<i<n-1, are obtained. If these vectors are linearly independent, then the system of n—1 linear equa-
tionsin Z,, y,-s =0 can be solved to obtain s. In Case 2, if f istwo-to-one, s obtained in such a way is
the one to be found. In Case 1, S obtained in such a way is a random string. To distinguish these two cases,
it is enough to compute f (0) and f(s).If f(0)= f(s),then f isone-to-one. If the vector obtained by
the scheme Hadamard-twice are not linearly independent, then the whole process has to be repeated.

As shown in the next lemma, the vectors y,, 1<i<n -1, obtained in this way are linearly independent
with probability at least % The total expected computation time is therefore O(nt(n)+ g(n)), where

t(n) is time needed to compute f on inputs of length n and g(n) is time needed to solve the system of

n linear equations in 7, .
Lemma: If Uis a non-zero binary vector of length n, then n—1 randomly chosen binary vectors of

length n such that u-y =0 mod2 are linearly independent with probability at least % :

Let us consider the relationship between the structure of Simon’s algorithm and Walsh transforms.

Walsh transforms and Simon’s Problem

First, let us consider a function W :NxNx{Z”

ne N*} - {—1,1} . This function satisfies the above

mentioned conditions. For this case we consider solving Simon’s problem by using the transform W, .

Simon’s Problem. Let f be a function f :{0,1}" —{0,1}" (m>n) such that (A) the function f isa
one-to-one function, or (B) there exists a non-trivial S satisfying
vx= X[ f(x)=f (X)X =x®s].

Then, the problem is to decide which condition the function f satisfies. Moreover, in the case of (B),
find the value of .

Algorithm solution. Letq=2". In order to solve Simon’s problem, first, a QTM computes all of the
values of f in quantum parallel computation:
1

910/ 210> Ela)l (@),

13
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When let|a)|b), call |a) (respectively, |b)) the first register (respectively the second register).

Remark. The original computation for the first register is the Fourier transform. However, the QTM can
obtain the same result by using the transform W, .

For the first register, the QTM executes the transform W, :

%§|a>\f(a>—>q2(zvv(acq )l (@)

If the function f satisfies the condition (B) [i.e., f (a)= f (a@®s)], for eachc, two configurations

|c) f(a) and |c) f (a@s) are equal and the probability amplitude « (a,c) corresponding to them is

a(a,c):ﬁ{w (a,c,q)+W (a®s,c,q)} :%W (a,c,q){1+W (s,c,q)}.

Therefore, the configuration corresponding to W (s,c,q) =—1 is erased. Then, for the given function

W (S,c,q), the QTM can obtain ¢ satisfyingW (s,c,q) =1. Moreover, when the QTM repeats procedure

above several times, it can obtain some different values of ¢ (although whether or not we can find S de-
pends on the structure of the function W ). On the other hand, when the function f satisfies condition (A),

the QTM can decide whether the function f satisfies either (A) or (B).

Remark. Moreover, if the QTM can execute both the computation of the transform W, and the computa-
tion of the function f in polynomial time of log, g, it can execute the total procedure in polynomial time

of log, q. The algorithm above becomes Simon’s algorithm: when W (S, c,2" ) =1s-c=0.

We describe a problem that is efficiently solved using one of the algorithms mentioned above.

Generalized QA based on using of Walsh transform

Let us consider the following problem:
Let f: {0,1}n — {0,1}m (m=>n) be a function such that there exists a nontrivial s satisfying

vx# X (f(x)=f(X)e X =x®s).
Then, the problem is to find a nontrivial b satisfying s-b=0.
Remark. This problem is an extended version of the Simon’s problem, that is, in the current Problem,

the range of the function f is extended from «{0,1}'Fl to {0,1}" (m>n). Simon shows that any PTM

needs an exponential time of n to solve it. In the following, we describe a QA to efficiently solve this Prob-
lem.

Solution of the Problem. We define a Walsh-Hadamard transform H, by
1 &
)25, 2]
&
Moreover, for a given g {0,1}n , we define two functions F, and F,:

Fl(a):{f(a),if f(a)>f(a®g) Fz(a)={0' if f(a)>f(a®g)

f(a®g), otherwise 1, otherwise

14
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We then define U, and G by |a>|O>L>|a>‘ F1>, and |a)—=—(~1)"|a).. The function
F, can be computed in the following way: First, the QTM computes f (a)— f (a@® g). The QTM takes the
value of f(a) if the value of f(a)—f(a®g) is plus, otherwise it takes the value of f (a@®g). There-

fore, the main procedure computing the function F is to compute a linear function whose inputs are values
of f.

Remark. We can construct transforms computing linear functions (in general, polynomial functions).
Moreover, since the number of inputs in the linear function is constant, the complexity T, (n) is time com-

plexity of f (we can evaluate the time complexity of F, in a similar way).

Algorithm of solution

First, for an a, the QTM selects a g(+0), such that f(a)= f(a@g), and computes the function
F [if f(a): f(a@ g), then s=g, and we can easily find a nontrivial b such that s-b=0]:

2"-1
0)——— 0)———— a)|F (a)).
)02 Fallo) =S alR )
Next, the QTM observes the second register (thus, in the following we omit the second register). By
F(a)=F(a®g), and %[|a)+|a@s>+|a®g>+|a@g@s)]. Moreover, the QTM executes the

transform GFz . By (_1)Fz(a@g) _ _(_l)':z(a),

1] ()" a)+(-1)"** [aos) ]

—[| +|la®s) |a®g>+|a@g®s>] S TN e e - (0959
2+(— 2 g|a@g> (- )2 ’ |a®g®s>

= = an)“ )+la®@s)-|a®g)-[a®g®s)]

Finally, the QTM executes the Walsh-Hadamard transform H o0

— —
H | — |[+H,.| —
3(2"} a®s(2”j

%(—1)”&)P‘"‘”"S‘@S> ] P L i I ES) B (¥

~la®@g)-|a®g®s)

15
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Then, we can find b satisfying Hs(z—bnjzl and Hg(%j:—l, that is, S-b=0 and g-b=1, in
polynomial time of n and T, (n).

Remark. Since any Walsh function satisfies the conditions of W (a, b, q), the QTM can solve Simon’s

problem in polynomial time of n by using any Walsh function. Furthermore, if we suppose that all of the
transforms corresponding to the Walsh functions can be executed in the same time (i.e., if we suppose that
we can construct such quantum networks executable in the same time), we can obtain the required code most
efficiently by using the function corresponding to the code. For example, when we use the function

w (a,%j , we can obtain br (g (s)) instead of s because we obtain ¢ satisfying br(g(s))-c=0.

Deutsch-Jozsa QA and Walsh-Hadamard transformation

Deutsch and Jozsa suggested that there exists a problem that a QTM may solve it exponentially faster
than any DTM. Let us briefly repeat the discussion of this problem.

Deutsch-Jozsa problem.
Let us consider a function f :Z,, — {O,l} (N € Z*)such that (A) the function is not constant (at O or

1), or (B) the sequence of all of the values of f, f(0), f(1),..., f (2N —1) does not contain exactly N
zeros. Then the problem is to decided which condition the function f satisfies.

S

First, we briefly describe an algorithm (Deutsch-Jozsa QA) to solve this problem on a QTM. Let ~2 be

1 0
%0 1
a unitary matrix (a unitary transform) -

S

j . For one qubit, this matrix operates and transforms as

(_1) |a> . Moreover, the function f is computed as
|a)[b)——|a)|b® f (a))

follows: |a>

We denote the initial configuration by a pair of an input (the first register) and an output register (the

second register), |O>|0> . Then the QTM executes the following computations.

o) o e Ylal
action on 1 2N
i I
| = LS a0
g v R

16
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For the final superposition of configurations (let |w> be the superposition), the probability P(}tq)) of
2N-1

observing the eigenvalue 2, that corresponds to |¢) = % Z_;‘ |a)|0) is

1 2Nt 2

P(’1¢)=‘<§D|l//>\2 = S (1)

a=0

Therefore the probability of solution observable as P(}Lw)zl if fis a constant function, and,

P(/l(p) =0, if exactly half the values of f are 0. Consequently, when we take the contrapositive, condition

(A) istrue if 4, is not obtained, and otherwise condition (B) is true.

Remark. Thus, Deutsch-Jozsa algorithm gives a method of efficiently solving problems on QTMs by us-
ing observations effectively. On the other hand, as mentioned, Simon’s algorithm is a method of retaining
only the required configurations by using interference a superposition of configurations is solved. Moreover,
by a Fourier transform, Shor developed algorithms to factor integers and to find discrete logarithms efficient-
ly on QTMSs by using interference (inspired by Simon’s algorithm). We show that Deutsch-Jozsa’s problem

can also be efficient solved by using the Walsh-Paley transform P, and by using interference (we can also
show that it can be solved by other Walsh transforms).

Example. For simplicity, let 2N =2". A QTM executes the same computations as above until the final
superposition |z//> of configurations. For the vector |W> , the QTM executes the Walsh-Paley transform:

1 &E @
R R YE Rl
action on | a7
the first = —2 = W, (%J(—l)f(a)|c)|0)
register B 2
2"
result = Z_; a.|c)|0)
1< c (a)
- =S, [ = |(-1
aC 2n ; a(zn J( )

. ) ) ) c
where ¢, is a value depending on the function f . Moreover, all of the values of the function W, [?j are

1if ¢ =0, otherwise exactly half the values of the function are 1 (and half the remaining values of it are
—1). Then, if f is a constant function, e, =+06,, and the configuration after the computation becomes
+|0)|0) . On the hand, if exactly half the values of f are 0, ;, =0 and the configuration after the compu-

21
tation becomes »_ &,|c)|0). Here, when we observe the first register, the probability of observing |0)
c=1

(more precisely, the probability of observing the eigenvalues corresponding to it) is 1 if f is a constant
function, and the probability of observing |0> is 0 if exactly half the values of f are 0. Consequently, under

the same evaluation as above, when we take the contrapositive, condition (A) is true if |O> iS not obtained,
and otherwise condition (B) is true.

17



ONeKTPOHHbIN XXypHan «CUCTEMHBIN aHanu3 B Hayke n obpa3oBaHnm» Boeinyck Ne 3, 2017 roa

Remark. Deutsch-Jozsa’s problem is a type of decision-making problem of choosing between two
things. Finally, we modify the problem to one that includes forms of search problems and derive more gen-
eral algorithms to solve them.

Example. Let f be a function such that f:{0,1}" —{0,1}" (m>n). We denote two unitary

transforms U , and U , by

2"-1 2"-1 . 2"-1 2"-1 .
|a> —)U" bz(;aab|b>( g;aababc :5ac ] |,8> = > §ﬂ3b|b> Lbz(;ﬂabﬂbc :5ac J

Moreover, ., . define a unitary transform G by |a)—=—g(a)|a) where g(a) is a function satisfy-

ing ‘g (a)‘2 =1 under some conditions described later (the function S, is an instance of G ).

Algorithm. First, for an initial configuration |0)|0) of a QTM (although we do not necessarily select the

initial configuration as |O)|0> ), we form a superposition of all of the input values of the function f by using

"1
the transform U ,: |0)|0)—2— " S, |a)|0). Next, the QTM executes the transforms U, ,G, and U, ,
a=0

as following:

SAalo) —— S (@)

P21
e~ Tt @) (@)
action on oy
thesecond - —— = 3" A,.g(f(a))a)|o)
register -

Finally, the QTM executes the transform U _ :

3. (1 (@)fa)l0) 2

n

2"-1

Foa8 (1 ()i [)[0).

N
LN

QD
o

If we suppose that 3,,9( f (a))= pay, (where, | p|* =1) the superposition of the configurations be-

comes
212" 212" .
3 st @)alolo) = 33 pasalo)o
: "1
= 2 P3[c)[0)
c=0

p[0)[0)

and we can obtain a value b uniquely.

Remark. For a given f , the relationship between the function f and the value b is decided; however,

as in the example mentioned below (Deutsch-Jozsa-type search problem), we can also assign the value b to
each function as identification number.
Next, let us consider more general algorithm.

18
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Example. Suppose that /3,9 (f (a)) =D Pycty, (where > | pb|2 =1) where for any two different el-

beS, beS,

k
ements b,b, €Z,, the set S, (beZ, keN) satisfies 5, NS, = and bk:JOSb =Z,, (consider that

each condition of solving a problem corresponds to a number, i.e., an element of the set). Then, the
superposition of configurations after the computation above becomes

M_127 1 A VL .
Z(:]Z(;ﬂOa ( ) ac|C>|O> = Z:;Z:(;k; pbabaaac|c>|o>
— hz“—l
= 2 P2 5[c)|0)
beS,  c=0
= g‘, pb|b>|0>

and we can uniquely decide to which correction of properties the given function f belongs.

Example. For an error-bounded algorithm, we suppose that

IBOag( ) Zpbaba+ Z Py Pytas Z|pb|+ Z |pb| 1Z|pb| >_

beS, eZ n—Sp bes, b’ eZz n—Sp bes,

(for b,b, eZ,,,

computation above becomes

we may select Sbl mez # ). Then, the superposition of configurations after the

21271 "12"1 21271 .
2.2 5a9(f(a))a[c)|0) = Pt [C)[0)+ DD, D Py [C)[0)
a=0 c=0 a=0 c=0 bes§, a=0 c=0 b’e'/Azn—Sb
= 2 P [D)[0)+ > py[b7)[0)
bes, b'e%zn—Sb

. . . - 2
and we can obtain an element in S, with probability more than 3

Remark. The algorithms above reset the output value (the second register) to 0 in the course of computa-
tion; however, we can easily modify these algorithms to algorithms with classification by the output values,
like Simon’s and Shor’s algorithms.

Now, we show that even if we modify the Deutsch-Jozsa problem (decision-making problem) to the
form of search problems, there also exists a problem that it solved efficiently.

Example: Deutsch-Jozsa search problem. Let % Pap (a,b € Zzn) be the a-th row and b -th column
2n

element of a matrix corresponding to the Walsh-Paley transform. Moreover, we define 2" functions

f, (a) = pabTJrl [more precisely, let f, (a) be a function outputting such a value].

Then, for a given function f among 2" functions f, (a) , the problem is to decide to which function

the given function f belongs, i.e., find b. In order to solve this problem, we investigate the general algo-
rithms above.

Thus, when a,, = £, \/_ (b] and g(f(a )):(—l)f(a) , then
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Pab +1

B9(f(a))= %WO (21”](_1)%) _ %(_1) 2 =—a,

and it satisfies the condition above.

Then, the final superposition of configurations is —|b)|0) and we can obtain the value b uniquely.
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Appendix 1: Tensor products

Let V be a d-dimensional vector space over R. We fix an orthonormal basis {eo,...,e5} with

d =1+ 6 . Denote tensor powers of V. by V®" sothat V=V ®V , etc. A basis for V" is given by all
N -fold tensor products of the basis vectors €,

Inn,...n,)=e, ®e ®---®e,

Note that we can label these d" basis elements by all numbers 0to d" -1 and recover the tensor prod-

ucts by expressing these numbers in base d , putting leading zeros so that all extended labels are of length

N .

A=

Now let {A 1<i< N} be a set of N linear operators on V. On V®" | the linear operator
A®A ®---®A, actson a basis vector [nn,...n) by

Alnn,..ng)=Ae, ®--®Ag,

This needs to be expanded and terms regrouped using bilinearity.
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If A and B aretwo d xd matrices, the matrix corresponding to the operator A ® B is the Kronecker
product, d? xd? matrix having the block form:

aooB aoaB
a,B - a,B
aa‘oB aa‘a‘B

associating, from the left for higher-order tensor products. The rows and columns of the matrix of a lin-
ear operator acting on V®" are conveniently labelled by associating to each basic tensor nlnz...nN> the

N
corresponding integer label " n,d™~*, which thus provides a canonical ordering.
k=1

Appendix 2: Symmetric tensor spaces

Here we review symmetric tensor spaces as spaces of polynomials in commuting variables.

The space V®" can be mapped onto the space of symmetric tensors, V" by identifying basis vectors
(in V®") that are equivalent under all permutations. Alternatively, one can identify the basic tensor
|nln2...nN> with the monomial X, X, ---X, in the commuting variables X,,...,X; . Hence we have a linear

map from tensor space into the space of polynomials, itself isomorphic to the space of symmetric ten-

sors: UV®N = R[Xg-oes X5 | = UV®SN . In the symmetric tensor space, tensor labels need to count only
N>0 N>0

‘occupancy’, that is, the number of times a basis vector of V occurs in a given basic tensor of V®" . We
indicate occupancy by a multi-index which is the exponent of the corresponding monomial. The dimension

N+d-1

of V&N isthus dimV ®"N =
d-1

j that is, the number of monomials homogeneous of degree N .
Given an operator A on V , let A, = A®". Then A, induces an operator A, on V" from the ac-

tion of A on polynomials, which we call the symmetric representation of A in degree N . For convenience
we work dually with the tensor components rather with the action on the basis vectors. Denote the matrix

elements of the action of A, by A . If A has matrix entries A let
Yi = ZAinj .
i

Then the matrix elements of the symmetric representation are defined by the relation (expansion):

mO DY m‘) = A nO “ee n‘)
0 s Z Amn XO Xb‘
n

with multi-indices M and N .

Successive application of A then A, shows that mapping to the symmetric representation is an algebra
homomaorphism, i.e.,

Explicitly, in basis notation

(AR),, =2(A), (A),

r

Define the symmetric trace in degree N of A as the trace of the matrix elements of KN , 1.e., the sum
of the diagonal matrix elements:
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trS’\;/mA: Z Anm

jm] =N

with |m| denoting, as usual, the sum of the components of m . Observe that if A is upper-triangular, with
eigenvalues A,,...,4,, then the trace of this action on the space of polynomials homogeneous of degree N
is exactly hy (4,,...,4,), the N ™ homogeneous symmetric function inthe 1 's.

We recall a useful theorem on calculating the symmetric trace. Since the mapping from A to KN is a

homomorphism, a similarity transformation on A extends to one on KN thus preserving traces. Now, any
matrix is similar to an upper-triangular one with the same eigenvalues, thus follows

Theorem: Symmetric trace theorem Denoting by trsﬁ',m the trace of the symmet-
ric representation on polynomials homogeneous of degree N ,
1 N N4 N
—= ) ttr, A
det(1 —tA) NZ;, o

Proof: With {4} denoting the eigenvalues of A,

1 1
det (1 —tA)_Hl—m,

=§t“hN(ﬂl,...,/12)

c N4 N
= >t A
N=0

as stated above.

Remark Note that this result is equivalent to MacMahon’s Master Theorem in combinatorics.
Appendix 3: General properties of Walsh-Hadamard transformation w (a,b,q)

Let us consider a function W :NxNx{Z”
conditions:

n eZ*} —{-1,1} . The function satisfies the following

W (0,b,q) =1 %W(a@c,b,q):w(a,b,q)w (c,b,q)
W (a,b,q)=W(b,a,q) jiw (a,c,q)W (c,b,q)=0qd,,

where the operator @ is a bitwise exclusive-OR (XOR). Moreover, we define the transform W, as follows:

|a>L>%quW(a,c,q)|c>. When the a-th row and b-th column element of a matrix Uy, is
q c=0

1
TW (a,b,q) (unless otherwise specified, the rows and columns will be indexed beginning with 0), the
q

matrix is a unitary matrix because of the definition of W (a,b,q). Thus, the Quantum Turing Machine
(QTM) can execute the transform W, .
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Example. Let W(a,b,q:2”):(—1)a'b where a-b is an inner product of a and b, i.e., for
n-1 . n-1 . n-1

a=ya2 and b=Yh2 a,b {01}, ab=3 ab(mod2).Obviously, the function W (a,b,Z”)
i=0 i=0 i=0

satisfies the conditions above of W (a,b,q). In fact, by using W(a,b,Z”), in the Simon algorithm

W (s,c, 2“)=1, s-c=0. Next, let us consider the case when W (a,b, q) is a discrete Walsh function. We

will show that the function W (a, b, 2”) is a kind of discrete Walsh function.

First, we describe Walsh functions and discrete Walsh functions. We define a function

1
r(x):R—{-11} L OSX<§

by r(x)=

—1,1§x<1
2

and r(x+1)=r(x). Moreover, let ,(x)be a function r,(x):r(2' x) where xeR,leN. Then, a

Walsh function (more precisely, Walsh-Paley function) W, (x)is defined by W, (x)= 1 rk(x)Ik , where
k=0
1= 31,21, €{0,1}.
k=0

Remark. Every value of the function W, (x) is always a finite value because I, =0 for k that is suffi-
ciently large (in fact, each value of the Walsh-Paley function is either 1 or —1). Moreover, when let

aeN, beN,and qeZ", adiscrete Walsh-Paley function is defined by W, (EJ .
q

Example. Now, let q=2" (n € N). Then, the function W, (BJ satisfies the following properties [so

q
that this function satisfies the properties of W (a b, q

wge U U (&)
) (

, 1 b . ,
Namely, a matrix U, whose the a-th row and b -th column element 0 is —=W, [—J IS a unitary ma-
q

7

[ j| > correspond to the matrix U, and can be computed in
q q

a
g

-1
trix. The transform P, ) —s—= ! qZW
Ja e

polynomial time of n .

1 1
Example. Let Hq be a g-dimensional Hadamard matrix(q = 2”), that is, when H, :(1 J then

|_lq/2 Hq/2

H —Hyp

q/2

1
H,=H,®H_, :( ] The QTM can execute the matrix —=H, in O(n) time. Further,

Ja
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when let Hbe the k-th row and j-th column element of H,  then H,, =Wor (l] where for
q

n-1 . n-— -
k=>k2 (k {0,1}),br(k)= Zlkn_i_12' (for a bit string, its reverse order is obtained). The QTM can
i-0 i-0

also execute this procedure in O(n) time. Consequently, the QTM can execute the transform P, in O(n)
time.

n-1 .
Relationships among some Walsh transforms. For the value a=> a.2', a € {0,1} , let

g, (i=01,...,n-1) ={ E

gn—l = an—l
g =g

i+l

®a (0<i<n-2)

Gray code g(a) of a is defined by g(a):nfjlgiZi . Now, when W[a,EJ and H{EJ are dis-
i=0 q q

crete Walsh-Paley function and Walsh-Hadamard function, respectively, the relationships among Walsh

functions are W [a, 9] :W‘(a) (Bj and H, [EJ :Wbr(a) (Ej _
q N q q

Moreover, we can describe them by

W (a, EJ (o |y ( b j e | om, ( b j ()

q
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