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Квантовые вычисления основаны на законах квантовой механики, компьютерных технологий и 

теории информации. При этом применяются квантово-механические эффекты, особенно суперпо-
зиция, интерференция и запутанные состояния, порождая новые типы вычислений, которые явля-
ются более эффективными при поиске решений, чем классические вычисления. Особенностью тако-
го рода вычислений является вероятностная природа предсказания ожидаемого результата в силу 
физической природы законов квантовой механики. Это приводит к вероятностной природе кванто-
вых вычислений и квантовых алгоритмов. 

Ключевые слова: Квантoвые вычисления, квантовые операторы, быстродействие квантовых вы-

числений, вероятностный вывод.  

Introduction: Main definitions and constraints of quantum computing 

The interplay between mathematics and physics has always been beneficial to both fields of endeavor. 

The calculus was developed by Newton and Leibniz in order to understand and describe the dynamics of 

motion of material bodies. In general, geometry and physics have had a long and successful symbiotic rela-

tionship: classical mechanics and Newton’s gravity are based on Euclidean geometry, whereas in Einstein’s 

theory of general relativity the basis is provided by non-Euclidean Riemannian geometry (an important 

insight taken from mathematics into physics). Although this link between physics and geometry is still 

extremely strong, one of the most striking connections today is between information theory and quantum 

physics.  

Long time we have not though about computation in physical terms. We considered the computation 

from the standpoint of mathematics and connected it with the notion of algorithm and Turing machine. But 

computation itself carried out by means of a physical process in a computing device. Computers today be-

come not only faster, they become smaller too. At some stage of miniaturization it is necessary to include in 

the description of computers a quantum phenomena (Manin, 1980; Feynman, 1982). Deutsch (1985) consid-

ered a situation where computers like quantum objects can enter highly non-classical states. These quantum 

computers could, for example, exist in a superposition of states. 

Computation, based on the laws of classical physics, leads to different constraints on information pro-

cessing than computation based on quantum mechanics. Quantum computers hold promise for solving many 

intractable problems, but, unfortunately, there currently exist no algorithms for “programming” a quantum 

computer. The interplay between mathematics and physics has always been beneficial to both fields of 

endeavor. The calculus was developed by Newton and Leibniz in order to understand and describe the dy-

namics of motion of material bodies. In general, geometry and physics have had a long and successful sym-

biotic relationship: classical mechanics and Newton’s gravity are based on Euclidean geometry, whereas in 

Einstein’s theory of general relativity the basis is provided by non-Euclidean Riemannian geometry (an 

important insight taken from mathematics into physics). Although this link between physics and geometry is 

still extremely strong, one of the most striking connections today is between information theory and quantum 

physics.  

Calculation in a quantum computer, like calculation in a conventional computer, can be described as a 

marriage of quantum hardware (the physical embodiment of the computing machine itself, such as quantum 

gates and the like), and quantum software (the computing algorithm implemented by the hardware to per-

form the calculation). To date, quantum software algorithms, such as Shor’s algorithm, used to solve prob-

lems on a quantum computer have been developed on an ad hoc basis without any real structure or pro-

gramming methodology.  
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The lack of a quantum programming or program design methodology for quantum computers severely 

limits the usefulness of the quantum computer. Moreover, it limits the usefulness of the quantum principles, 

such as superposition, entanglement and interference, that give rise to the quantum logic used in quantum 

computations. These quantum principles suggest, or lend themselves, to problem-solving methods that are 

not typically used in conventional computers.   

Quantum principles and quantum logic can be used with conventional computers if we find solutions to 

simulate and implement quantum algorithms in classical computers. The present paper describes solutions of 

these and other problems by providing method of simulation and design of quantum algorithm gates to 

implement quantum algorithms for quantum computing and quantum soft computing that can be classically 

efficiently simulated.  

The interrelations between physics, mathematics and informatics from quantum paradigm point of view 

is shown in Fig.1. In theoretical backgrounds part we briefly introduce main concepts and ideas of topics 

depicted on Fig.1. 

 

Figure 1. Background of quantum computing 

Let us consider a usage of quantum computation ideas for our task formulated above. 

The quantum principles (such as quantum parallelism, quantum complementary, quantum long-distance 

correlation, quantum bio-inspired searching, etc.) can be used for applications of quantum strategies for 

optimal decision making with conventional computers in much the same way that genetic principles of 

evolution are used in genetic optimizers. Nature also uses the principles of quantum mechanics to solve 

problems, including quantum-like optimization-type problems, searching-type problems, selection-type 

problems, etc.  

The quantum operators, such as superposition, entanglement and interference, give rise to the quantum 

logic used in quantum computations. Moreover, the usefulness of these quantum operators gives rise to the 

new viewpoint on control and self-organization algorithms.  

In the classical computation one bit information is coded as 0 or 1. We can say also that one bit of in-

formation can represent the state 0 or the state 1. In quantum computation quantum state information is used 

as a superposition of two states  0 10 1  and it is called as qubit (quantum bit).  

With superposition operator for a given algorithm we can introduce all initial states that include the 

searching solutions, and accelerate computation processes by massive quantum parallelism.  

The entanglement operator has no analog in classical computation. It allows physically set up statistical 

relations (quantum correlations) between solutions on the searching of space of the algorithm. In particular 

important case, it is the physical source of quantum oracle algorithms.  

The interference operator performs division of solutions obtained by the quantum algorithm by finding a 

successful solution with maximal probability amplitude.  

Quantum principles and quantum logic can be used with conventional computers if we find solutions to 

simulate and implement quantum algorithms on classical computers.  
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Remark. That does not mean that deterministic quantum computations are impossible, but that the na-

ture of quantum computing is based on probabilities. 

This article describes the fundamental principles of quantum computing from engineering point view. It 

introduces the quantum circuit model of computation, which provides a “language” to describe quantum 

algorithms and explains its basic building blocks: quantum bits, quantum operations (gates) and quantum 

measurements [1-18]. 

The mathematical framework describing the concepts and principles of quantum mechanics is of course 

also the theoretical basis of quantum computing. Therefore, it is necessary to deal with the basic postulates of 

quantum mechanics which connect the physical world with its mathematical model. These postulates directly 

relate to the modeling of the key elements of quantum computation: 

 compositions of such systems, 

 operations on quantum systems for the purpose of information processing, and 

 the readout (measurement) of information from quantum systems. 

Within this introduction the postulates of quantum mechanics are specified in the subsections dealing 

with the corresponding topics.  

Basic knowledge of linear algebra and the tensor product is assumed, but the necessary mathematics can 

also be found in [1]. The postulates of quantum mechanics can also be found, too (see Appendix 2). 

Within this article the postulates of quantum mechanics are specified in the subsections dealing with the 

corresponding topics.  

The main problem of mathematical background of quantum information processing based on Schrö-

dinger and Dirac equations in [2] are discussed. The interrelations between classical and quantum equations 

using Hamilton-Jacobi formalism are also described in [2] using method of characteristics of partial differen-

tial equations. 

Basic knowledge of linear algebra and the tensor product is assumed, but the necessary mathematics. 

The postulates of quantum mechanics can also be found, too. 

Short history of quantum computing 

The theory of quantum mechanics was established in the mid-1920s. Main contributions were made by 

M. Born, P. Dirac, W. Heisenberg, E. Schrödinger and others. With quantum mechanics it was possible to 

explain unknown phenomena raised from various experiments and to resolve inconsistencies in the theories 

of physics, now designated as classical physics (classical mechanics and classical electrodynamics). 

Information can be regarded as not abstract no matter whether it is in someone’s mind, written in a book 

or stored on a magnetic layer of a hard disc — in the words of Rolf Landauer: «Information is physical». It is 

physics, which sets the main limitations to process and to manipulate information. Since the early beginnings 

of analog and digital computers classical physics provided the laws for computing devices.  The idea of 

using the laws of quantum physics for information processing did not emerge until the early 1980s. Im-

portant influences on the development f the new computation concept are ascribed to Bell (1964), who 

demonstrated non-local correlations between different parts of a quantum system, as well as Landauer and 

Bennett, who both dealt with the connection between energy consumption and irreversibility of computation. 

Remark. A logical gate or function is reversible, if the input is uniquely determined by the output, i.e. an 

inverse function exists mapping the output to its unequivocal input. Otherwise it is irreversible. 

In 1961 Landauer showed that reassure of information, which is peculiar to irreversible operations, re-

quires the dissipation of energy (Landauer’s principle). Based on Landauer’s work Charles Bennett proved 

in 1973 that all computation can be performed in principle in a logically reversible manner and therefore 

does not require dissipation. This result leads in 1980 to Paul Benioff’s discovery that quantum systems 

could perform computation in a coherent manner and to his model of a Quantum Turing Machine (QTM). 

With this proposal the field of quantum computation was born. In 1982 Richard Feynman pointed to the 

difficulties of classical computers to efficiently simulate quantum physical systems and suggested using 

computers based on quantum mechanical principles to handle these difficulties. Benioff’s QTM was further 
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developed by Deutsch, who also invented the quantum circuit model of computation. It can be shown that 

both models are (nearly) equivalent. 

Furthermore, Deutsch formulated an oracle problem, today know as Deutsch’s problem, for which he 

demonstrated the first (randomized) quantum algorithm that performs better than any comparable classical 

algorithm. The Deutsch-Jozsa problem, a generalization of Deutsch’s problem, was the first one that was 

found to need only linear time on a quantum computer but exponential time on a deterministic Turing ma-

chine (although it needs only polynomial time on a probabilistic Turing machine). 

A major breakthrough in quantum computing happened in 1994.  

First, Simon proposed a quantum algorithm solving an oracle problem in polynomial time on a quantum 

computer but exponential time on a classical, even probabilistic computer. Simon’s work was based on a 

quantum algorithm introduced by Bernstein and Vazirani.  

Inspired by Simon’s results Shor published his polynomial time quantum algorithms for integer factori-

zation and discrete logarithm. These quantum algorithms were the first to solve problems of great practical 

relevance. Both problems are considered to be hard on classical computers.  

This difficulty is the basis of many modern public-key cryptography systems such as RSA.  

Another quantum algorithm attracted attention in 1996 when Grover presented a quadratic speed-up 

quantum search algorithm. In the period following, newly discovered quantum algorithms were mainly based 

on the work of Shor and Grover. It turned out that both computational approaches could be applied to classes 

of similar problems.  

Quantum search walk and quantum games algorithms are examples of speed-up algorithms. 

Unfortunately, no other conceptually new quantum algorithms were presented which had such a deep 

and pioneering impact like Shor’s.  

A summary of most quantum algorithms is given in [1, 2]. 

State space of quantum mechanical systems 

The model of a quantum computer used here is based on a closed or isolated quantum mechanical sys-

tem. This is an ideal system without perturbations and noisy interactions with its surrounding, which are 

referred to as decoherence. Systems in the real world are never absolutely closed. There is always a coupling 

with the environmental system resulting in a decay of information in the quantum computing device. How-

ever, decoherence can be corrected in principle by using error correcting codes which also protect against 

defective quantum operations. Both kinds of quantum errors, imperfect operations and quantum noise, are 

left out of account in [1-3]. 

The traditional mathematical formalism of quantum mechanics models a closed quantum mechanical 

system as follows:  

Postulate 1. Associated with any closed quantum mechanical system is a Hilbert space  which is a 

complete (complex) inner-product space. This vector space is also known as the state space of the system. Its 

unit norm vectors are called (pure) states. 

Remark. A vector is complete if every Cauchy sequence in the space converges, concerning a given 

norm, to an element in the space. In Hilbert spaces the norm is induced by the inner product. Complex inner 

product spaces are also called unitary vector spaces. 

In quantum computation the state space is limited to finite dimensions. Each state can be regarded as 

complete description of the physical system. 

Notation (Bra/Ket). The standard quantum mechanical notation for (column) vectors in a Hilbert space 

 is  . Here,   is just a label of the vector. The notation   is used for the vector dual to  . This is 

a row vector, which corresponds to the complex conjugated and transposed column vector  . A column 

vector   is sometimes referred to as a ket, its dual vector   is referred to as a bra. This notation, also 
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called bra-/ket-notation, was invented by Paul Dirac. The inner product of two vectors   and   is 

defined by      . 

An alternative formalism, especially necessary to deal with open and composite quantum systems, uses 

the density operator or density matrix notion respectively and the concept of mixed states. Both approaches 

are mathematically equivalent and lead to the same results. The postulated of quantum mechanics can be 

formulated using both formalisms. As pointed out by Gruska (in Theorem 2.3.46 [3]), «the model of quan-

tum circuits with mixed states is polynomially equivalent, in computational power, to the standard model of 

quantum circuits over pure states». 

Note, within this thesis that a quantum computer is regarded just as an abstract, mathematical object 

without reference to a specific implementation. Its physical realization is irrelevant; the same applies to 

possible sources of error.  

Quantum information 

The simplest possible two-level quantum system and therefore the basic information unit in quantum 

computing is the quantum bit, or qubit for short.  

A single qubit  

Like its classical counterpart a qubit has two basic states denoted 0  and 1  by analogy with the two 

values 0 and 1 of a classical bit. But unlike the classical bit a qubit can also be in a superposition of its two 

basic states. Only after the qubit is read out it is with a certain probability in one or the other basic states. 

According to the state vector formalism (Postulate 1), a qubit is a unit vector in a two-dimensional com-

plex vector space 
2  with inner product. The states or vectors respectively, 0  and 1 , also known as 

the computational basis states, form an orthonormal basis (ON-basis) of this space. Usually 0  and 1  are 

identified with the standard basis vectors in 
2

,  1,0  and  0,1 . A qubit in  can be any arbitrary state 

formed by linear combination of 0  and 1 : 

 0 10 1    , (0) 

with 0 1,    and 
2 2

0 1 1   . Here, with 0 1, 0    the qubit labeled   is in a superposition state. 

The normalization condition relates to equivalence classes of vectors that differ only by a nonzero com-

plex factor. They always describe the same physical state and it is therefore useful to choose unit vectors as 

representatives of the states. Moreover, the additional condition 
2 2

0 1 1    relates to the readout or 

measurement of qubits: Classical bits have to be read to determine their values or states 0 or 1 – the same 

applies to qubits. However, in quantum computing the outcome of a (single qubit) measurement, «0» or «1», 

is not deterministic but probabilistic. Measurement of qubit   gives either the result «0» with probability 

2

0  or the result «1» with probability 
2

1 . From the normalization condition of probability measures it 

follows 
2 2

0 1 1   . By measurement any superposition state collapse to the computational basis state 

k  according to the measurement result «k». But it also means that, although a qubit is very different from a 

classical bit, it is not possible to gain more information from a qubit than from a classical bit. Especially, the 

values of the amplitudes 0 1,   are not accessible by measurement. Measurements are discussed in detail 

below. 

Remark. Superdense coding allows communicating two classical bits by transmitting a single qubit of a 

pair of entangled qubits. At first sight, this might contradict the above statement. However, one needs two 

qubits perform superdense coding and both qubits must be measured (in the Bell basis).  
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A geometrical representation of the state of a single qubit is provided by the Bloch sphere. It is often 

used to illustrate the effect of single qubit operations, which are elementary in quantum computing. Unfortu-

nately, there is no equivalent representation for multiple qubits. The Bloch sphere representation of a qubit 

reads as follows: cos 0 sin 1
2 2

e e  


 
  

 
. It is obtained from Eq. (0) by rewriting the complex 

numbers 0 1,   in polar coordinates, 
0 re   and 

1 se   with , , ,r s    and , 0r s  , and a suita-

ble choice of the parameters     and 2arccos r  . It is a property of measurement that global phase 

factors like e  can be ignored. Then, a single qubit state   can be visualized as a point 

 cos sin ,sin sin ,cos      on the unit sphere in 
3
 as it is illustrated in Fig. 2.  

 

 

Figure 2. Bloch sphere 

The x-, y- and z-axis are defined by the states    1 2 0 1 ,1 2 0 1   and 0 . 

Multiple qubits  

A quantum register is a quantum mechanical system composed if several quantum bits. Considering a 

system of n qubits, its state space is the 2n-dimensional Hilbert space 
  2:
n n . Similar to the 1-qubit 

case, the computational basis states of 
 n

, labeled as 1 0...nk k k , with  0,1ik  , compare to the 2n 

possible states of a classical n-bit register. Here, 1 0...nk k  is the binary representation of k , where ik  is 

associated with the i-th qubit. In the case where the system I in a computational basis state each qubit has a 

definite value, either 0  or 1 . Note that within this thesis the qubits are counted starting with 0 from the 

rightmost position in the ket vector (the least significant qubit), as is usual in computer science.  

Any linear combination or superposition of the basis vectors is an allowed state of the system (superpo-

sition principle). Thus, the general (superposition) state of an n-0qubit register can be written as 
2 1

0

n

k

k

k 




 , ,0 2 1n

k k     . Because of the normalization condition of state vectors it is 

2 1 2

0
1

n

kk





 . The probability for the quantum register being in state k  (measurement result «k») 

is
2

k . By convention the 2n
 basis states are identified with the standard basis vectors: 

1 0 0

0 1 0

0 , 1 , ... , 2 10 0

0

0 0 1

n

     
     
     
        
     
     
     
     

. 
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Mathematically, the extension from one to many qubits or the union of two or more quantum registers 

to a larger register is made by means of the tensor product  : 

Postulate 2. The state space of a composite system is the tensor product of the state spaces of the com-

ponent systems. Let 
A  be the state of system A with state space A  and 

B  the state of system B with 

state space B . Then, the Hilbert space of the bipartite system AB  is AB A B   and the joint state of 

the total system is A B  .  

Moreover, if  
A

v  is an ON-basis for A  and  
B

  is an ON-basis for B , then  
A B

v   is 

an ON-basis for AB . In accordance with the tensor product of vector spaces, the dimension of AB  is the 

product of the dimension of A  and B . Therefore, the state space of a quantum register increases expo-

nentially with the number of qubits. Abbreviated notions for the tensor product    of two arbitrary 

states    and   are ,      .  

As an example, consider a system of two qubits A and B. The computational basis states 

 00 , 01 , 10 , 11  for system AB results for the basis states of A and B  0 , 1  by tensor multiplica-

tion:    
2

1 0 1 0 0 1, , 0,1x x x x x x    .  

In multiple qubit systems there are state which cannot be expressed as a tensor product of states of its 

single qubit components. This property is referred to as entanglement or nonseparability. Let AB  be a 

bipartite state. If there are nay two states AB  in A  and B  in B , such that AB A B    , the 

state is called separable (or unentangled); otherwise it is entangled (or unseparable). The following examples 

for entangled states of a two qubit system are known as the Bell or EPR states (due to Einstein, Podolsky and 

Rosen):  

 
1

: 00 11
2

    ,  
1

: 00 11
2

    , 

 
1

: 01 10
2

    ,  
1

: 01 10
2

    . 

When performing a measurement on a subsystem of a composite system with entangled state, another 

way of thinking about entanglement becomes noticeable. How entanglement is characterized by measure-

ment is described in detail below.  

Quantum gates 

Roughly speaking, quantum computation means just transforming a state of a given quantum system in-

to another state, usually followed by a measurement. Physicists call this state transformation a (time) evolu-

tion of the quantum system, which can be mathematically represented by a unitary operator. 

Remark. The matrix representation U  of a linear operator is unitary (and therefore the operator itself), if 

†U U I , where  † TU U


  is the complex conjugate transpose of the U  matrix and I  is the identity 

operator.  

Postulate 3. The evolution of a closed physical system in a time interval  0 1 0 1, ,t t t t  is described by a 

unitary operator  0 1,U t t  which depends only on 0t  and 1t . Let t  denote the state of the system at 

time t , then it is  
1 00 1,t tU t t  . 
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A unitary transformation on n  qubit, and thus a vector in 
 n

, is a unitary 2 2n n  matrix. The set of 

all unitary matrices of same size is a group in the algebraic sense with the matrix, multiplication as group 

operation. In particular, it follows: 

Theorem 1. If U  and V are two unitary matrices (of suitable dimension), then UV  unitary as well.  

Note that there are infinitely many unitary matrices of a fixed size. 

Geometrically, unitary transformations preserve inner products between vectors and with it he length of 

vectors and the angles between vectors. They are imaginable as rotations of the vector space. Moreover, 

unitary operators are bijective and therefore reversible.  

Following the nomenclature of electrical circuits which consist of wires and logic gates, unitary trans-

formations are called quantum gates. May classical gates the most important quantum gates have a certain 

graphical representation.  

A general quantum gate U  operating on n  qubits is illustrated in Fig. 3 (a). The short wires correspond 

to the incoming (left) and outgoing qubits (right). Usually, the bottom-most wire corresponds to the least 

significant qubit (qubit 0). Suppose U  is a product of unitary transformations 1U  and 2U , then an equiva-

lents schematic symbol notation, or quantum circuit respectively, is depicted in Fig. 3 (b). Note the different 

order of 1U  and 2U  in the product notation and on the graphical representation.  

 

 

Figure 3. (a) A general n-qubit gate, denoted U. The qubits are counted from bottom (0) to top (n – 1); (b) 

Quantum circuit implementing 2 1U U U  by means of 1U  and 2U . (Time and control flow in the quantum 

circuit model goes from left to right) 

Single qubit gates  

A single qubit gate is identified by a unitary 2 2  matrix. Some important quantum gates are defined 

by the so-called Pauli matrices, denoted ,X Y  and Z : 

0 1

1 0
X

 
  
 

, 
0

0
Y

 
  
 

, 
1 0

1
Z

 
  

 
. 

Their graphical representation, including the action on an arbitrary single qubit state, is shown in Fig. 4. 

The X-gate is equivalent to quantum NOT. Alternative symbols are a box labeled with NOT and the   

symbol.  

0 1   X  0 1   

0 1   Y  0 1    

0 1   Z  0 1   

Figure 4. The Pauli matrices 

By exponentiation of the Pauli matrices further unitary matrices emerge: calculating the matrix expo-

nentials 
Ue 

, for  , ,U X Y Z  and 0 2    results in rotations about the x-, y- and z-axis of the 
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Bloch sphere. From the resulting matrices the following rotation operators Rx, Ry and Rz can be easily derived 

(using    cos cos    and    sin sin    ): 

 
cos sin

sin cos
xR

 


 

 
  
 

,  
cos sin

sin cos
yR

 


 

 
  

 
,  

0

0
z

e
R

e






 
  
 

. 

According to this definition a gate    , , ,uR u x y z  , is a rotation by 2  about the u-axis. In litera-

ture, Rx, Ry and Rz are usually defined in a way that they perform rotations by   (by inserting a factor of ½ ).  

The corresponding schematic gate symbols are shown in Fig. 5. 

 

 xR    yR    zR   

Figure 5. Symbol of the single-qubit gates Rx, Ry and Rz. 

An arbitrary unitary operator on a single qubit can be written in different ways as a product of rotation 

matrices together with an overall phase shift factor. One way is provided by the following theorem:  

Theorem 2 (X-Y decomposition of rotations). Let U be a unitary single qubit operator. Then 

      exist such that      x y xU e R R R    . 

In particular, each Rz operator can be written as a product of Rx and Ry rotations Moreover, there is also 

an analogous Z-Y decomposition, where in Theorem 2 Rx is substitutes by Rz. Occasionally, such a general 

one-qubit unitary operator is denoted  2 , , ,U     .  

Rz gates can also be designated as phase gates. This becomes clear when writing them in the 

form   2

1 0

0
zR e

e




   

  
 

. Applied to a single qubit state the diagonal coefficient 
2e 

 becomes a rela-

tive phase factor regarding the 1  amplitude of the state. Because of a peculiarity of quantum measurements 

the global phase factor is unimportant and can be ignored. The factor 2 in the exponent can be eliminated by 

defining  
1 0

0
PH

e 


 
  
 

. Up to a global phase factor this class f gates is equivalent to Rz. Besides this 

definition, the following gate is sometimes referred to as the phase gate:  

 
1 0

2
0

S PH 
 

   
 

. 

The square root of gate S is gate T, the so-called 8  gate:  

 
1 0

4
0

T PH



 

   
 

. 

Remark. The equivalent Rz-gate has diagonal coefficients e


. 

Example: Rotation matrices for  2SU . The fundamental  2SU  rotations generated by the Pauli ma-

trices ,x y   and 
z  are defined as follows: 

 

  2

cos sin
2 2

sin cos
2 2

xi

x

i

R e

i

 

 


 

 
 

   
 
 
 

 

  2

cos sin
2 2

sin cos
2 2

y
i

yR e

 

 


 

 
 

   
  
 

 

 
2

2

2

0

0

z

i

i

z
i

e
R e

e



 






 
 

 
 
 
 
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For a general rotation, defined by the unit vector a  and the angle  , we get 

   2 cos sin
2 2

a
i

aR e I i a
 

 
 



    . 

The effect of conjugating 
aR  by 

x  is the reversal of the sign of the rotation angle   iff a  is perpen-

dicular to the x -axis:      † 0x a x a a xR R R a u          . 

Rotations about any single axis are additive:      1 2 1 2a a aR R R     . 

A general  2SU  rotation G  can be parametrized using the Euler angles  , ,   :  

     x y zG R R R   . 

Another important single qubit gate is the Hadamard gate (H):  

1 11

1 12
H

 
  

 
. 

It maps 0  to  1 2 0 1  and 1  to  1 2 0 1 . Furthermore, it is 
2H I . 

In order to be applicable to an n-qubit quantum register with a 2n
-dimensional state vector, quantum 

gates operating on less than n qubits have to be adapted to higher dimensions. For example, let 
a b

U
c d

 
  
 

 

be an arbitrary single qubit gate applied to qubit  0q q n   of an n-qubit register. Then the entire n-qubit 

transformation, here denoted with ( ), can be written as a tensor product in the form:  

 1

... ...
qn q

U I I U I I
 

       . 

What was intuitively clear is now confirmed: an empty wire in the graphical representation of quantum 

gates can be identified with the identity matrix. The matrix U  consists of 
 1

2
n q 

 major «blocks» on the 

diagonal, where each block contains 2q
 matrices U  which are diagonally arranged and shifted by one 

position.  

The structure of U  with 4n   and 1q   is illustrated in Fig. 6.  

 

Figure 6. U  consists with n=4 and q=1, of four major blocks on the diagonal, where each block contains 

the matrix U  twice. (Within one block the structure of the 2 2 matrices is «broken open» and the matrices 

overlap each other) 

Calculating the new quantum state requires 
12n
 matrix-vector-multiplications (each block, each subma-

trix) of the 2 2  matrix U. It is easy to see that the costs of simulating quantum circuits on convectional 
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computers grow exponentially with the number of qubits. In the same way as U  is a composition of I gates 

and U, other transformations can be built by tensor multiplication from single qubit gates which operate in 

parallel on different qubits.  

More generally:  

Theorem 3. Let U be a unitary operator on 
 m

 and V a unitary operator on 
 n

. Then U V  is a 

unitary operator on 
 mn

.  

For example, applying the Hadamard gate on each qubit of an n qubit quantum register realizes the uni-

tary transformation ... n

n times

H I H    . But there are also multiple qubit gates which cannot be decomposed 

into a tensor product of single qubit transformations, i.e., they are unseparable. This, of course, relates to 

entanglement of quantum states, as entangles states can only be generated by using unseparable gates.  

Controlled operations  

The controlled-NOT gate, also referred to as CNOT, operates on two qubits, a control qubit and a target 

qubit. The action of the CNOT is as follows: it flips the target qubit if the control qubit is set to 1  and 

leaves it unchanged otherwise. Suppose two qubits ct  are given where the first qubit it is target qubit and 

the second is the control qubit. Then, the effect of CNOT on the computational basis states is given 

by c t c t c  , with  , 0,1c t . Its matrix representational and gate symbol is shown in Fig. 7.  

 

 

Figure 7. The CNOT gate operates on two qubits: the solid circle indicates the control qubit and the symbol 

  indicates the target qubit. (The bit tuples labeling the matrix rows and columns indicate the order of 

basis states) 

It is easy to prove that the CNOT cannot be decomposed into a tensor product of two single qubit trans-

formations. In a similar way the  C NOT
 gate is defined on 1k   qubits. It flips the target-qubit if the 

k control-qubits are 1. For 2k   this gate is called a Toffoli gate or CCNOT.  

It acts on the computational basis states as follows: , , , ,a b c a b c ab   for  , , 0,1a b c , where 

a and b denotes the two control qubits and c the target qubit. Essentially, by preparing qubit c to 1 the out-

going target qubit becomes  ab . Another useful 2-qubit operation is SWAP which interchanges the 

states of the two input qubits: , ,a b b a . It can be implemented as a sequence of tree CNOTs. Its sche-

matic symbol and decomposition in CNOT gates is shown in Fig. 8. 

 

 

Figure 8. The SWAP gate and the equivalent circuit using CNOT gates. (The matrix SWAP is obtained by 

multiplication of the corresponding CNOT matrices) 
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More generally, let U be an m-qubit unitary operator. Then, a controlled operation  kC U  on k m  

qubits acts on the m target qubits like the U-gate, oriented all k control qubits are 1. Otherwise it has no 

effect. For example, controlled phase gates with control qubit 1 and target qubit 0 are given by  

 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0

CPH

e 



 
 
 
 
 
 

. 

Similar to single-qubit gates, controlled quantum gates have to be adapted to higher dimensions, if re-

quired by the Hilbert-space. Regarding a controlled operation  kC U  with single-qubit gate U, the number 

of matrix-vector-multiplications of U for calculating the new quantum state is reduced to
12n k 

. In that case, 

all diagonal coefficients, assigned to basis states which do not meet the control conditions, are set to 1, as 

exemplified by Fig. 9.  

 

 

Figure 9. Controlled-U transformation with control qubits {0, 3} and target qubit 1 on a 4-qubit quantum 

computer. To calculate the new quantum state, only two multiplications of U with the corresponding sub 

vector of the current state vector are required 

Sets of universal quantum gates 

A gate or a set of gates is defined to be universal for classical computing, if any arbitrary gate or func-

tion can be computed requiring only those gates. Since the NAND gate is universal in classical computing 

and has a quantum equivalent provided by the Toffoli or CCNOT gate, the set of all quantum circuits com-

prises all classical circuits. However, this is only a small subset. In contrast to the discrete space of all classi-

cal operations the set of quantum operations is continuous. Therefore, the concept of universality for a dis-

crete set a quantum gates rests on «good approximations» of arbitrary unitary operations.  

In this context it is quite helpful that the sufficiently strong causality principle — similar causes have 

similar effects — applies also to quantum circuits, that is, small changes or errors in a single unitary opera-

tion or a gate sequence cause only small changes in the outcome of the circuit. Specifically, considering a 

computation where several quantum gates with a common bounded error are applied to an initial state  , 

the accumulated error in the resulting state grows linearly with the length of the circuit. This motivates the 

following definition:  

Let U and V be unitary operators acting on a Hilbert space 
n

. V is called an approximation of U with 

error , if  max U V


  , with , 1n   . A set of quantum gates is called universal, if 

any unitary transformation can be approximated to arbitrary accuracy by a quantum circuit consisting of the 

gates from that set. 
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The following two theorems comprise the most important results about the universality of quantum 

gates and the approximation of quantum circuits. 

Theorem 4 (Universality of single qubit and CNOT gates). An arbitrary unitary operation U on n qubits 

 : n nU   can be realized exactly by a quantum circuit requiring  2 22 nO n  gates from the set of 

CNOT and single qubit gates. 

Theorem 5 (Universality with a discrete set). The discrete gate set  , ,H CNOT T  forms a universal 

basis for quantum computation. Moreover, let U be an arbitrary unitary operation which can be realized 

exactly by a quantum circuit containing m gates from the set of CNOT and single qubit gates. Then, this 

circuit can be approximated to an accuracy  using   logcO m m  gates from the discrete gate set, where 

c is a constant approximately equal to 2. By adding gate S, the approximations can be done fault-tolerantly. 

Unfortunately, most unitary transformations cannot be efficiently implemented from a small set of ele-

mentary gates, i.e. given a unitary transformation U on n qubit; there is no circuit of size polynomial in n 

approximating U.  

Decomposition of unitary transformations 

Theorem 4 is proven by explicitly constructing a decomposition of an arbitrary unitary matrix into sin-

gle qubit and CNOT gates. On the following, this construction is outlined briefly. In this context, an im-

provement of this construction is mentioned which was introduced by Ago et all. Here, only the idea behind 

their approach is described.  

The construction of a decomposition can be done in two steps: first, expressing the general unitary ma-

trix of dimension d as a product of at most  1 2d d   two-level unitary operators, that is, matrices which 

act only non-trivially on two or fewer vector components, as shown in Fig. 10, and second, implementing an 

arbitrary two-level matrix by single qubit and CNOT gates.  

 

 

Figure 10. A two-level unitary matrix ,s tU  with a 2 2  (unitary) component matrix U  consisting of 

, , ,a b c d  (The coefficients a  and b  are in row s , the coefficients c  and d  are in row t ) 

The first step is also called the two-level decomposition. G. Cybenko describes this decomposition in 

terms of traditional algebraic operations as a classical triangulation or QR-factorization. Since classical QR-

factorization is typically based on real valued givens rotations, which are matrices like the one in Fig. 9, 

except that the component matrix is a real-valued rotation matrix 
cos sin

sin cos
U

 

 

 
  

 
, he calls the two-

level unitary matrices quantum givens operations. Alternatively it can be explained by means of Gray code 

sequences.  
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Now, let be s and t the n-bit binary representations of the two basic states, a two-level matrix 
,s tU  with 

component matrix U  acts on. Let bit k be a bit, for which s and t differ. Then, the quantum circuit for the 

two-level operator is performed by the following three steps: First, apply CNOT, with bit k as the control bit, 

on every bit for which s and t differ (expect bit k) and apply NOT on every bit of s which is 0 (expect bit k). 

Second, apply U  on qubit k with all other qubits being control qubits   1nC U
. Finally, apply all the NOT 

and CNOT gates of the first step again, but in reverse order, undoing all permutations. The entire implemen-

tation requires  O n  gates. Of course, the  1nC U
 gate can be reduced to a sequence of CNOT and single-

qubit operations as well, requiring another  O n  gates.  

Thus, the entire implementation of an arbitrary unitary matrix uses  2 22 nO n  singles qubit and CNOT 

gates. Aho and Svore present a decomposition algorithm with an improved two-level decomposition phase 

using a technique, which they call Palindrome Transformation. 

Remark. They call the process that generates for an arbitrary unitary matrix an exact decomposition a 

quantum circuit compilation. 

The idea behind this technique is, to find an optimal ordering of two-level operations in the first phase, 

such that the ordering of the palindromic subcircuits of self-inverting gates, resulting from the second phase, 

leads to a maximal amount of cancellations of the self-inverting gates: A palindromic subcircuit A is a gate 

sequence of the form 1 2 2 1... ...k kA A A VA A A . Two successive palindromic subsequences A and B can have a 

subsequence of self-inverting gates in common, like 
1 2 1 1 2 1... ... ... ...j j j jA A A A A A A B 

, with 
1 1... j jB A B A   

which can be reduces to 1 1... ...j jA B  . 

It is shown that the Palindromic Optimization Algorithm (POA) achieves a large benefit, resulting in 

significantly smaller decompositions than those obtained by the conventional method. However, even for 

small numbers of qubits, the resulting quantum circuits are still large. It is unknown, whether there exist 

more efficient decomposition algorithms. Therefore, other approached might be necessary to find even 

shorter decompositions. Such a different approach to find optimal quantum circuits is provided by evolution-

ary algorithms. 

Oracle gates  

In computer science an oracle is a black-box function, that is, a function whose internal working is 

unknown. An input for the oracle is directly processed into an output. It is said that the oracle responds on 

the query immediately. This implies that the costs of operating a black-box are irrelevant for complexity 

analysis. An oracle gate in quantum computing is usually a «variable» gate. It enables the encoding of 

problem instances and represents in this way the input of a quantum algorithm. Oracle gates may change 

from instance to instance of a given problem, while the «surrounding» quantum circuit remains unchanged. 

Consequently, a proper quantum circuit solving a given problem has to achieve the correct outputs (after 

measurement) for all oracles representing problem instances.  

In certain quantum algorithms, like Grover’s or Deutsch’s, oracle gates are permutation matrices 

computing Boolean functions 
   : 0,1 0,1

n
f 

. The transformation can be defined by the map 

 : , ,fU x y x y f x 
, where 

x
 is an n-qubit state, 

y
 is a single qubit state and   indicates the 

addition modulo 2. For 
0y 

 the final state of the single qubit becomes
 f x

.  

The oracle matrix for f inverts the output qubit, iff f yields «1» on the input qubits. In this case, the 

matrix swaps the amplitudes between the states differing only with respect to the output bit. As an example, 

Fig. 11 shows a reversible matrix implementing OR on two input bits.  
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1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 11. Example for an oracle matrix, implementing the OR function of two inputs. The right-most qubit 

is flipped, if at least one of the two other qubits is «1» 

The symbol representation of an oracle gate is usually just an appropriately labeled box, covering all the 

qubits the oracle is operating on. In cases where the oracle gate corresponds to a Boolean function the target 

qubit with the function value may be marked by the   symbol.  

Behind every oracle gate is a particular quantum circuit calculating the output. Such a quantum circuit 

usually gets additional inputs and needs also additional ancillary qubits which are left out in the symbol 

representation of the oracle. This can be done, because the additional qubits are not needed for the remainder 

of the computation and using a technique called uncomputing, one can get rid of the «garbage» assigned to 

the ancillary qubits and put them back to the initial base state. For instance, a quantum circuit for 
fU  might 

have additional input qubits encoding a Boolean function f which is then calculated at the output. Since any 

classical circuit can be simulated efficiently (in linear time) by a quantum circuit, usually one does not need 

to deal with the exact implementation.  

Projective measurements 

Quantum information processing is useless without readout or measurement respectively. It is the final 

step in quantum algorithms, since there is no other way to gain information about the quantum system than 

by measurement. This section deals only with the projective or von Neumann measurement in the computa-

tional basis, which is a special case of a more general quantum measurement described by measurement 

operators. However, all other kinds of measurements proved to be equivalent to unitary transformations, 

using auxiliary qubits, so-called ancillae, if necessary, followed by projective measurements.  

Before explaining the effects of projective measurements on quantum systems the concept of observa-

bles is introduced. An observable M is a property of a physical system that can be measured. Mathematically 

M is a Hermitian (self-adjoint) operator in a Hilbert space with a spectral decomposition 
ii

M i i , 

where i  are the eigenvalues of M. The corresponding eigenstates i  of M form an ON-basis in the vector 

space. Here, :iP i i  is the projector into the eigenstate i .  

Postulate 4. A projective measurement on a quantum system is described by an observable M. The pos-

sible outcome of a measurement of M is an eigenvalue i  of M. After the measurement, the quantum state is 

an eigenstate of M corresponding to the measured eigenvalue. If the quantum state of the system just before 

the measurement is  , then the probability of getting result i  is given by  
2

rP i ii p P    . 

If the outcome is i , the normalized post-measurement state becomes 
 Pr

iP

i


. A projective measurement 

in the computational basis  k  implies the use of projectors kP k k  to perform the projective meas-



Электронный журнал «Системный анализ в науке и образовании»                        Выпуск №3, 2017 год 
 

17 

 

urement. For measurements in the standard basis the numerical outcomes i  are identified with «i». In this 

case, a superposition state prior to the measurement collapses with the measurement to i .  

Furthermore, it is not important to known the eigenvalues i  (and thus M), since probabilities  Pr i  

and post-measurement states do not depend on their numerical values. In the following, the term «measure-

ment» always refers to projective measurements in the computational basis.  

A partial measurement of a single qubit q in an n-qubit register with outcome «i» is a projection into the 

subspace, spanned by all computational basis vectors with q i . The probability  Prq i  of measuring a 

single qubit with result «i» is the sum of the probabilities for all basis states with q i  and the post-

measurement state is just the superposition of these basis states, re-normalized by the factor  1 Prq i . For 

example, measuring the first (right-most) qubit of 
0 1 2 300 01 10 11        , with 

0 1 2 3, , , ,      and 
2 2 2 2

0 1 2 3 1       , gives «1» with probability 
2 2

1 3  , leaving the 

post-measurement state  
2 2

1 3 1 31 01 11        . The projectors are just iP I i i  .  

It can be proved that multiple qubit measurements can be treated as a serried of single qubit measure-

ments. Note that quantum measurements are irreversible operators, though it is usual to call these operators 

measurement gates. In this thesis a single qubit measurement is assigned the schematic symbol illustrated in 

Fig. 12. 

 

M 

 

Figure 12. Circuit symbol for a single qubit measurement 

The quantum effect of entangled states was already discussed. Measurements provide another equiva-

lent way to define entanglement. A multiple qubit quantum state is not entangles if the measurement of one 

single qubit has no effect on any other single qubit measurement.  

Consider the entangled Bell state  1 2 00 11   . Provided the second qubit has not been 

measured before, the probability of measuring the first qubit to be 0  is 1 2 , and vice versa. If a measure-

ment is performed either on the first or the second qubit, the measurement of the other qubit in each case 

gives the same result. That is, the measurement of one qubit has an effect on the measurement of the other – 

the measurement outcomes are correlated.  

An important principle about measurement in the context of quantum circuits is discussed in the follow-

ing section.  

Quantum circuits 

The quantum circuit model of computation is analogous to the classical circuit model. A classical circuit 

is made of gates computing Boolean functions and wires that connect gates. A quantum circuit has nearly the 

same structure, but with some restrictions. 

Remark. Formally, it can be described by a (acyclic) directed graph whose vertices represent the gates 

and whose directed arcs represent wires.  

Of course, gates in quantum circuits are quantum gates. Their graphical representation is already de-

scribed. Wires, symbolized by horizontal lines, connect quantum gates and indicate input and output of a 

quantum circuit. Each wire represents a certain qubit. However, wires generally do not correspond to physi-

cal wires, but refer instead to a «time line». The quantum circuit fixes the chronological order of unitary 

transformations (plus some measurements), which are applied successively to an initialized quantum state. If 

not stated otherwise the input state of an n-qubit quantum circuit is the computational basis state 
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0 0 0
n
  . By convention a quantum circuit has to be read from left to right. The simplest 

quantum circuit it is single quantum gate. However, to implement this gate, it usually has to be decomposed 

into a sequence of elementary gates.  

The following rules specify the restriction of quantum circuits compared with classical circuits and de-

fine allowed connections of quantum gates in the common quantum circuit model:  

 

1.  

 

Only acyclic circuits are valid quantum circuits, i.e. loops are not allowed. A 

quantum gate which into be applied repeatedly has to be wired as many times 

in the quantum circuit. 

2.  
Also, wire crossings are not allowed since arbitrary qubit permutations can be 

realized by SWAP operations.  

3.  

As a result of the reversibility of operations in quantum circuit it is not al-

lowed to perform the FANIN operation, which joins several wires to a single 

wire containing the bitwise OR of the inputs.  

4.  
Moreover, the number of input and output wires or qubits respectively is 

exactly the same. 

5.  

In contrast to classical circuits, it is not possible to split a wire into two or 

more identical wires, which means, the FANOUT operation is not allowed. 

This corresponds to the following theorem.  

 

Theorem 6 (No-cloning theorem). It is not possible to make a copy of an unknown quantum state. 

Even thought (universal) cloning is not possible, classical information can be copied with perfect fideli-

ty, as any particular pair of orthogonal states can be cloned perfectly.  

In the following, the main aspects of quantum circuits are summarized, beginning with a working defi-

nition of a quantum circuit and continued with explanations on inputs and outputs of quantum circuits.  

A quantum circuit is a quantum computational model operating on a finite number of qubits. A quantum 

circuit on n qubits is a unitary operation on 
 n

 which can be represented by a finite concatenation of 

quantum gates. In particle, the unitary operation is to be composed of elements from a (small) finite set of 

quantum gates which form a universal basis for quantum computation. Since discrete, universal gate sets 

realize any unitary operation with arbitrary accuracy (Theorems 4 and 5), this restriction (also important in 

the context of circuit evolution) does not limit the set of computable functions. A quantum circuit can get its 

input in two ways: (i) by the initial quantum state (the state of the qubits); or (ii) by input gates (or oracle 

gates), that is, unitary operations which depend on the input. The first approach is more intuitive and corre-

sponds to the way classical circuits obtain their input. However, encoding inputs may lead to quantum sys-

tems with several qubits. Since costs for circuit evaluations on convectional computers increase exponential-

ly with the number of qubits. Large numbers must be avoided. This is possible using the second approach. 

Oracle or input gates usually substitute much larger quantum circuits and hide qubits necessary to en-

code further problem inputs and ancillary qubits. Yet, the use of oracle gates leads to a different complexity 

measure, if it is assumed, that the oracle performs its operation in a single time step. Using input gates does 

not contradict to the definition of quantum circuits given above. The input gate in merely integrated in the 

unitary operation and can be seen as an element of the elementary gate set.  

Applying the quantum circuit means multiplying the unitary operation with the initial quantum state. 

The resulting vector provides the probabilities for all measurement outcomes. A measurement is necessary to 

obtain any information. From this the output of the quantum circuit can be inferred. How this is done is 

essentially convection. For instance, for a decision problem one can define a particular qubit to carry the 

answer. In a different way the output of the Deutsch-Jozsa algorithm (described at the end of this item) is 

obtained. Here, the measurement result of the entire quantum system is decisive for the outcome: One basis 

state encodes the answer «f is constant», all others the answer «f is balanced». Moreover, for optimization 

problems every quantum state may encode a certain solution. So, there are usually many ways to define the 

output modalities and the decision in favor of either way will affect the quantum circuit solving a given 

problem. 
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Note, it is still an open issue whether there exists other models of commutation which are more power-

ful than the quantum circuit model.  

Intermediate measurements 

The final element in quantum circuits is the measurement. In circuits without explicit measurements at 

the end they are implicitly assumed. However, measurements can also be performed as an intermediate step 

in the circuit. Moreover, they allow conditional branchings in quantum circuits. The advantage of intermedi-

ate measurements is that they tend to make quantum circuits more «readable» and interpretable, when they 

are used in a clever and effective way.  

In case of a single-qubit intermediate measurement, depend on the measurement result «0» or «1» one 

of two quantum subcircuits is applied and describes now the continued evolution of the quantum system. 

Multiple-qubit intermediate measurements are composed of single-qubit intermediate measurements. There-

fore, it is sufficient to focus on the latter. The possibility to use intermediate measurements extends the 

quantum circuit model described above and requires a new definition: A quantum circuit on n qubits with 

intermediate measurements is a binary tree with quantum (sub)circuit on n qubits as nodes. In addition, all 

inner nodes of the tree are labeled with a single-qubit measurement (the qubit it acts on). By definition the 

left subtree corresponds to measurement outcome «1», the right to measurement outcome «0».  

Applying such a circuit means evaluating a path from the root to a leaf: The quantum circuit in the root 

is applied to initial quantum states. Each application of a quantum circuit belonging to an inner node is 

followed by a single qubit measurement which determines the next subtree and the new quantum state the 

subcircuit is applied to.  

According to the quantum principle of deferred measurement, «measurements can always be moved 

from an intermediate stage of a quantum circuit to the end of the circuit». Of course, such a shift has to be 

compensated by some other changes in the quantum circuit. The transfer of a quantum circuit with interme-

diate measurements to a quantum circuit without them might lead to a much larger quantum circuit (in the 

number of elementary quantum gates).  

Note that this circuit model with intermediate measurements seems to be different to the circuit model 

(with intermediate measurements) roughly described by Nielsen and Chuang. Moreover, the quantum circuit 

models with and without intermediated measurements are computationally equivalent, but it is not quite clear 

how the circuit size of a quantum circuit with intermediate measurements is related to the circuit size of its 

equivalent circuit without intermediate measurements.  

Mutually unbiased computational bases.  

Measurements in a special class of bases, i.e., mutually unbiased bases, not only form a minimal set but 

also provided the optimal way of determining a quantum state. Mutually unbiased measurements (MUB) 

corresponds to measurements that are as different as they can be so that each measurement gives as much 

new information as one can obtain from the system under consideration. In other words MUB operators are 

maximally noncommuting among themselves. If the result of one MUB can be predicted with certainty then 

all possible outcomes of every other measurement, unbiased to the previous one are equally likely. The MUB 

observables can provided an explicit consideration as tensor product of the Pauli matrices for dimen-

sion 2md  .  

Remark. When d = 2 the mutually unbiased operators are the three Pauli matrices, but unfortunately this 

observation cannot be generalized in a straightforward way to higher dimension. In addition to the obvious 

importance of MUB in the context of quantum state determination and foundations of quantum mechanics 

and before continuing it is useful to provide a formal definition of MUB. 
 

Definition: Let  1 1 , , dB    and  2 1 , , dB    be two orthonormal bases in the d-

dimensional state space. They said to be mutually unbiased bases (MUB) if and only if (iff) 

1
i j

d
   , for every , 1, ,i j d . A set  1, , m of orthonormal bases in 

d
 is called a set 

of MUB if each pair of bases 
i
 and j  are mutually unbiased. 
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Remark. The simplest example of a complete set of MUB is obtained in the case of spin-
1

2
 particle, 

where each unbiased basis consists of the normalized eigenvectors of the three Pauli matrices respectively. 

However, the analysis of a set of MUB corresponding to a two level quantum system does not capture one of 

the basic features of MUB, i.e., its importance in determining the quantum state. In the case of two level 

systems, the density operator has three independent parameters and almost any choice of the three measure-

ments is sufficient to have the complete knowledge of the system. This is not true in general for any other 

dimension greater than two, where the existence of MUB becomes more crucial in the context of minimal 

number of required measurements for quantum state determination.  

Remark. Ivanovic (1981, 1997) form the first time showed that for any prime dimension d, there is a set 

of d + 1 MUB. There is a nice symmetrical structure behind these bases, and their existence as a consequence 

of properties of Pauli operators on d-state quantum systems. 

Example. Let  d  be the set of d d  complex matrices. In a natural way, the set  d  is a 

2d  dimensional linear space. Each matrix A in  d  can be also naturally considered as a 
2d  dimen-

sional complex vector A , where the entries of the matrix A being regarded as the components of the vec-

tor A . In this way, for matrices  , dA B we can define the inner product ,A B  of matrices as the 

inner product ,A B   of vectors. In this case we have the following result:  †,A B Tr A B .  

We say the matrices  , dA B  are orthogonal iff  , 0.A B   

Example: The existence of 1p   MUB in the space
p
, for any prime p. As mentioned above, this re-

sult first shown by Ivanovic (1981, 1997), by explicitly defining the MUB, that these bases are in fact bases 

each consists of eigenvectors of the unitary operators 
1, , , , dZ X XZ XZ 
, where X and Z are generaliza-

tions of Pauli operators to the quantum systems with more than two states. There is a useful connection 

between MUB and special types of bases for the space of the square matrices. These bases consists of or-

thogonal unitary matrices which can be grouped in maximal classes of commuting matrices. As a result of 

this connection every MUB over 
d

 consists of at most d + 1 bases.  

Assume that V is a unitary operator such as k k kV    . Then 1k  and for every 1, ,k d , 

we have  
 

1 1

1 2

2

k k k

k

k

V    

  

 







 

 

A similar argument shows  

1 2k k k d        . 

Therefore, 
2 1

,1 .k j j d
d

      

In this case according to the Definition of MUB the next theorem is follows: 
 

Theorem: Let  1 1 , , dB    be an orthonormal basis in
d

. Suppose that there is a unitary operator V 

such that 
1j j jV     , where 1j   and 1 1d   ; i.e., V applies a cycle shift modulo a phase on 

the elements of the basis 
1B . Assume that the orthonormal basis  2 1 , , dB   consists of eigenvectors 
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of V. Then 
1B  and 

2B are MUB 

 

We suppose that d is a prime number, and all algebraic operations are modulo d. We consider 

 0 , 1 , , 1d  as the standard basis of
d

. We define the unitary operators 
dX  and 

dZ  over 
d

, as a 

natural generalization of Pauli operators 
x  and 

z  as following:      

 

  
1d

j

d

X j j

X j j

 


 .  (1) 

where   is a 
thd  root of unity; more specifically exp 2

i

d
 

 
  

 
. We are interested in unitary operators 

of the form  
k

d dX Z . In this case:     1
jk k

d dX Z j j  . The eigenvectors of  
k

d dX Z  

are      
1

, 0, , 1, 1
jd j s

k t k

t jj t d s j d
d

  


       .  

The action of  d dX Z  on 
k

t  is as follows:   k t k k

d d t t kX Z    

  .  

The standard basis  0 , 1 , , 1d  is the set of the eigenvectors of
dZ . It follows that the 

2 1
.k

tj
d

   Therefore, we have proved the following construction. 

 
Theorem: For any prime d, the set of the bases each consisting of the eigenvectors of  

   
2 1

, , , , ,
d

d d d d d d d dZ X X Z X Z X Z


, form a set of d + 1 MUB 

 

Consider the particular cases of this theorem. 

Case 1: d = 2. By Theorem, the eigenvectors of the operators ,z x  and 
x z   form a set of MUB; i.e., 

the following set 
 

 
1 1 1 1

0 , 1 0 1 , 0 1 0 1 , 0 1
2 2 2 2

i i
   

                     
   

 

 

Case 2: d = 3. The set of the eigenvectors of the following unitary matrices form a setoff MUB  
 

2

2

3

2

1 0 0 0 0 1 0 0 0 0

0 1 0 1 0 0 1 0 0 1 0 0 ,

0 0 1 0 1 0 0 0 0 0

i

e


 



 

      
      

      
      
      

 

 

We denote the finite field  0,1, , 1p   by p . Let 

2
i

de


   be a primitive 
thp  root of unity. Then 

p p p pZ X X Z
. 

Therefore, if 
   1 1

1

k

p pU X Z
 and 

   2 2

2

k

p pU X Z
 then 
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1 2 2 1

2 1 1 2

k k
U U U U 


. 

 

Example: Construction of sets MUB in the space
d

when d is a prime power. When
md p , imagine 

the system consists of m subsystems each of dimension p. Then the total number of measurements on the 

whole system, viewed as performing measurement on every subsystem in their respective MUB is  1
m

p  . 

These  1
m

p   operators fall into 1mp  maximal noncommuting classes where members of each class 

commute among themselves. The bases formed by eigenvectors of each such mutually noncommuting class 

are mutually unbiased. It should be mentioned that the operators in each maximal commuting class have the 

same structure as the stabilizers of additive error correcting codes. 

Let  1, , mk k   and  1, , m  , then , m

p    and we denote the corresponding operator 

by    p pX Z  .  

 

Definition: The Pauli group  ,p m  is the group of all unitary operators  

   1 , ,0 , 1
j jk

m j p p j jU M M M X Z k p        

on 
p p    (tensor product of m copies of 

p
) of the form  

                                                    j

p pX Z   ,                                      (2) 

for some integer 0j   and vectors , m

p   , where 
2

exp i
p




 
  

 
 

 

Let us consider the subset  0 ,p m  of  ,p m  of the operators in the form of Eq. (2) with j = 0.  

Remark. Note that  0 ,p m  is not a subgroup, but generators of subgroups of the Pauli group can 

always be considered of  0 ,p m .  

If the operators U  and U  in  0 ,p m  are represented by the vectors  1 1, , , ,m mk k  and 

 1 1, , , ,m mk k     respectively, then U  and U  are commuting iff 
1 1

0 mod
m m

j j j j

j j

k k p
 

    . 

An explicit formula for the action of a  0 ,p m  operator    p pX Z  . The standard basis of the 

Hilbert space 
p p    consists of the vectors 1 mj j , where  1

m

m pj j  . Then  

       1 1

1 1 1
m mj j

p p m m mX Z j j j j
        

   . 

Equivalently,  

   

   

,

m
p

a m

p p p

a

p p

a

X Z a a a

X Z a a





   

   







  

   

where the operations are in the field p .  

Example. Let 
   p pU X Z 

and 
   p pU X Z   

 be operators in 
 0 ,p m

. Let 

U U  , i.e., 
   , ,    

.  We have  
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 †,

m m
p p

m
p

b a

a b

b a

a

U U Tr U U

Tr a a b b

a a

 

 

  

  

  

 

  



 

 
   

 
 

  

 



 

While  , then 0a a    , for every 
m

pa . Thus, in this case , 0U U   . If    

and  , then
 

, 0
m
p

a

a

U U
 


 



   . Thus operators U andU   are orthogonal.  

Theorem: Let  1, ,A A  be a set of symmetric m m  matrices over p  such 

that  det 0j kA A  , for every 0 j k   . Then there is a set of 1  MUB on 
mp

 

Remark. More specifically, the ( 1 )-bases of the above theorem are represented by the matrices 

     10 , , ,m m m mA A１ １ １ . 

Example: d = 4. The four matrices (over  0,1 ), which satisfy conditions of above theorem, are  

0 0 1 0 0 1 1 1

0 0 0 1 1 1 1 0

       
       
       

. 

Therefore the classes of maximal commuting operators are 
 

 

 

 

 

 

0

1

2

3

4

, ,

, ,

, ,

, ,

, ,

Z I I Z Z Z

X I I X X X

Y I I Y Y Y

X Z Z Y Y X

Y Z Z X X Y

   

   

   

   

   

 

where 

1 0 0 1 0 1 1 0

0 1 1 0 1 0 0 1
I X Y XZ Z

       
           

       
 

We represent this basis explicitly. To this end, we naturally represent each basis by a 4 4  matrix such 

that the 
thj row of this matrix is the components of the 

thj vector of the corresponding basis with respect to 

the standard basis 00 , 01 , 10 , 11 : the first matrix is
0 4B １ , and  

1 2

3 4

1 1 1 1 1 1

1 1 1 1 1 11 1

1 1 1 1 1 12 2

1 1 1 1 1 1

1 1 1 1

1 1 1 11 1

1 1 1 12 2

1 1 1 1

i i

i i
B B

i i

i i

i i i i

i i i i
B B

i i i i

i i i i

   
   

    
    
     
           

    
   

 
    
    
              
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Remark. In this case, the mutually unbiasedness condition is equivalent to the condition that 
†

4i iB B １ , 

for every 0 4i  , and each entry of 
†

i jB B , for 0 4i j   , has absolute value equal to 
1

2
.  

Example: The intermediate states in mutually unbiased bases. Let us consider the two mutually unbi-

ased bases A  and A  that contain N basis states instead of two. We define the intermediate states between 

these bases. The basis A is chosen as computational basis, 0 1, , Na a   and the second basis A , is the 

Fourier transform of the computational basis: 
1

0

1
exp 2

N

k n

n

n
a ik a

NN






 
   

 
 . 

These two bases are mutually unbiased, i.e.  

1
exp 2n k

n
a a ik

NN


 
   

 
. 

This means that the distance between pairs of state from two bases is 

 
1

cos
N

  . 

Remark. Having two states, it is possible to define a state which lies exactly in between the two, which 

means that it has same overlap with both states and it is the state closest to the two original states which has 

this property. The intermediate state is obtained by forming pairs of the states from two bases. They are 

shown in the Table 1 below. 

Table 1: Possible pairs of the states from the two bases 

0 2 1

0 00 01 0, 1

2 10 11 1, 1

1 1,0 1,1 1, 1

N

N

N

N N N N N

Pair a a a

a m m m

a m m m

a m m m







    

  

 

Explicitly the intermediate state between na  and ka  is defined in the following way 

1
exp 2nk n k

n
m ik a a

NC


  
   

  
, 

where
1

2 1C
N

 
  

 
 is the normalization constant and the phase comes from the overlap between  na  

and ka . The index of the m-states is such that the first index always refers to the A and the second to the 

A  basis. Since each basis contains N state it is possible to form 
2N intermediate states, simply by forming 

all pairs of states from the two bases.  

In general the intermediate state m between two arbitrary initial states   and   is defined as  

2

1 1

2
m      

   

 
      
 
 

. 

Remark. The intermediate states may be defined in completely generality for arbitrary initial states and 

any number of them. In this case the intermediate state is found by forming the mixture of all initial states 
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with equal weight, the eigenstate with the large eigenvalue of this mixture corresponds to the intermediate 

state. Naturally these definitions are equivalent and lead to the same intermediate state. 

 

Example: Probabilistic interpretation of the intermediate state. Considering the intermediate states 

leads to the following conditional probabilities 

   
1 1

1
2

nk n nk np m a p m a F
N

 
    

 
. 

Notice that this definition indeed recover the formula for cosine of half the angle:  

1 cos
cos

2 2

  
 

 
. 

This is why the states have been named intermediate states, since they indeed lie in between the two 

original states.  

Whereas the probability for making an error is 

   

1
1

1

2 1 1
nk q nk p

DN
p m a p m a

N N

 
 

   
  

 
 

. 

It is important to notice that the intermediate states in general not are orthogonal, indeed 

     
1 2 2 2

exp exp expkl nm kn kn

i i i
m m N mn lk N m l k m l n

N N NC N

  
 

      
            

      
 

This means that the generalized intermediate states do in general not form bases as in the two dimen-

sional case. But they can still be used as binary measurements. 

Example: Information contents of the intermediate states as binary measurements. It has been shown 

above that in general the intermediate states klm  are not orthogonal, and hence they do not form bases as in 

the two dimensional case. It is however possible to use the corresponding projectors, kl klm m  as binary 

measurements. Since the intermediate states are non-orthogonal, it means the corresponding binary meas-

urements are mutually incompatible. In other words, none of them can be measured together but they have to 

be measured one by one. A binary measurement has as the name indicates two possible outcomes, 0 and 1. 

Where the zero outcome is interpreted as “I guess the state was not klm ”, and the “1” outcome is interpret-

ed as “I guess the state was klm ”. However, the answers are statistical, in the sense that there is a certain 

probability for making the wrong identification.  

It should be mentioned that the 
2N  intermediate states constitutes a generalized measurement namely 

so called POVM. We have 
1

, 0

1
1

N

kl kl

n k

m m
N





 . 

However, we do not make use of this in what follows. The probability of making the correct identifica-

tion is given by value of F and is equal to 
1 1

2 2 N
 . Whereas the probability of wrong identification, i.e., 

of an error is given by  
1

nk q

D
p m a

N



 and is equal to

1 1 1

1 2 2N N

 
 

  
. This means that the Shannon 

information amount obtained by measurement is given by  

 2 2 2

1 1 1 1 1 1 1 1 1
log log log

2 2 2 1 22 2 2 2

N

interI N
NN N N N

        
              

        
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on the “1” outcomes of intermediate state measurements. 

Example: Information capacity of generalized (non-orthogonal) quantum measurements and optimal 

detection of quantum information. Let us to use the standard measure of information developed by Shannon, 

the standard definition of quantum relative entropy, and von Neumann definition of quantum entropy. Con-

sider the particular case when two quantum systems are identically prepared in different location. It is well 

known that composite quantum system, consisting of non-interacting parts, can possess non-local properties. 

In particular, a composite system can exhibit correlations, which cannot be reproduced by any theoretical 

model that involves only variables belonging to each subsystem separately. A typical example is a pair of 

spin
1

2
 particles produced by the decay of spin-less object. Their combined state,  1 2 1 2

1
0 1 1 0

2
 , 

cannot be reduced to a direct product by any transformation of the bases pertaining to each one of the parti-

cles (see in details Appendix 3).  

Remark. We consider in this example a different kind of composite system. Its parts never interacted in 

past. They may have been prepared in different laboratories. However, they were prepared according to the 

same set of instructions. Therefore, these subsystems are in the same quantum state – insofar as their internal 

variables are considered. For example, we may have two non-interacting spin
1

2
 particles, prepared with the 

same polarization.  

Let us consider the particular case in which there are three possible states for the two particles: Both 

spins may be directed along the z direction, or both may be in the x – z plane, titled at 
2

120
3

o
  or 120o  

from the z axis. (We have chosen this particular setup because for orthonormal projectors  1 2 3, ,P P P P on 

these three directions  1 2 3

2

3
P P P I    and the three possible states of each particle satis-

fy
1 2 2 3 3 1

1

8
        , and this is the most negative value obtainable for such a triple product). 

Suppose now that an outside observer wants to determine which one of these three known preparations was 

actually implemented. The answer cannot be unambiguous, because the three states are not orthogonal. The 

observer may nevertheless assign probabilities to the various preparations. The problem thus is to design a 

measurement procedure, which minimizes the unavoidable uncertainty of the result. We will to determine 

whether more information could be means of an apparatus interacting with both particles together, then by 

separate measurements performed on each one of them individually. An example of a measurement of the 

former type – which we will call a combined measurement – is the one represented by the “entangled” opera-

tor. The results are intriguing: New measurement technique, acting on each particle separately, yields more 

information than any separate – particle method.  

Remark. In a von Neumann measurement model, the various outcomes are associated with orthogonal 

projection operators 
iP  satisfying 1iP   (where 1 is the unit operator), and the probability on the i-th 

outcome is given by
iP  . However, instead of using a set of orthogonal operators, it may be preferable 

– to associate the final outcome s with a more general set of non –commuting positive operators
iA , satisfy-

ing 1iA  . The probability of getting the i-th is
iA  , so that this set of 

iA  forms a probability-

operator measure (POM). According to Neimark’s theorem such a POM is physically realizable: one can 

extend the Hilbert space  of quantum states, in which the POM is defined, in such way that there exists, in 

the extended space , a set of orthogonal projection operators satisfying 1iP  , and such that 

i iA P  , where   is the projection operator from  to . The method includes the generalized meas-

urement that mathematically is different from simple measurement, while described by non-orthogonal 

expanding of unity. The measurement on any physical system can be interpreted as the simple measurement 

on any its enlarged section. These measurements can extract more information than simple measurements. 
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Let us consider two-dimensional Euclid space  and fixed in this space three unit vectors 

 1 2 3, ,e e e e  with equal angle 
2

3


 between them. We can define the states    ,E x e xe   , 

1,2,3.   Let the probability density functions in these directions are 
1 2 3

1

3
      and define the 

information amount  EI x


 in extracted states E
 by an a priori probability density functions  i . Math-

ematically every simple measurement is orthogonal resolution of identity in with the following properties: 

(i) 0, ;x    (ii) ;x I



  (iii) 0,x x for x    . From (iii) we are received that for every   an 

Hermitian operator x  is a projector:
2x x  . If  iX is a family of positive operators in

n
, satisfying 

1

N

j

j

X I


 , then defining 0

1

N

j

j

X I X


   we have a resolution of identity in 
n

. 

Let on the physical system  ,  in any state E is produced with probability p the simple  meas-

urement x , and with the probability  1 p  is produced another simple  measurement y . We can 

introduce the generalized  measurement as  

 1z px p y     , 

and the resulting probability density function can be described as following 

       1zp pE x p E y     . 

Thus, the generalized  measurement  z z is equal to a randomized experiment with the simple 

measurements. According to Neimark’s theorem the orthogonal resolution  z exists. Let    and 

the spaces is embedded in  as  0 . The relation 

     

      

1 1

1 1

px p y p p x y
z

p p x y I px p y

   



   

    
 
      
 

 

is the quantity orthogonal resolution of identity in .  

In this case measurement 
2

, 1,2,3,
3

x P     is not a simple measurement but is an extremal point 

of the measurement space: If
1 1

2 2
x y z    , then 

4
2 ;

3
y x P     while P  is one-dimensional projec-

tor than ; 0y c P c     .  

The equation 
1 1 2 2 3 3c P c P c P I    have only one solution

1 2 3

2

3
c c c   . It is means that in the set 

of generalized  measurements exists the measurements that are the extremal points of all measurements 

but are not simple, i.e., non-orthogonal.  

 For this case we have two possibilities: (1) the trivial expanding of unity as 0 0I I    ; and (2) 

in two dimensional space  possible only the expanding of unit as
1 2P P I  , where 

1 2,P P are one dimen-

sional projectors on mutually orthogonal vectors
1 2,h h . Let us define the angle between 

1h  and 
1e  as . For 

this case we can define the transition probabilities as following 
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2 2 2

2 2 2

1 2 3

2 2
1 cos cos cos

3 3

2 2
2 sin sin sin

3 3





 
  

 
  

   
    

   

   
    

   

 

While
2 2 22 2 3

cos cos cos
3 3 2

 
  

   
       

   
, than 

1

2
p 



   for 1,2  . Thus, the 

amount of information in extracted measurement can be defined as follows 

     
1

ln 2
3 6

EI H H



  

  
     

  
,   

where  

  2 2 2 2 2 22 2 2 2
cos ln cos cos ln cos cos ln cos

3 3 3 3
H

   
      

        
               

        
. 

The function  H   has the following property:  
3 3

H H H
 

  
   

      
   

. From this proper-

ty we can bound the value of   as 0
6


   and  

     
0

6

1
ln 2 min

3 6
EI H H
 




  

 

  
     

  
.  (2) 

Let us now estimate the value  sup E
x

I x




  as a maximum amount of information that we can ex-

tract from the measurements. Let 
1 2 3, ,P P P  are orthogonal projectors on any three directions that have equal 

2

3


 angles between them. In this case 

2
, 1,2,3,

3
x P     is a measurement. The angle between a vector 

1e  and a direction, that corresponds to
1P  define as , and  I  is the corresponding information amount. 

Let us defined   is the finite set,   is the set of generalized  measurements, and  ˆ  is the set 

of simple  measurements on the system  , . We are received the following result:   

       3
ˆ 0

6

ˆ sup max
x

I I I I 


  
  

   ,  (3) 

where  I x  is an average information amount about the system state on  one experiment and defined as 

Holevo-Levitin-Gordon  amount of information  

   ,x xI x H E H E   

 

 
 

  
 
   

and      lnxH E E x E x 



  is a Shannon entropy of probability density for measurement x in 

state E. The greatest information amount with these measurements is  
ˆ

ˆ sup
x

I I x


 , where  is the set of 

the all generalized measurements on the system , .  

In classical case:    Î x I x


 .  
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For non-classical systems this equality can be not carried out and in general case we have Eq.(3), ˆ .I I  

The table of transition probabilities  p E x    is described as following 

 

2 2 2

2 2 2

2 2 2

1 2 3

2 2 2 2 2
1 cos cos cos

3 3 3 3 3

2 2 2 2 2
2 cos cos cos

3 3 3 3 3

2 2 2 2 2
3 cos cos cos

3 3 3 3 3





 
  

 
  

 
  

   
    

   

   
    

   

   
    

   

 

 

According to the relation as 
2 2 22 2 3

cos cos cos
3 3 2

 
  

   
       

   
 we have

1

3
p 



  , 

and   2 22 2
ln3 cos ln cos

3 3
I   

 
   

 
; after algebraic transformations we have  

     3
0

6

1
ln 2 min 2

3
I H




 
 

  .  (4) 

Comparison of Eq.(2) and Eq.(4) give us 
ˆ .I I  

Circuit complexity measures  

There are two important measures to quantify the «costs» of a quantum program: first, the total number 

of quantum gates concerning a given elementary gate set and, second, the number of qubits needed to im-

plement the circuit. To find the optimal quantum circuit both parameters have to be optimized which might 

be a conflicting objective. However, suppose a sufficient number of qubits is available. Then, the efficiency 

can also measured by the time passing from the initialization of the system state to the final measurement, 

which corresponds to the number of computational steps. Here, a computational step means the application 

of (maximally) parallel quantum gates. Fig. 13 gives an example.  

  

 

Figure 13. Quantum circuit of elementary quantum gates. The left quantum circuit consists of five elemen-

tary quantum gates  

Since two Hadamard gates before and after CNOT each can be applied parallel, quantum circuit consists 

of three computational steps. However, the right quantum circuit is equivalent to the left circuit but consists 

only of a single CNOT gate. 

If choosing the number of quantum gates as a measure, the simple uniform valuation model, i.e., each 

gate contributes the same costs, may be replaced by a more «realistic» measure, depending on a certain 

physical realization, which e.g. weights the costs according to the gate type. Independent of the physical 

implementation it might make sense, for instance, to rate controlled gates higher than single qubit gates.  
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Comparison between quantum algorithms which use oracle gates, so-called quantum black-box algo-

rithms, and their corresponding classical algorithms are based on the number of accesses to input data, that 

is, the number of oracle calls, instead of the number of computational steps, or the number of elementary 

gates respectively. This complexity measure is also denoted as query complexity or decision tree complexity. 

Of course, a comparison of quantum and classical algorithms on the basis of oracle calls is only reasonable, 

of both algorithms use the same oracle.  

Behind this is another computation model, the decision-tree or query model.  

Strictly speaking, in the quantum version of this model (deterministic and randomized decision-trees are 

two other kinds) quantum circuits are studied which can be described by a unitary transfor-

mation 2 1 0T TA U O U O U O U       , where the iU  denote fixed, input-independent unitary transfor-

mations and the gate O  an oracle call (input-dependent unitary transformation). Relevant from the view-

point of complexity is the number of queries T . 

Why investigating such a restricted model?  

As it is not possible to make decisive complexity theoretical statements in more powerful computation 

models (this would comprise the answer to the question, whether quantum computing is more powerful than 

classical computing), simpler and more limited models of computation are analyzed. The hope is that under-

standing of such easier models will lead to a better understanding of the more complex models.  

Quantum computational complexity 

Like other promising non-standard computing approaches, quantum computing raised the hope that NP-

complete problems which seem to be intractable for classical computers could be solved efficiently. Due to 

the merely quadratic speedup and the optimality of Grover’s quantum search algorithm, it is obvious that 

approaches primarily based upon (unstructured) quantum search cannot yield efficient solutions to the prob-

lems in NP, is particular to the NP-complete problems. This can be considered to be an indication that the 

class of NP-complete problems cannot be solved efficiently on a quantum computer. However, up to now 

this is neither proven nor disproven.  

Complexity measures for quantum computational circuits  

Apart from NP-complete problems, there are some problems, which seem to be intermediate in difficul-

ty between P and NPC problems. This class of (decision) problems is denoted NPI (NP-incomplete) and it is 

NPI: = NP-NPC-P. Lander has shown that NPI is not empty, iff NP P . Thus, funding a problem in NPI 

would solve the most important and famous problem is computer science. For instance, the decision problem 

of factoring is regarded as a candidate for NPI: Given a composite integer m  and l m , decide whether m  

has a non-trivial factor less than l . Another problem which is still believed to be in NPI is graph isomor-

phism. Such problems appear to be hard classically, but they can perhaps be solved efficiently on a quantum 

computer, as it was shown for factoring.  

Another example for a classically hard problem, but nor proven to be in NP-complete, which perhaps 

can be efficiently solved on quantum computers is the shortest lattice vector problem (SVP). The shortest 

lattice vector problem consists in finding the shortest non-trivial vector of a lattice L  generated by d  linear 

independent vectors in the vector space
d

. Like factoring, the difficulty of this problem ensures security in 

public key encryption systems (by using the inverse of this problem as a one-way function). However, the 

provability of Micciancio’s number theoretical conjecture would lead to SVP NPC , and this would argue 

against an efficient quantum solution. 

From these short and unfinished reflections, it becomes convincing that quantum computing needs a 

separate complexity theory to understand the potentials and limitations of quantum computing compares to 

classical computing.  

Different complexity measures for quantum circuits were already explained at the end of the last sec-

tion. Another computation model is the Quantum Turing Machine (QTM) which is not explained here. While 

quantum circuits (like Boolean circuits) are a non-uniform computation model, because they have only 

constant input length, QTMs (like classical TMs) are uniform, as they work on arbitrary input lengths. As in 
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classical complexity theory, the uniform quantum complexity of computational problems is of particular 

interest. Therefore, analogous to uniform Boolean circuit families, uniform quantum circuit families are 

considered: A uniform quantum circuit family is an infinite sequence of circuit nC  for each input length n  

such that nC  can be generated by a QTM on input n  (in polynomial time    O poly c n  where  c n  is 

the size of quantum circuit nC  based on a given elementary gate set. They allow a comparison of the compu-

tational power of the more abstract QTMs and the more practical (uniform) quantum circuits: It can be 

shown that QTMs with polynomial runtime can be simulated by uniform quantum circuits of polynomial size 

(with bounded error probability) and vice versa.  

The following paragraph summarizes some results about quantum complexity classes (defined over 

QTMs) and their relation to classical complexity classes. Bernstein and Vazirani introduce quantum analo-

gous to the classical complexity classes P and BPP EQP corresponds to P and denotes the class of problems 

solved error-free on a QTM in polynomial time. 

Remark. BPP (probabilistic polynomial with bounded error) is the classical complexity class of decision 

problems that can be solved on polynomial time on a probabilistic Turing machine with bounded error prob-

ability.  

BQP, the quantum version of BPP, denotes the complexity class of all computational decision problems 

that can be solved with bounded error probability on a QTM in polynomial time.  

How EQP and BQP exactly relate to the classical complexity classes P, NP, PP, BPP and PSPACE is 

unknown. What is known is that 

BPP BQP PP PSPACE    and P EQP BQP   

Remark. PP is the classical complexity class of problems solved by randomized algorithms with un-

bounded error probability. PSPACE is the classical complexity class of all decision problems which can be 

solved on a deterministic Turing machine using polynomial space and arbitrary time.  

It is still an open problem to determine which of the inclusions proper inclusions are and which are not. 

Especially it is not proven that BQP BPP , that is, that quantum computers have capabilities beyond those 

of classical commuters, although there is strong evidence suggesting this. 

The existing QAs described below can be naturally expressed using a black-box model. It is then useful 

to consider the spatiotemporal complexity of QAs from the quantum query complexity viewpoint. For exam-

ple, in the case of Simon’s problem, one is given a function    : 0,1 0,1
n n

f   and a promise that there is 

an  0,1
n

s  such that    f i f j  iff i j s  . 

The goal is to determine whether 0s   or not. Simon’s QA yields an exponential speed-up over a clas-

sical algorithm. Simon’s QA requires an expected number of  O n  applications of f , whereas, every 

classical randomized algorithm for the same problem must make  2n  queries1. The function f  can be 

viewed as a black-box  0 1, , NX x x   of 2nN   bits, and that an f -application can be simulated by n  

queries to X .  

Thus, Simon’s problem fits squarely in the black-box setting, and exhibits an exponential quantum-

classical separation for this promise-problem. The promise means that Simon’s problem 

                                                           

 

 

 

1 The readers unfamiliar with asymptotic notation,   O f N  means «at most order  f N »,   f N  means «at 

least order  f N », and   f N  means «exactly order  f N ». 



Электронный журнал «Системный анализ в науке и образовании»                        Выпуск №3, 2017 год 
 

32 

 

   : 0,1 0,1
n n

f   is partial; i.e., it is not defined on all  0,1
n

X   but only on X  that correspond to an 

X  satisfying the promise.  

Table 2 list the quantum complexity of various Boolean functions such as OR, AND, PARITY, and 

MAJORITY.  

Table 2. Some quantum complexities 

Function Exact Zero-error Bounded-error 

,N NOR AND  N  N   N  

NPARITY  

2

N
 

2

N
 

2

N
 

NMAJORITY   N   N   N  

For example, consider the property   0 1N NOR X x x    . The number of queries required to 

compute  NOR X  by any classical (deterministic or randomized) algorithm is  N . 

The lower bound for OR implies a lower bound for the search problem where it is desired to find an i , 

such that 1ix  , if such an i  exists. 

Thus, an exact or zero-error QSA requires N  queries, in contrast to  N  queries for the bounded-

error case. On the other hand, the number of solutions is r  and a solution can be found with probability 1 

using 
N

O
k

 
  
 

 queries. Grover discovered a QSA that can be used to compute NOR  with small error 

probability using only  O N  queries. In this case of NOR , the function is total; however, the quantum 

speed-up is only quadratic instead of exponential.  

A similar result holds for the order-finding problem, which is the core of Shor’s efficient quantum fac-

toring algorithm. In this case, the promise is the periodicity of a certain function derived from the number to 

be factored.  

A Boolean function is a function    : 0,1 0,1
n

f  . Note that f  is total, i.e., it is defined on all n -

bit inputs. For an input  0,1
n

x , ix  to denotes its i -th bit, so  1 nx x x . The expression x  is used 

to denote the Hamming weight of x  (its number of 1’s). A more general form of a Boolean function can be 

defined as      : 0,1 0,1
n m

f A B f A    , for some integers , 0n m  . If S is a set of (indices of) 

variables, then 
Sx  denotes the input obtained by flipping the S -variables in x . The function f  is symmet-

ric if  f x  only depends on x .  

Some common symmetric functions are:  

(i)   1 1nOR x iff x  ; 

(ii)   1nAND x iff x n  ; 

(iii)   1nPARITY x iff x is odd ; 

 (iv)   1
2

n

n
MAJ x iff x  . 

The quantum oracle model is used to formalize a query to an input  0,1
n

x  as a unitary transfor-

mation O  that maps , ,i b z  to , ,ii b x z  is most some m -qubit basis state, where i  takes log n    bits, 

b  is one bit. The value z  denotes the  log 1m n    -bit «workspace» of the quantum computer, which 
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is not affected by the query. Applying the operator 
fO  twice is equivalent to applying the identity operator, 

and thus 
fO  is unitary (and reversible) as required. The mapping changes the content of the second register 

 b  conditioned on the value of the first register i .  

The queries are implemented using unitary transformations 
jO  in the following standard way. The 

transformation 
jO  only affects the leftmost part of a basis state: it maps basis state , ,i b z  to , ,ii b x z . 

Note that the 
jO  are all equal. This generalizes the classical setting where a query inputs an i  into a black-

box, which returns the bit ix . Applying O  to the basis state ,0,i z  yields , ,ii x z , from which the i -th 

bit of the input can be read. Because O  has to be unitary, it is specified to map ,1,i z  to ,1 ,ii x z . Note 

that a quantum computer can make queries in superposition: applying O  once to the state 
1

1
,0,

n

i

i z
n 

  

gives 
1

1
, ,

n

i

i

i x z
n 

 , which in some sense contains all bits of the input.  

A quantum decision tree has the following form: start with an m -qubit state 0  where every bit is 0. 

Since it is desired to compute a function of X , which is given as a black-box, the initial state of the network 

is not very important and can be disregarded. Thus, the initial state is assumed to be 0  always. Next, apply 

a unitary transformation 0U  to the state, then apply a query O , then another transformation 1U , etc. A T -

query quantum decision tree thus, corresponds to a unitary transformation 1 1 0T TA U OU OU OU . Here 

the iU  are fixed unitary transformations, independent of the input x . The final state 0A  depends on the 

input x  only via the T  applications of O . The output obtained by measuring the final state and outputting 

the rightmost bit of the observed basis state. Without loss of generality, it can be assumed that there are no 

intermediate measurements.  

A quantum decision tree is said to compute f  exactly if the output equals  f x  with probability 1, for 

all  0,1
n

x . The tree computes f  with bounded-error if the output equals  f x  with probability at least 

2

3
, for all  0,1

n
x .  

The function  EQ f  denotes the number of queries of an optimal quantum decision tree that computes 

f exactly,  2Q f  is the number of queries of an optimal quantum decision tree that computes f  with 

bounded-error. Note that the number of queries is counted, not the complexity of the iU .  

Unlike the classical deterministic or randomized decision trees, the QAs are not necessarily trees any-

more (the names «quantum query algorithm» or «quantum black-box algorithm» can also be used). Never-

theless, the term «quantum decision tree» is useful, because such QAs generalize classical trees in the sense 

that they can simulate them as described below.  

Consider a T -query deterministic decision tree. It first determines which variable it will query first; 

then it determines the next query depending upon its history, and so on for T  queries. Eventually, it outputs 

an output-bit depending on its total history. The basis states of the corresponding QA have the form 

, , ,i b h a , where ,i b  is the query-part, h  ranges over all possible histories of the classical computation 

(this history includes all previous queries and their answers), and a  is the rightmost qubit, which will even-

tually contain the output. Let 0U  map the initial state 0,0,0,0  to ,0,0,0i , and ix  is the first variable 

that classical tree would query.  
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Now, the QA applies O , which turns the state into , ,0,0ii x . Then the algorithm applies a transfor-

mation 1U  that maps , ,0,0ii x  to , 0, ,0j h , where h  is the new history (which includes i and ix ) and 

jx  is the variable that the classical tree would query given the outcome of the previous query. Then when the 

quantum tree applies O  for the second time, it applies a transformation 2U  that updates the workspace and 

determines the next query, etc. Finally, after T  queries, the quantum tree sets the answer bit to 0 or 1 de-

pending on its total history. All operations iU  performed here are injective mappings from basis states to 

basis states, hence they be extended to permutations of basis states, which are unitary transformations. Thus 

a T -query deterministic decision tree can be simulated by an exact a T -query quantum decision tree with 

the same error probability (basically because a superposition can «simulate» a probability distribution). 

Accordingly, 

     2 2Q f R f D f n    and      2 EQ f Q f D f n    for all f . 

If f is non-constant and symmetric, then  

(i)     1 1D f o n  ; 

(ii)    2R f n  ; 

(iii)    EQ f n  ; 

(iv)      2Q f n n f   , 

where    1min 2 1 : k kf k n f f       is quantity measure of length of the interval around Hamming 

weight 
2

n
 where kf  is constant. The function f  flips value if the Hamming weight of the input changes 

from k  to 1k   (this  f  is a number that is low if f  flips for inputs with Hamming weight close to 

2

n
). This can be compared with the classical bounded-error query complexity of such functions, which is 

 n . Thus,  f  characterizes the speed-up that QAs give for all total functions. 

Unlike classical decision trees, a quantum decision tree algorithm can make queries in a quantum super-

position, and therefore, may be intrinsically faster than any classical algorithm. The quantum decision tree 

model can also be referred to as the quantum black-box model.  

Information analysis of quantum complexity of QAs: Quantum query tree 
complexity  

Let  Q f  be the quantum decision tree complexity of f  with error- bounded probability by 
1

3
. It is 

possible to derive a general lower bound for  Q f  in terms of Shannon entropy  ShS f  defined as fol-

lows. For any f , define the entropy of f ,  ShS f , to be the Shannon entropy of  f X , where X  is 

taken uniformly random from A :  

  2logSh

y y

y B

S f p p


  , where  Pr
Ry x Ap f x y    . 

For any f , 

  
 

log

ShS f
Q f

n

 
  

 

. (5) 
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In this case, the computation process can be viewed as a process of communication. To make a query, 

the algorithm sends the oracle log n    bits, which are then returned by the oracle. The first log n    bits 

specify the location of the input bit being queried and the remaining one bit allows the oracle to write down 

the answer.  

The QA runs on 
1

X Y
x A

x y
A 

 , where  X Y  denotes the qubits that hold the input (intermediate 

results of computing), respectively. It is useful to now consider the von Neumann entropy, 
   vN t

S f , of the 

density matrix Y  after t -th query. If the QA computes f  in T  queries, at the end of computation, one 

expect to have a vector close to  
1

X Y
x A

x f x
A 

 . For the initial (pure) state, 
   0

0
vN

S f  . By using 

Holevo’s theorem (see [2]), one can show that 
     vN T ShS f S f . Furthermore, by the subadditivity of 

the von Neumann entropy 
         1

log
vN t vN t

S f S f O n


   for any t with 0 1t T   . Therefore, 

 
log

ShS f
T

n

 
  

 

. This bound is tight.  

This means one quantum query can get log n bits of information, while any classical query get no more 

than 1 bit of information. This power of getting  1O  bits of information from a query is not useful in 

computing total functions, which are functions that are defined on every string in  0,1
n
, in the sense that 

each quantum query can only yield  1O  bits of information on average.  

For this more general case, for any total function f ,  

     ShQ f S f . (6) 

Kolmogorov complexity of quantum query algorithms  

In the quantum query model, as in its classical counterpart, we pay for accessing the oracle, but unlike 

the classical case, the machine can use the power of quantum parallelism to make queries in superposition. 

Access to the input 
nx , where   is a finite set, is achieved by way of a query operator xO . The query 

complexity of an algorithm is the number of calls to xO . In quantum computing the state of computation is 

represented by a register R  composed of three sub-registers: the query register  0,1, ,i n , the answer 

register z  and the work register w . We denote a register using the ket notation R i z w , or 

simply , ,i z w . In the quantum setting, the state of the computation is a complex combination of all possi-

ble values of the registers.  

For the corresponding finite-dimensional vector space  we denote the state of the computation by a 

vector    over the basis  
, ,

, ,
i z w

i z w . Furthermore, the state vectors are unit length for the 2 norm 

in the quantum setting. A T -query algorithm A  is specified by a  1T  -uple  0 1, , , TU U U  of matri-

ces. When A  is quantum, the matrices iU  are unitary. The computation takes place as follows.  

The query operator is the unitary matrix xO  that satisfies , , , ,x iO i z w i z x w   for every , ,i z w , 

where by convention 0 0x  . Initially the state is set to some fixed value 0,0,0 . Then the sequence of 

transformations  0 1 1, , , , , , ,x x T x TU O U O U O U  is applied.  
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We say that the algorithm A   -computes a function :f S S  for some sets 
nS    and S  , if the 

observation of the last bits of the work register equals  f x  with probability at least 1  , for every 

S  . The quantum query complexity (QQC) is the minimum query complexity of quantum query algo-

rithm that 0 -compute f , where 0  is a fixed positive constant no greater than 
1

3
.  

We use a few standard results in Kolmogorov complexity and information theory. We denote the length 

of finite string x  by x . We assume that the Turing machine’s alphabet is the same finite alphabet as the 

alphabet used instance of the function under consideration. Letters ,x y  typically represent instance; i  is an 

index into the representation of the instance; and ,p q  are probability distributions. Programs are denoted 

P , and output of a Turing machine M  on input is written  M x . When there are multiple inputs, we 

assume that a standard encoding of tuples is used. The Kolmogorov complexity of x  given y  with respect 

to M  is denoted  MC x y , and defined as follows:     min ,MC x y P such that M P y x  , where 

,x y  be finite strings. A set of strings is prefix-free if no string is a prefix of another in the set. The prefix-

free Kolmogorov complexity of x  given y  with respect to M  is denoted  MK x y , and defined as fol-

lows:  

    min ,MK x y P such that M P y x  , 

where P  is taken in some fixed prefix-free set. There exists a constant 0c   such that for every finite string 

 ,  

   K x K x c   , and      K x K K x c    . 

Let A be a QA that for all x S  computes f , with bounded   and at most T -queries to the input. 

Then there exists a constant 0C  such that for every ,x y S  with    f x f y :  

 
    

0
, ,

,

1 2 1

2
i i

K i x A K i y A

i x y

T C
 

 



 
 


. 

Example. Grover’s QSA (see [2]). Fix n  and a QA A  for Grover search for instance of length n . Let 

z  be a binary string of length log n , with   logK z A n . Let j  be the integer between 0 and 1n   

whose binary expansion is z . Consider x , the all 0’s string, and let y  be everywhere 0 except at position 

1i j  , where it is 1. Then    , log 1K i x A n O  , and    , 1K i y A O .  

Therefore,    QQC QSA n . 

Thus, the minimum of Shannon entropy in the final solution output of the QA means its has minimal 

quantum query complexity. The interrelations in Eqs (1) and (2) between quantum query complexity and 

Shannon entropy are used in the solution of QA-termination problem (see below in Chapter 4). As mentioned 

above, the number of queries is counted, not the complexity of the iU . The complexity of a quantum opera-

tor iU  and its interrelations with the temporal complexity of a QA is considered below.  

The matrix-based approach can be efficiently realized for a small number of input qubits. The matrix 

approach is used above as a useful tool to illustrate complexity issues associated with QA simulation on 

classical computer.  
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