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Introduction 

In the classical information theory the mutual information measures how much information X  and Y  
has in common. Correlations between two different random variables X  and Y  are measured by the mutual 

information,        : ,H X Y H X H Y H X Y   , where  
,

, logi j i j

i j

H X Y p p   is the joint 

entropy and i jp  is the probability of outcomes ix  and jy  both occurring. It may also be defined as a special 

case of the relative entropy, since it is a measure of how distinguishable a joint probability distribution i jp  

is from the completely uncorrelated pair of distributions ,i jp p  as  

       i j i j i j i jH p p p H p H p H p   . 

In quantum information theory it is common to distinguish between purely classical information, meas-
ured in bits, and quantum information, which is measured in qubits. Any bipartite quantum state may be used 

as a communication channel with some degree of success, and so it is important to determine how to separate 

the correlations it contains into classical and an entangled part [1-26].  

When a measurement is made on a quantum system in which classical information is encoded, the 

measurement reduced the observer’s average Shannon entropy for the encoding ensemble. This reduction, 

being the mutual information, is always non-negative. For efficient measurements the state is also purified; 

that is, on average, the observer’s von Neumann entropy for the state is also reduced by a non-negative 
amount. A bound, which is dual to the Holevo bound, one finds that for efficient measurements, the mutual 

information is bounded by the reduction in the von Neumann entropy. A physical interpretation of this bound 

can be directly derived from the Schumacher-Westmoreland-Wootters theorem.  

The classical mutual information of a quantum state AB  can be defined naturally as the maximum 

classical information that can be obtained by local measurements A BM M  on the state AB :  
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     max :
A B

Cl

M M
I I A B


 . 

Here, the classical information, the entropy functions and the probability distributions of the individual 

and joint outcomes are defined of performing the local measurement 
A BM M  on  . The physical rele-

vance of 
   Cl

I   is as following: (1) 
   Cl

I   is the maximal classical correlation obtainable from   by 

purely local processing; (2) 
   Cl

I   corresponds to the classical definition when   is “classical”, i.e., 

diagonal in some local product basis and corresponds to a classical distribution; (3) When   is pure, 

   Cl
I   is the correlation defined by the Schmidt basis and thus equal to the entanglement of the pure state; 

and (4) 
    0
Cl

I    iff 
A B    . 

Any good correlation measure should satisfy certain axiomatic properties: 
 

N Axiomatic property 

I Monotonicity: Correlation is a non-local property and should not increase under local pro-

cessing  

II Total proportionality: A protocol starting from an uncorrelated initial state and using  

qubits or 2  classical bits of communication (one-way or two-way) and local operations 

should not create than 2  bits of correlation 

 

III 

Incremental proportionality: A small amount of communication should not increase correla-

tion abruptly. One may expect that the transmission of  qubits or 2  classical bits should 

not increase the correlation of any initial state by more than 2  classical bits 

IV Continuity in  : This strengthens total proportionality by allowing all possible initial states, 

or equivalently by considering the increase in correlation step-wise 

For some well-known correlation measures all of these properties are hold. They hold for the classical 

mutual information  :I A B when communication is classical as one may expect.  

They also hold for the quantum mutual information: 

         Q

A BI S S S      . 

Remark. For 
   Cl

I   the property of incremental proportionality can be violated in some extreme 

manner for a mixed initial state  . A single classical bit, sent from A to B, can result in an arbitrarily large 

increase in 
   Cl

I  . This phenomenon can be viewed as a way of locking classical correlation in the 

quantum state  . 

In general, the accessible information accI  about an ensemble of states  ,i ip E  is the maximum 

mutual information between i  and the outcome of a measurement. The accessible information amount 

 accI E  can be maximized by a POVM with rank 1 elements only. Let  j j j
j

M     stands for a 

POVM with rank 1 elements where each j  is normalized and 0j  . Then  accI E  can be expressed 

as:  

  max log log
i j i j

acc i i i j j i j
M

i i j j j

p
I p p p

  
   

  

 
   
 
 

 E , 
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where i i

i

p  .  

Example. Let the initial state   is shared between subsystems held by A  and B , with respective di-

mensions 2d  and d ,    †
1

2
t tA B

k k t t U k k U
d

    . Here 0U I  and 
1U  changes 

the computational basis to a conjugate basis: 
1

1
,i k i U k

d
  . In this example, B is given a random 

draw k  from d  states in two possible random bases (depending on 0t   or 1), while A  has complete 

knowledge on his state.  

Let consider for this case the abovementioned expression of  accI E . For considered case the ensemble 

is 
,

1
,

2
t

k t

U k
d

 
 
 

 with ,

1
, ; ,

2
k t

I
i k t p d

d
    and 

1
j j

d
    .  

Putting all these in the expression for  accI E , we obtain as 

   

2

2

, ,

2 2

, ,

max log 2 log
2 2

1
max log log

2

j tCl j

j t
M

j k t

j

j t j t
M

j j k t

Entropies sum

U k
I d U k

d

d U k U k
d


 


 

 
  
 
  

  
  
   
  

    



 

, 

where 1j

j

  and 
2

, 1j t

k

j t U k   is used to obtain the last line. Since 1
j

j d


 , the second 

term is convex combination, and can be upper bounded by maximization over just one term:  

   
2 2

,

1
log max log

2

Cl

t t

k t

I d U k U k


     . 

Remark. The value 
2 2

,

logt t

k t

U k U k   is the sum of entropies of measuring   in the 

computational basis and the conjugate basis. Such a sum of entropies is least logd . Lower bounds of these 

types are called entropic uncertainty inequalities (EUI), which quantify how much a vector   cannot be 

simultaneously aligned with states from two conjugated bases. It follows that 
   

1
log

2

Cl
I d  . Equality 

can in fact be attained when B  measures in the computational basis, so that
   

1
log

2

Cl
I d  .  

The accessible information from m  independent draws of an ensemble E  of separable states is addi-

tive,    m

acc accI mI mE E . It follows 
     Cl m

accI mI  m
 for this case.  

Example. If   is a bipartite state on 
d dC C , then:      

2
2 2ln 2

Cl

AB A BTr d I       . 

It means that when 
   Cl

I  is small,   must be close to an uncorrelated state (in trace distance).  
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Thus, when there are no restrictions on the allowed measurement strategy, the classical information 

about the identity of the state in an ensemble , x

xp  , accessible to a measurement is limited by the Holevo 

bound:    ,x x

acc x x
x x

I S p S p       . 

For measurements of bipartite ensembles restricted to local operations and classical communications 

(LOCC) is existed a universal Holevo-like upper bound on the locally accessible information. By “locally 
accessible information” always mean accessible information by LOCC-based measurements. The maximal 

mutual information  :I X Y  accessible via LOCC between A and B satisfies the following inequality: 

       
,

max ,
LOCC x

acc A B x Z
Z A B x

I S S p S  


     

where A  and B  are the reductions of 
x

AB x AB
x

p   , and 
x

Z  is a reduction of 
x

AB .  

Example: Interrelations between global and local accessible information. Consider an ensemble of sig-

nal states (not necessarily orthogonal or pure)  , x

x ABp   and pure (not necessarily orthogonal) “detector” 

states  x

CD . 

Initially, let the signals and the detectors be in a joint state 
x x x

ABCD x AB CD CDp      with rela-

tive entropy of entanglement  :AC BD

ABCDE  . A measurement restricted to LOCC (between A  and B ) and 

obtaining results j  with probability jq , will usually leave the detectors in mixed states 

j x x

CD CD CDx j
x

p    , thus giving the accessible information  

          LOCC Sh Sh j

acc j j CDx j
j j

I H q H p H q S      

(equality hold for orthogonal detectors). The general property of relative entropy of entanglement 

     AB A ABE E E    , implies that  

          detLOCC Sh Shj j out

acc j CD j CD out out
j j

I H q E q S H E S        . 

As     detout x x x

out j D CD CD x CD outx j
j x

S q S Tr p p E E       , and  det :AC BD

out ABCDE E   (as 

LOCC does not increase the relative entropy of entanglement  :AC BD

ABCDE  ), we obtain: 

   Sh LOCC

accH I E   , 

where  det :AC BD

out ABCDE E E    . 

In the case of orthogonal ensembles, 
 Sh

H  is the global accessible information  global

accI  and for such 

cases, we have: 
global LOCC

acc accI I E   . Thus, in general case the difference between globally and locally 

accessible information for an ensemble of orthogonal (not necessarily pure) states is not less than the amount 
of the relative entropy of entanglement, which is created in a global measurement to distinguish the ensem-

ble. 

Connections between accessible information and quantum operations 
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A general quantum process cannot be operated accurately. Furthermore, an unknown state of a closed 

quantum system cannot be operated arbitrarily by unitary quantum operation. A quantum measurement on 
the state has been to identify X  on the measurement result Y . A good measure of how much information 

has been gained about X form the measurement is the mutual information  :H X Y  between X  and the 

measurement outcome Y . The mutual information  :H X Y  of X and Y  measures how much infor-

mation X  and Y  have in common. Holevo’s theorem states that  :H X Y  . The quantity   is an 

upper bound on the accessible information. But the Holevo bound quantity decreases under quantum opera-

tions:          x x x x

x x

S p S S p S       
   
        
   

  , where   is a quantum operation.  

Suppose we will to perform a quantum process, which can be realized by a quantum operation,  . After 

a quantum process, we find the mutual information decreased, in another word, we find that the information 

we can gain from the quantum system is less than previous. We know the uncertainty of this quantum states 

increase because of the decreasing of the accessible information. That is, the result after the quantum opera-
tion is unreliable. Also, it tell us this quantum process cannot be operated accurately because if this quantum 

can be operated accurately, the accessible information would not decrease. 

Example: Disentanglement process. Let us consider disentanglement process: 

     2 12 1 12x Tr Tr     , where 
12  is a pure state of two subsystems. An arbitrary state cannot be 

disentangled by a physical allowable process into a tensor product of its reduced density matrices. Consider 

12  is a pure state, then the Holevo  -quantity  12 0   . After the disentangling process, it has that the 

Holevo  -quantity    2 12 1 12 0Tr Tr      . [We can prove this by using concavity of the entropy: 

 i i i i

i i

S p p S 
 

 
 
  ]. After the disentangling quantum process, that is  

           2 12 1 12 2 12 1 12 120,i i i i

i i

Tr Tr S p p S Tr Tr         
 

            
 
  . 

Since the equality holds iff all the states i  for which 0ip   are identical, we know that a general dis-

entangling quantum states would necessarily increase the Holevo  -quantity. Thus, it tell us a universal 

disentangling machine cannot exist.  

Total, classical and quantum correlations: Examples of interrelations between 
of covariance, correlation and entanglement measures 

It is important in quantum computation to determine how to separate the correlations it contains into a 
classical and an entangled part.  

Remark. In quantum mechanics, most measurement results are represented by the trace of products of 

observables in certain quantum states. As example, the superposed vectors as Bell states ,    are 

maximally entangled in the sense that they are pure on the whole system, and their marginals are maximally 

mixed:  

       1 2 1 2

1

2
Tr Tr Tr Tr I                   . 

We see readily a string difference between classical states and quantum states. While the marginals of 

classical pure states are necessarily pure, it is not the case for quantum pure states. This peculiar structure is 
beautifully described by Schrodinger sense:  
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”The best possible knowledge of a whole does not necessarily include the best possible knowledge of all 

its parts.” 

Let us demonstrate this approach with simple examples. 

Example. Consider a bipartite separable state of the form:
i

AB i B
i

p i i   , where  i  are or-

thogonal states of subsystem A . Clearly the entanglement of this state is zero. The best measurement that A  

can make to gain information about B ’s subsystem is a projective measurement onto the states  i  of 

subsystem A . Consider the measure of a classical correlation as:      
†

max
i i

i

B AB A i A
B B i

C S p S    , 

where as above 
†

i iB B  is a POVM performed on the subsystem B and 
 
 

†

†

B i AB ii

A

AB i AB i

Tr B B

Tr B B





  is the remain-

ing state of A  after obtaining the outcome i on B . Clearly    B AB A ABC C   for all states AB  such 

that    A BS S  . The measure is a natural generalization of the classical mutual information, which is 

the difference in uncertainty about the subsystem  B A  before and after a measurement on the correlated 

subsystem  A B ,      :H A B H B H B A  .  

Similarly,    ,B AB A ABC C   are represented the difference in von Neumann entropy before and after 

the measurement. These measures    ,B AB A ABC C   are non-increasing under local operations. Note the 

similarity of the definition to the Holevo bound which measures the capacity of quantum states for classical 

communication. Therefore the classical correlations are given by: 

     i

A AB B i B
i

C S p S    . 

For this state, the mutual information is also given by:      :

i

A B B i B
i

I S p S    . This is to be 

expected since there are no entangled correlations and so the total correlations between A  and B  should be 

equal to the classical correlations. We now consider the relations between the classical, total and entangled 

correlations in some simple cases.  

Example: Maximally entangled pure state. Let us consider a maximally pure state,   
, and the 

family of states that interpolate between it and its completely decohered state 0 0 1 1 . These are 

states of the form:  1AB p p          ,  where 
1

1
2

p  . 

The mutual information as a function of p  is:      : 2 log 1 log 1A BI p p p p      . 

The entanglement is:      1 log 1 log 1RE ABE p p p p      . 

The classical correlations remain constant at:       1A AB B AB ABC C C     . 

This is achieved by a projective measurement onto  0 0 , 1 1 , and must be the maximum because 

C  cannot exceed one. The total correlations for this case are just the sum of the entangled and the classical 

correlations,      :A B RE AB ABI E C    . 
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Example: Werner state. Consider a Werner state of the form: 
1

4
AB

p
p I    

   with 

1
1

2
p  . 

The mutual information is:    :

1
2 log 1 log

3
A B

f
I f f f

 
     

 
, 

3 1

4

p
f


 . 

The relative entropy of entanglement is:      1 log 1 log 1RE ABE f f f f      . 

The classical correlations remain constant at:      A AB B AB ABC C C    . 

Any orthogonal projection produces the same value for the classical correlations.  

This quantity is called as  P ABC  . Clearly, that:    P AB ABC C  . 

Example: Symmetric state. The state of the form:  0 0 0 0 1AB p p       . Same as 

above, the state is symmetrical with regard to A and B , so:    A AB B ABC C   ABC  . 

This state provides a simple example where the states on both sides are non-orthogonal. It is not the 

measurement, which optimizes the classical correlations.  

In these two last examples,      :P AB RE AB A BC E I    . If the classical correlations are maxim-

ized by an orthogonal measurement on one subsystem, the classical and entangle correlations do not account 

for all the total correlations, and    AB ABE C  . 

Another possible of classical correlations could be based on the relative entropy (see Appendix 1). 

Relative entropy as the measure of classical correlations. Just as measures of total and entangled corre-

lations are both relative entropies,    :A B AB A BI S      and    : min
AB

A B AB AB
D

E S


  


 . Classi-

cal correlations could then be given by the relative entropy between the closet separable state, AB 
, and the 

product state A B  ,  RE AB A BC S     . 

Example. For a mixture of two Bell states,  RE ABC   coincides with   1RE ABC   . For the separable 

state  0 0 0 0 1AB p p       ,    :RE AB A BC I  , which makes sense, but there is no 

entanglement.  

Example. For Werner state, the relative entropy of classical correlations remains constant at 

  0.2075RE ABC   . Therefore for low values of p ,    RE AB RE ABC E  , whereas for high values, 

   RE AB RE ABC E  , so that the two types of correlations do not sum to the total.  

In general, we have the inequality as      :A B RE AB RE ABI E C    , so that the two types of corre-

lations do not sum to the total.  

Remark. Thus, the measure of the classical correlations of a bipartite state AB  is a distance between the 

nearest state  
 of AB  and A B   , that is relative entropy    1 AB A BC S       . 

This measure of classical correlations, and similar measures based on the distance between  
 and 

A B   such as    2 AB A BC S      are equal to the von Neumann mutual information, 

         AB A B AB AB A BI S S S S            for a set of separable states. A measure of the 
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classical correlations based on the maximum information that could be extracted on a subsystem B  of AB  

by making a measurement on the other subsystem A  described above so:    
†

max
i i

i

B B i B
A A i

S p S     , 

is not proved to be symmetric under interchange of the subsystems A and B and even if it could increase 

under LOCC this should be expected for classical correlations.  

Another measure of classical correlations in quantum state can be defined as the difference between to-

tal correlations measured by the von Neumann mutual information and the quantum correlations measured 

by the relative entropy of entanglement:      minAB AB A B AB
D

S S


     





    , where D  is the 

set of all separable states in the Hilbert space, on which AB  is defined. This measure of the classical corre-

lation is superadditive in the sense that    2       due to the fact that the mutual information is 

additive, whereas the relative entropy of entanglement is subadditive.  

For pure states, all the measures of the classical correlations including this measure are equal to the von 

Neumann entropy of the subsystems A  or B :    A BS S  . According to the definition of the classical 

correlation, all the correlations contained in separable states are classical.  

Covariance and entanglement. In quantum mechanics it is long recognized that there exist correlations 

between observables, which are much stronger than classical ones. These correlations are usually entangle-

ment, and cannot be accounted for by classical theory.  

A. Covariance. The notion of classical covariance of two random variables can be naturally extended to 

quantum mechanics, when the probability is replaced by a quantum state (density matrix), and the random 

variables by observables. Thus let H be the Hilbert space of a quantum system, let  L H be the real linear 

space of all observables on H . Let   be a quantum state (mixed state, in general), then for any two observ-

ables A  and B , their covariance  ,Cov A B  is defined as:  

       ,Cov A B Tr AB Tr A Tr B      . 

In particular, the variance of A in the state  is defined as:  

     
22,Var A Cov A A Tr A Tr A      . 

Example. When   is diagonalized, in spectral decomposition form, j j j

j

u u   and   is non-

degenerate and thus  ju  constitutes an orthonormal base, we have 

 
, ,

, j j k k j j k j i k k

j k j k

Cov A B u A u u B u u A u u B u       

and 

2

, ,

, ,2

j j k j k j i k k

j k j k

j k

j k j k j i k k

j k j k

Var A u A u u A u u A u

u A u u A u u A u

   

 
 

 


 

 

 
. 

Let  ,A B AB BA   denote the commutator. Since       , , ,Cov A B Cov B A Tr A B    , 

and  ,Cov    maybe viewed as an inner product, by Schwarz inequality, we have 
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  
21

,
4

Var A Var B Tr A B    .  

This is the conventional Heisenberg uncertainty relation. 

B. Interrelations between covariance and entanglement. Physically, covariance is usually used to char-

acterize correlations between two observables in a given quantum state. Alternatively, it can be used to 
characterize the intrinsic correlations of a quantum state, given the two observables fixed. The situation is 

usually as follows. Let there be given two quantum systems 
1H  and 

2H  and two observables a  and b  for 

the two quantum systems respectively. Then 2A a I  , 
1B I b   are two observables for the composite 

quantum system 1 2H H , and they commute. Now let   be any quantum state of the composite quantum 

system, then  ,Cov A B  maybe used as a measure to quantify the “correlation strength” of the state  . 

The observables A  and B serve here as testing observables. 

Example. Let 1 1 H  and 2 2 H  be two quantum states, and let the composite quantum state 

1 2 1 2     H H  be a product state. For    , then we have  , 0Cov A B  . Let 

now 
2 2

1 2, H HC C , and the composite quantum system be 
2 2

1 2  H H C C . Let 

2 1,z zA I B I     . Then    sup , 1, inf , 1Cov A B Cov A B
   

   . The maximum 

value is achieved iff:  
1

00 11
2

i ie e     and the minimum is achieved iff: 

 
1

01 10
2

i ie e    . Here  and   are any real constants. Thus maximally entangled states as 

Bell states maximize the magnitude of the covariance  ,Cov A B
 

.  

The distinctions between classical and quantum correlations are fundamental and subtle, and it is a dif-

ficult and thorny problem as how to distinguish them. In this respect, the conventional covariance often gives 

ambiguous results. Let demonstrate this point by an example. 

Example. Let as above 
2 2

1 2, H HC C , and the composite quantum system be 

2 2 4

1 2   H H C C C . Take a quantum state  
1

00 00 11 11
2

    and 

2 1,z zA I B I     . Then in the canonical base  00 , 01 , 10 , 1  , we have  

1 0 0 0

0 0 0 01

0 0 0 02

0 0 0 1



 
 
 
 
 
 

 and 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

A

 
 
 
 
 

 

, 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

B

 
 

 
 
 

 

. 

Now direct calculation leads to  , 1Cov A B  . On the other hand, if we take 

   
1

00 11 00 11
2

    , then 

1 0 0 1

0 0 0 01

0 0 0 02

1 0 0 1



 
 
  
 
 
 

. 
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We readily compute  , 1Cov A B  .  

The state   is a mixture of two disentangled (product) states, while   is a Bell state, which is maxi-

mally entangled, and the covariance cannot distinguish them. In this sense the conventional covariance has a 

limited use in characterizing entanglement.  

We will investigate entanglement by means of another “covariance” measure, the Wigner-Yanase-

Dyson correlation, which is of an informational origin connected with Fisher information and skew infor-

mation. This correlation measure has some advantages over the conventional covariance in quantifying 
entanglement (see Appendix 1).  

Wigner-Yanase-Dyson (WYD) skew information measure  

In the study of measurement theory from an information-theoretic point of view, Wigner and Yanase in-

troduced the quantity: 

   
21

, ,
2

I K Tr K   
 

, 

which they called skew information (the bracket  ,   denotes commutator), as the amount of information on 

the values of observables not commuting with K  (which may be a Hamiltonian, a moment, or other con-

served quantity). Alternatively,  ,I K  may be interpreted as a measure of non-commutativity between   

and K  with asymmetric emphasis on the state   and on the conserved observable K .  

Properties of the skew information are as following: (i) constant for isolated systems; (ii) decreases 
when two different ensembles are united that means the information content of the resulting ensemble should 

be smaller than the average information component of the component ensemble; and (iii) is additive, namely, 

the information content of two independent pairs is the sum of information of the parts.  

The skew information is later on generalized by Dyson to  

   11
, , , , 0 1

2
I K Tr K K 

              . 

The WYD conjecture concerning the convexity of  ,I K  .  

The Wigner-Yanase skew information can be rewritten as following: 

       
2

21
, ,

2
I K Tr K Tr K Tr K K        

 
. 

In particular case, if     is a pure state, then  

      
22, ,I K K K Tr K Tr K        . 

Here K  is the variance of the observable K  in the state  .  

Therefore, for pure states, the Wigner-Yanase skew information reduces to variance. When   is a 

mixed state, we have:  ,K I K   . 

A. Interrelations between quantum Fisher’s information and quantum Wigner-Yanase skew infor-

mation. In fact, the notion of skew information is very similar to the well-known notion of Fisher infor-

mation originated from statistical inference. Among concepts describing contents of quantum mechanical 

density operators, both the Wigner-Yanase skew information and the quantum Fisher information defined via 
symmetric logarithmic derivatives are natural generalizations of the classical Fisher information.  
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We will establish a relationship between these fundamental quantities. 

Recall that the Fisher information of a parameterized family of probability densities  :p  R  on 

R  is defined as 

 
   

 

2
2

log1
4

4
F

p x p x
I p dx p x dx

 

 
 

   
     
    

R R
 

is intimately related to the Shannon entropy.  

Remark. When we pass from classical theory to quantum mechanics, the integral is replaced by trace, 

and the probability densities are replaced by density operators.  

The Fisher information for a family of quantum states  is defined as 

 

2

4FI Tr









 
  

  

, 

which may be viewed as a generalization of the classical Fisher information to quantum case.  

In particular, if  satisfies the Landau-von Neumann equation:  

  0, ,i K



  




 


, 

where  R  is a (temporal or spatial) parameter, and K  may be interpreted as the generator of the tem-

poral shift or the spatial displacement, then 
i K i Ke e 

  , and  

,i K i Kie K e
  







 
 

, 

which in turn implies that    8 ,FI I K  .  

Therefore, the skew information is essentially a particular kind of quantum Fisher information. In gen-

eral case, the quantum Fisher information and the Wigner-Yanase information are related by inequalities: 

     , , 2 ,W F WI K I K I K    . 

Example: Two-level quantum system. The quantum state Hilbert space is 
2C . A general density opera-

tor   on 
2C  for some   3 2 2 2

1 2 3 1 2 3, , , 1r r r r r r r r     R  is of the form: 
3 1 2

1 2 3

11

12

r r ir

r ir r


  
  

  
. 

The eigenvalues of  are 1

1

2

r



  and 2

1

2

r



 . Let the corresponding eigenvectors be 1  and 2 , 

then 1 1 1 2 2 2        . Consequently,  

    22

1 2

1
, 1 1

2
WI K r K     ,  

22

1 2

1
,

2
FI K r K    

and  
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     
2

, 1 1 ,F WI K r I K    . 

Thus  ,FI K  may vary continuously from  ,WI K  to  2 ,WI K . Moreover, in this case, if 

1 2 0K    and K  does not commute with  , then    , ,F WI K I K   iff 1r  , that is,   is a 

pure state. 

B. The Wigner-Yanase correlation. Motivated by Fisher information a skew information, the Wigner-

Yanase correlation can be introduced as following (in analogue with the measure of correlation K ):  

     ,Corr A B Tr AB Tr A B     . 

In particular,  

       
2 2

2 1
, , ,

2
I K Corr A A Tr A Tr A Tr A        

 
 

is exactly the skew information introduced by Wigner and Yanase.  

Since      , , ,Corr A B Corr B A Tr A B    and  ,Corr    maybe viewed as an inner product, by 

the Schwarz inequality, we also have: 

     
21

, , ,
4

I A I B Tr A B   . 

This inequality is more strong than the Heisenberg uncertainty relation since:  ,Var A I A  . Thus, 

just like the Fisher information, the Wigner-Yanase correlation can also to improve the conventional Heisen-

berg uncertainty relations (see Appendix 2).  

C. The Wigner-Yanase correlation and covariance. The conventional covariance and the Wigner-

Yanase correlation are two different correlation measures: Wigner-Yanase correlation has more information 

character and there are some intrinsic relations between them.  

The inequality    , ,Cov A A Corr A A   is true, but    , ,Cov A A Corr A A 

  and it is not 

true in general: the magnitude of the conventional covariance can be less, or large, than the Wigner-Yanase 

correlation. 

Example. Let 

1 11 11

2 22 22

0
, ,

0

a a b b
A B

a a b b






     
       

    
. 

Here 1 2 1 21, 0, 0        and 11 22 11 22, , ,a a b b  are all real numbers, while a and b  may be com-

plex. Then  

    1 2 1 2 11 22 11 22,Cov A B ab ab a a b b        
 

   1 2 1 2,Corr A B ab ab ab ab       
 

In particular, if a  and b  are real, then    , ,Cov A A Corr A A   iff  

  1 2 11 22 11 22 1 22 0a a b b ab       . 
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However, if   is a pure state, these two correlation measures coincide:    , ,Cov A B Corr A B   

for any observables A  and B . 

D. The Wigner-Yanase correlation and entanglement. Let ,   and A , B  be the same as above:  

1 0 0 0

0 0 0 01

0 0 0 02

0 0 0 1



 
 
 
 
 
 

, 

1 0 0 1

0 0 0 01

0 0 0 02

1 0 0 1



 
 
  
 
 
 

. 

Then we may readily compute    , 0, , 1Corr A B Corr A B   . Thus the Wigner-Yanase correla-

tion indeed distinguishes between the mixture of disentangled states (classical correlation) and the maximally 

entangled Bell states (quantum correlation).  

Example: 
2 2

1 2, C CH H  and the composite quantum system 
2 2 4

1 2   H H C C C . Take a 

quantum state  

 
1 1 1

00 00 , 00 11
2 2 2

          .  

Let us as above 
2 1,z zA I B I     . Then in the canonical base 00 , 01 , 10 , 11 , we 

have  

3 0 0 0

0 0 0 01

0 0 0 04

0 0 0 1



 
 
 
 
 
 

. 

The calculation leads to 
     

1
, 1

2
Tr A Tr B Tr AB    

, thus 
 

3
, 0.75

4
Cov A B  

. 

On the other hand,   can be diagonalized as  

1

2 1
0 0 0

2 2

0 0 0 0

0 0 0 0

2 1
0 0 0

2 2

U U 

 
 
 
 

  
 
 


 
 
 

 

with unitary matrix  
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1 1
0 0

4 2 2 4 2 2

1 1
0 0

2 2

1 1
0 0

2 2

2 1 2 1
0 0

4 2 2 4 2 2

U

 
 

  
 
 
 


 

 
 
  
 
 

  

. 

Thus, 

 

 

 

 

 

 

 

 

 

 

 

 

1 1
3 3

2 2
2 2

3 3

2 2

1 1 1 1

2 2 2 2

3 3 3 3

2 2 2 2

2 1 2 12 1 2 1
0 0

2 2 2 2
2 2 2 2

0 0 0 0

0 0 0 0

2 1 2 1 2 1 2 1
0 0

2 2 2 2 2 2 2 2



 
      

        
    
 
 
 
 
 
    
  
 
 
 

. 

Simple calculation leads to:  
1 2

, 0.15
2 4

Corr A B    .  

This is in sharp contrast with the covariance:  , 0.75Cov A B  . Indeed, the state   is half mixture 

of a disentangled state 00 00  and an entangled state: 
   .  

Thus the entanglement in   should be less than 0.5 if we take 
  (a bell state) as a state with a unit 

of entanglement (indeed,    , , 1Cov A B Corr A B
         

  ) and assume reasonable that 

classical mixing will reduce entanglement (mixing the disentangled state 00 00  with the entangled state 

    will corrupt the entanglement). 

Efficient measurements and bounds on the accessible mutual information 

In general case, when a measurement is made on a quantum system in which classical information is 

encoded, the measurement reduced the observer’s average Shannon entropy for the encoding ensemble. This 
reduction, being the mutual information, is always non-negative. For efficient measurements the state is also 

purified; that is, on average, the observer’s von Neumann entropy for the case of the system is also reduced 

by a non-negative amount.  

By rewritten a bound derived by Hall, which is dual to the Holevo bound, one finds that for efficient 
measurements, the mutual information is bounded by the reduction in the von Neumann  entropy.  

A. Hall’s dual Holevo bound is as following:  
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    †: ; ;
j

in j j j j j j
j

j

I H I J S Q S Q Tr A A
Q

 
 

 
          

 

U
U U  

where 
jQ  is the probability that outcome j  will result; each of operators 

jA  corresponds to the measure-

ment outcome, and the outcomes are therefore labeled by j .  

B. Schumacher-Westmoreland-Wootters (SWW) bound. The Holevo bound and Hall’s bound, may both 

be derived from the more general SWW-bound 

       in i i j i iji j
i j i

quantity

I S p S Q S p S



   



        
  

, 

where all quantities are as defined above, and the quantity ij  is introduced, which is the final state that the 

receiver would have had, if he knew that the initial state was i .  

Thus, 
 

†

j i j

ij

A A

Q j i


  , where  Q j i  is naturally the probability density for the measurement outcomes, 

given that the initial state is i . Because of the final term on the right-hand side of this inequality, this bound 

is, in general, stronger than the Holevo bound.  

Remark. The expression in the square brackets    i iji j
i

S p S    
  

 is the Holevo   quantity for 

the ensemble j , which results from measurement outcome j . Thus their bound may be written as: 

 in j j

j

I Q         . Now, 
j     is the Holevo bound on the information that the receiver could 

extract when making a subsequent measurement after obtaining result j . 

While inI  quantities the information which the observer obtains about the initial preparation, there ex-

ists another quantity which can be said to characterize the average amount of information which receiver 

obtains about the final state which he is left with after the measurement. Denote this by finI , expression for 

which is as: 

   fin j j
j

I S Q S    . 

This is the average difference between the receiver’s initial von Neumann entropy of the quantum sys-

tem, and his final von Neumann entropy.  A more fundamental difference between inI  and finI  is that the 

former is the average change in the observer Shannon entropy regarding the ensemble, where as the latter is 

the average change in the observers von Neumann entropy regarding the overall state of the quantum system.  

That is, for any ensemble  ,  inI H     and  finI S    , and the result is in finI I   .  

One can interpret this as saying that the observer cannot learn more about the classical information en-

coded in a quantum system than he learns about the state of the quantum system. This provides a physical 

interpretation for Hall’s bound.  

Further, this bound can only be saturated when all operators 
†

j j jA AU  commute.  

Remark. One consequence of the relation in finI I    is that, if we choose an ensemble, which has the 

maximal accessible information for a fixed  , we can only obtain all this information if all the final states 

are pure. Measurements, which leave the final state impure, leave some information in the system. That is, if 
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the final state is mixed, in general it depends on the initial ensemble, and as the result subsequent measure-

ments can obtain further information about the initial preparation, whereas this is not possible if the final 
state is pure.  

For a given   not all ensembles have an accessible information equal to  S  . In fact, this is possible 

if the encoding satisfies special conditions; in general, incomplete measurements will not even extract the 

accessible information from an ensemble. Consider the final states, 
j , which result from the measurement. 

Each of these consists of an ensemble, 
j  over the states 

i j
 , and  j i j

i

p i j   .  

Since these ensembles consist of states indexed by i , they can, in general, be measured to obtain fur-

ther information about the initial preparation.  

Since the accessible information is the maximal amount of information that can be obtained about i  by 

making measurements, we have the inequality: 

     ,in acc j acc j

j

I I Q I      U . 

Thus, the amount of extracted information by measurement U ,  ,inI  U , can only be equal to 

 accI   if the amount  acc jI   are zero for all j . If j is pure, then  acc jI  is zero. If j is not pure, 

then the accessible information of j  is only zero if, for any given j , the 
i j

  are the same for all i .  

The SWW bound shows that, if the initial ensemble   is chosen so that its accessible information is 

maximal [i.e., equal to    ], then the information obtained by an incomplete measurement will be reduced 

by the maximal amount of information which could be accessible from the final ensemble j , and not mere-

ly the actual information available in these ensembles, which would imply the bound given in:  

     ,in acc j acc j

j

I I Q I      U . 

In general, there is a gap between the information lacking in an incomplete measurement, and that 
which can be recovered by subsequent measurements: no matter what incomplete measurement is performed 

on it, the information which is not retrieved by the measurement can always be extracted by subsequent 

measurements.  

Remark. For inefficient quantum measurements, however, the inequality in finI I    does not hold. 

The reason for this is that for inefficient measurements finI  can be negative (whereas 
inI  is always non-

negative). An example of such a situation is one in which the initial state   is not maximally mixed, and the 

observer performs a von Neumann measurement in a basis unbiased with respect to eigenbasis of  . If the 

observer has no knowledge of the outcome, then his final state is maximally mixed. Further, if one mixes this 
measurement with one whose measurement operators commute with  , it is not hard to obtain a measure-

ment in which both inI and finI  are positive, but which violates the inequality in finI I   . 

These quantities are useful when considering quantum state preparation and, more general quantum 

feedback control. 

Information (communication) capacity of quantum computing 

Any computation (both classical and quantum) is formally identical to a communication in time. By 

considering quantum computation as a communication process, we relate its efficiency to its classical com-

munication capacity. At time 0t  , the programmer sets the computer to accomplish any one of several 
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possible tasks. Each of these tasks can be regarded as embodying a different message. Another programmer 

can obtain this message by looking at the output of the computer when the computation is finished at time 

t T . Computation based on quantum principles allows for more efficient algorithms for solving certain 

problems than algorithms based on pure classical principles. The classical capacity of a quantum communi-
cation channel is connected with the efficiency of quantum computing using entropic arguments.  

This formalism allows us to derive lower bounds on the computational complexity of quantum control 

and search algorithms in the most general context. 

Communication model of quantum computing  

In this model two programmers (the sender and the receiver) and two registers (the memory (M) register 
and the computational (C) register) are applied. The sender prepares the memory register in a certain quan-

tum state 
M

i , which encodes the problem to be solved. For example, in the case of search, this register will 

store the state of the list to be searched. The number N of possible states 
M

i  will be limited by the target 

list that the given computer could search. The receiver then prepares the computational register in some 

initial state
0

C . Both the sender and the receiver feed the registers (prepare by them) to the quantum comput-

er. The quantum computer implements the following general transformation on the registers: 

   0 0 †

C i C iM M
i i i i U U    , 

where   0 †

C i C ii U U   is the resulting state of the computational register that contains the answer to the 

computational basis and is measured by the receiver according to measurement basis (as exam-

ple,  0 , 1 or    
1 1

0 0 1 , 1 0 1
2 2

 
    

 
). The quantum computation should also work for 

any mixture  
1

N

i M
i

p i i


 , where ip  are probabilities. For the sender to use the above computation as a 

communication protocol, he has to prepare any one of the state 
M

i with an a priori probability ip . The 

entire input ensemble is thus:   0

1

N

i CM
i

p i i 


 . Because of the quantum computation, this becomes 

     0

1 1

N N

i C i CM M
i i

p i i p i i i 
 

    . 

Whereas before the quantum computation, the two registers were completely uncorrelated (the amount 

of mutual information is zero), at the end, the amount of the mutual information becomes: 

          :MC M C MC C i CI S S S S p S i         , where M  and C  are the reduced density 

operators for the two registers, MC  is the density operator of the entire  M C  system, and 

   logS Tr     is the von Neumann entropy.  

Remark. The sender conveys the maximum information when all the message states have equal a priori 

probability (which also maximizes the channel capacity). In that case the mutual information (channel capac-

ity) at the end of the computation is log N .   

Thus, the communication capacity MCI , defined above, gives an index of efficiency of a quantum com-

putation: A necessary target of a quantum computation is to achieve the maximum possible communication 

capacity consistent with given initial states of the quantum computing.  
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Remark. If one breaks down the general unitary transformation iU  of a quantum algorithm into a num-

ber of successive unitary blocks, then the maximum capacity may be achieved only after the number of 

applications of the blocks. In each of the smaller unitary blocks the mutual information between M and C  

registers (i.e., the communication capacity) increases by a certain amount. When its total value reaches the 
maximum possible value consistent with a given initial state of the quantum computing, the computation is 

regarded as being complete.  

Application of information formalism to any general quantum search algorithm  

Any general quantum algorithm has to have a certain number of queries into the memory register. This 
is necessitated by the fact that the transformation on the computational register has to depend on the problem 

at hand, encoded in the state
M

i . These queries are considered to be implemented by a block box into which 

the states of both the memory and the computational registers are fed. The number of such queries (needed in 

a certain quantum algorithm) gives the black box complexity of that algorithm and is a lower bound on the 

complexity of the whole algorithm.  

If the memory register was prepared initially in the superposition 
1

N

M
i

i


 , then, in a search algorithm, 

 O N  queries would needed to completely entangle it with the computational register (Ambainis, 2000). 

This gives a lower bound on the number of queries in a search algorithm. We can calculate the change in 

mutual information between the memory and the computational registers in one query step. The number of 

queries needed to increase the mutual information to log N (the perfect communication between the sender 

and the receiver), is then a lower bound on the complexity of the algorithm.  

Any search algorithm (whether quantum or classical) will have to find a match for the state 
M

i of the 

M register among the state 
C

j  of the C  register and associate a marker to the state that matches (here we 

suppose that 
C

j  is a complete orthonormal basis for the C  register). The most general way of doing such a 

query in the quantum case is the black box unitary transformation: 

 1 ij

B M C M C
U i j i j


  . 

Any other unitary transformation performing a query matching the states of the M  and the C  registers 

could be constructed from the above type of queries. 

We can to put a bound on the change of the mutual information in one such black box step. Let the 

memory states 
M

i  be available to the sender with equal a priori probability so that the communication 

capacity is a maximum. The initial ensemble of the sender then is  
1

1 N

M
i

i i
N 

 . Let the receiver prepare 

the register C  in an initial pure state 0 . In fact, the power of quantum computing stems from the ability 

of the receiver to prepare pure superposition of form 
1

1 N

C
j

j
N 

 . This is an equal weight superposition of 

all 
C

j .  

This can be done by performing a Hadamard transformation to each qubit of the C  register. In general, 

there will be many black box steps on the initial ensemble before a perfect correlation is set up between 
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the M and the C  registers. Let, after the k th  black box step, the state of the system be: 

     
1

1 N
k k k

M C
i

i i i i
N

  


  
  , where  k k

ij CC
j

i j  . 

The  1k th   black box step changes this state to 

1k        1 1

1

1 N
k k

M C
i

i i i i
N

  



 
   with    1 1 ijk k

ij CC
j

i j


    . 

Thus, only the difference of mutual information between the M and the C  registers for states are evalu-

ated.  

Remark. This difference of mutual information can be defined as follows. The amount of information 

lost may be quantified by the difference in mutual information between the respective states. Mutual infor-

mation is a measure of correlation between the memory M and the C  registers, giving the amount of infor-

mation about the C  register, which may be obtained from a measurement on the M register. The quantum 

mutual information between the M and the C  registers is defined as above. The mutual information loss for 

the step k  is  k

k CI S   . Then the difference of mutual information between the step k  and the step 

1k  can be shown to be the difference:    1

1

k k

k k C CI I S S 

    . 

Remark.  To understand how the entanglement (quantum correlation) between the M and the C  regis-

ters varies as we vary the density matrix for the combined system, we need to introduce some distance 

measures on density matrices. We will make use of three closely related distance measures: the trace dis-

tance  ,Tr   , the fidelity  ,F   , and the Bures distance  ,D   . These distances between density 

matrices   and   are defined to be as follows: 

 

 

   

   

1

2

2

,

,

, 2 1 ,

, 1 ,

T

F

D F

D F

   

   

   

   

 



 

 
 

where we define 
†A A A  to be the positive square root of 

†A A .  

The trace distance  ,Tr    is a metric on the space of density matrices and it is nonincreasing under 

quantum operations:       , ,T L L T     for all density matrices. The Bures distance  ,D    is 

also to be a metric on the space of density matrices and agrees with the trace distance for pure states. Bures 
metric does not increase under general complete positive maps (which is what the query represents when we 

trace out the M register). For our purpose, it is especially important to note that this is true for the case 

where L is a partial trace operation, as the partial trace is a trace – preserving quantum operation. The fidelity 

 ,F    is not a metric and for pure states   and   reduces to the overlap between the states, 

 ,F     . 

It was proved a useful continuity relation relating trace distance and entropy.  

Fannes’ inequality states that for any density matrices   and   such that 
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           
1

,Tr
e

   ,                   , log ,S S T d h T        , 

where d is the dimensional of the Hilbert space, and   logh x x x  .  

Recall that    , ,T D     the quantity    1

1

k k

k k C CI I S S 

     is bounded from 

Fannes’ inequality by 

         1 1 1 1

2 2 2, log , log ,k k k k k k k k

C C C C C C C CS S D N D D             . 

It can be shown that  2 0 1 2
,C C

N
F

N
 


  from which it follows that the change in the first step:  

   1 0 3
logC CS S N

N
   . 

The change    1k k

C CS S    in the subsequent steps has to be less than or equal to the change in 

the first step. This is because Bures metric does not increase under general complete positive maps as above 

is mentioned. Any other operation performed only on the C  register in between two queries can only reduce 

the mutual information between the M  and the C  registers. This means that at least  O N  steps are 

needed to produce full correlations (maximum mutual information of value log N  as a measure of a maxi-

mum entanglement) between two registers. This gives the black box lower bound on the complexity of any 

quantum algorithms. 

Intelligent coherent states with minimum uncertainty and maximal information 

The minimum-uncertainty coherent states (as example, for the harmonic-oscillator potential) can be de-
fined as those states that minimize the uncertainty relation of Heisenberg (leading to the equality in the 

uncertainty relations), subject to the added constraint that the ground state is a member of the set. They are 

considered to be as close as possible to the classical states. Beyond the harmonic-oscillator system, coherent 
states have also been developed for quantum (Schrodinger) systems with general potentials and for general 

Lie symmetries. These states are called (general) minimum-uncertainty coherent states and (general) dis-

placement-operator coherent states. There is also a different generalization of the coherent states of the 

harmonic-oscillator system. This is the concept of “squeezed” states. (Squeezing is a reduction of quadrature 
fluctuations below the level associated with the vacuum.)  

A. The even and odd coherent states for one-mode harmonic oscillator were introduced in 1970s. These 

states, which have been called Schrodinger cat states, were studied in detail. These states are representatives 
of non-classical states. Schrodinger cat states have properties similar to those of the squeezed states, i.e. the 

squeezed vacuum state and the even coherent state contain Fock states with an even number of photons.  

Definition: Intelligent states are quantum states, which satisfy the equality in the uncertainty relation for 

non-commuting observables. 

In quantum mechanics two non-commuting observables cannot be simultaneously measured with arbi-

trary precision. This fact, often called the Heisenberg uncertainty principle, is a fundamental restriction that 

is related neither to imperfection of the existing real-life measuring devices nor to the experimental errors of 
observation. It is rather the intrinsic property of the quantum states itself.  

The uncertainty principle provides (paradoxically enough) the only way to avoid many interpretation 

problems. The uncertainty principle specified for given pairs of observables finds its mathematical manifes-
tation as the uncertainty relations. The first rigorous derivation of the uncertainty relation from the basic non-
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commuting observables (i.e., for the position and moment,  ˆ ˆ,x p i ) is due to Kennard (1927). This deri-

vation (repeated in most textbooks on quantum mechanics ever since) leads to the inequality:
1

ˆ ˆ
2

x p   . 

In fact, it can be considered as a simple consequence of the properties of the Fourier transform that connects 

the wave functions of the system in the position and momentum representation (more general form of uncer-
tainty inequality with Wigner-Yanase-Dyson skew information in Appendix 2 are described). 

B. It is possible to present quantum uncertainty relations (UR) in terms of entropy or information (“en-

tropic UR” –EUR). The usual “standard UR” (for standard deviations) 

       
2 22 2 1 1

, , 2
4 4

A B A B A B A B    
      

(note that the second term in this inequality represents the covariance, or correlation, 

 
1

cov , :
2

A B AB BA A B          

between the observables A  and B  in the state  ) presented by an inequality of the entropic form  

   A B

ABS S S   

or in information form  

     ,I A I B I A B     

as more adequate expressions for the “uncertainty principle”. 

It is known that given two non-commuting observables, we can derive an uncertainty relation for them 

and the class of states that satisfy the equality sign in the inequality are called intelligent states (see, Defini-

tion). 

Example. If we have any continuous parameter   and any hermitian observable  A  which is the 

generator of the parametric evolution, then UR give us  
4


 A , where 

 
 

 
2

12 1

1
A A x dx






 

  
   is the parameter average of the observable uncertainty and 

 12

0




 
s

 is the scaled displacement in the space of the conjugate variable of A . This generalized 

UR would hold for position-momentum, phase-number or any combinations. For the case when initial and 
final states are orthogonal we know that all states of the form 

 
1

,
2

i j

i i
a a

i je e i j
 

   
  

   
 

 

are the only intelligent states which satisfy the equality  
4


 A . 

However, these states do not satisfy the equality when the initial and final states are non-orthogonal. In 

this case, if the generator of the parametric evolution A  can be split into two parts 10 AA   such that 0A  has 

a complex basis of normalised eigenvectors  
Iii 

  which degenerate spectrum  0a , with I  a set of 
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quantum numbers and 1A  has matrix elements    
jjii

AA 11 0  , and     111 aAA
jiij
 , then all states 

of the form 

 
0

1 1cos sin ,
i
a

i je a i a i j
  

   
     

      
    

 

are intelligent states for non-orthogonal initial and final states. 

C. It has been shown that the “Everett (entropic) UR” implies the famous Heisenberg UR as 

2


 pq . We shall compare various characterisations of “maximal information” and point out their con-

nection with “minimum uncertainty”. In the following we restrict ourselves mainly to “simple” observables 

(defined on the smallest non-trivial Boolean algebra  1,,,0 aa  ): we are interested in information with 

respect to single effect 

     : ln ' ln ' , 'E I E E E E E E I E        . 

Non-commutativity or incompatibility of (unsharp) properties E  and F  will, in general, exclude the 

possibility of measuring or preparing both of them simultaneously. In particular, if    YFFXEE PQ  ,  

are position and momentum spectral projections associated with bounded measurable sets YX , , then 

    0 YEXE PQ
 holds or, equivalently 

   1 1Q PE X E Y      , 

   1 1P QE Y E X      . 

Thus “certain” position and momentum determinations exclude each other, and the question arises as to 

what “degree of uncertainty” they can be “known” simultaneously. One may take any reasonable characteri-
sation of maximal joint knowledge, or joint information. In this case above mentioned statement can be put 

into the following equivalent form  

   

   

21 1

11 1

Q P

P Q

E FE X E Y

E FE Y E X

 

 

   

   

      
 

     

. 

The “state of maximal information” can be defined through three values.  

The first expression  FE   can be maximised and an explicit construction procedure for the corre-

sponding “state of maximal information” has been given below. Here we shall study the question of maxima 

for this quantity as well as for  FE   and for    FIEI    for an arbitrary pair of effects, E  and F . In 

particular, we shall show that each quantity can be maximal only if there exist states which lead to minimal 

uncertainty product in UR. 

Furthermore, in the case of projections the maxima of    FIEI    (if they exist) coincide with those 

of one of the quantities 




 FE   and 







 FE       ',,', FFFEEE  
. 

For maximal  FE   the variation of   FE  must vanish which implies the 

following equations:      FEFE  . Multiplying with E  or with F and taking the expecta-

tions yields  

       
2 2

cov ,E F EF E F E F              , 
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which leads to a minimal UR:       222
,cov FEFE   . 

Similarly, maximising the product  FE   gives     FEFEEF  2  and  

     
2 2

2 2 cov ,E F F E E F E F             

which leads again to a minimal UR,  FE  0 . 

Finally, maximal information sum    FIEI    will be realised in states satisfying  

     ln ln ' ' ln ln ' ' 0E E E E F F F F            . 

Generally this equation contains all stationary points, e.g. the minimum 
2

1
''   FFEE , or 

the joint eigenstates. Since we are looking for states of maximal information with respect to positive out-

comes for FE,  we shall assume 
2

1
E  and 

2

1
F . Then this equality implies: 

   
ln

'
, 0

ln
'

E

E
E F F F

F

F





 





    

 
  
     
 
  
 

 

and      FEFE ,cov
1 22

 


  which again gives rise to the minimal uncertainty product in UR. 

We have thus shown that all three notions of maximal information are consistent in so far as they imply 

minimal uncertainty product. 

Example. Let FE, denote position and momentum spectral projections, respectively: 

   YFFXEE PQ  , . The sum of probabilities  FE   has been shown to be maximal in the state  

min   with 
 

1/2
1/2

0 0
min 0 02 2

0 0

1 1
'

2 2 1

a a
E g E g

a a


   
   
    

 

provided that YX , are bounded measurable sets. Here 
2

0a  is the maximal eigenvalue of the compact opera-

tor (FEF) and 0g is the corresponding eigenvector satisfying 

22

0 0 0 0 0 0 2
, , 1FEF g a g F g g g   . 

It is clear from above description that min  must be an eigenstate of  FE  . This can also be seen di-

rectly in the following way. Introduce  

21 2

0 0 0 0 0 0 0 0 02
, 1,f a E g f a g FEF g E f f     . 

Then we have 

2 1

0 0 0 0 0 0,EFE f a f g a F f   
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and min can be written in the symmetric form 

 
min 0 0

0

1

2 1
f g

a
     


. 

We conclude that min  maximises all the three quantities   FE  ,   FE   and     FIEI   , 

and it minimises the uncertainty product FE   . 

Thus maximal information (minimal entropy) and minimal uncertainty can be achieved on intelligent 

coherent states and will again coincide. 

Conclusions 

We discuss the role of entropy changing in quantum evolution as information data flow processing and 

how the classical and quantum information amount changes in the dynamics of some quantum control algo-
rithms. We introduce the following qualitative axiomatic description of dynamic evolution of information 

flow in QA’s:  

(1) The information amount of successful result increases while the quantum algorithm is in execution; 

(2) The quantity of information becomes the fitness function for recognition of successful results and in-

troduces a measure of accuracy for them: in this case the Principle of Minimum of Classical / Quantum 

Entropy corresponds to recognition of success results on intelligent output states of quantum algorithm 

computation;  

(3) If the classical entropy of the output vector is small, the degree of order for this output state is great 

and the output of measurement process on intelligent states of quantum algorithm’s gives us the necessary 

information to solve with success the initial problem. 

These information axioms mean that the quantum algorithms should automatically guarantee conver-

gence of information amount to a precise value. This is a necessary condition in order to get robust and 

stable results for fault-tolerant computation in quantum control. 

Appendix 1: Relative entropies and divergence functions  

Divergence functions can be used to define metric tensors on the space of invertible states of a quantum 
system. These divergence functions play a central role in quantum information theory. 

As an example, let consider the quantum relative entropy, also known as von Neumann relative entropy:  

    log logvNS Tr   с с   (A1.1) 

It is the quantum generalization of the Kullback-Leibler divergence function used in classical infor-

mation geometry and, in the asympotic, memoryless setting, it yields fundamental limits on the performance 
of information-processing tasks. Another important family of relative entropies is the q-Renyi relative entro-

pies (q-RRE) 

    11
log

1

q q

RRES Tr
q

  


с с   (A1.2) 

where    0,1 1,q   . These divergence functions are able to describe the cut-off rates in quantum 

binary state discrimination. Two other examples, which are relevant for the definition of metric tensors, can 

be given. The potential function5 of the Bures metric tensor 
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    4 1BS Tr   
 

с с  (A1.3) 

and the potential function of the Wigner-Yanase metric tensor: 

    ½ ½4 1WYS Tr   
 

с с  (A1.4) 

Several efforts were done in order to find a common mathematical framework to unify this plethora of 

different divergence functions. A first (partial) result was achieved by the q-quantum Renyi divergence (q-
QRD) 

  
1 1

2 21
log

1

q q

q q

QRDS Tr
q

 

  
  

   

с с с  (A1.5) 

where again    0,1 1,q   . However, it has two important limitations: the data processing inequality 

(DPI) 

       QRD QRDS S   с с  (A1.6) 

where   is a completely positive trace preserving map (CPTP) acting on a pair of semidefinite Hermitian 

operators   and с , is not satisfied for  0,½q  and it does not contain the q-RRE family. 

Recently, a new family of two-point functions which includes all the previous examples was defined. It 

is the so-called q-z-Renyi Relative Entropy (q-z-RRE) 

  
1

2 2
,

1
log

1

q q q

z z z
q zS Tr

q
 

 
  

  
с с с   (A1.7) 

that can be recast as: 

  
1

,

1
log

1

z
q q

z z
q zS Tr

q
 

 
  

  
с с    (A1.8) 

Remark: In general, the product of two Hermitian matrices is not a Hermitian matrix. However, the 

product matrix 

1q q

z z


с  has real, non-negative eigenvalues, even though it is not in general a hermitian 

matrix. It means that the trace functional 

  
1

,

z
q q

z z
q zf Tr 

 
  

 
с с  (A1.9) 

is well defined as the sum of the the z-th power of the eigenvalues of the product matrix and it can be devel-
oped in Taylor series. 

In particular limits of the parameters q and z it is possible to recover the q-RRE family 

        1

,1 ,
1

1
: lim log

1

q q

q q z RRE
z

S S S Tr
q

    


  


с с с с   (A1.10) 

the q-QRD family  
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      
1 1

2 2

, ,

1
: lim log

1

q q

q q

q q q z QRD
z q

S S S Tr
q

   

 



 
    

   

с с с с с    (A1.11) 

and the von Neumann relative entropy: 

        1,1 ,
1

: lim log logq z vN
z q

S S S Tr    
 

   с с с с  (A1.12) 

The data processing inequality for the q-z-RRE was studied and it is not established yet in full generali-

ty. To prove it, one has to show that the trace functional (A1.9) is jointly concave when 1q  , or jointly 

convex when 1q  . The results of these analysis are well summarized and it results that the DPI holds only 

for certain range of the parameters as sketched in Fig. A1.1. 

 

Figure A1.1. A schematic overview of the various relative entropies unified by the q-z-relative entropy is 

shown. [The blue region indicates the range of the parameters in which the DPI was proven, while the 

orange region indicates where it is just conjectured. To keep contact with the notation , the divergence 

functions S are indicated with the letter D, the parameter q is indicated with  , D    is the von Neu-

mann relative entropy, minD  is the logarithm of the fidelity and  max : inf : 2D     ]. 

Since we are interested in computing the metric tensors starting from this two-parameter family of two-
point functions, it is convenient to consider the following regularization of the logarithm, the so-called q-

logarithm: 

  11
log 1

1

q

q
q

   


  with  
1

limlog logq
q

 


  (A1.13) 

Moreover, inspired by Petz, we will consider a rescaling by a factor 1/ q . In this way, the resulting 

family of functions will be symmetric under the exchange of  1q q  . Let us denote the resulting two-

point function with the same symbol of the q-z-RRE, that is: 

  
 

1

,

1
1

1

z
q q

z z
q zS Tr

q q
 

  
    

    

с с  (A1.14) 

Since the analysis of the DPI involves only the trace functional, we are ensured that the DPI holds for 

the same range of parameters of the q-z-RRE. Moreover, in the limit 1z  , it is possible to recover the 

expression for the Tsallis relative entropy as 
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      
 

 1

,1 ,
1

1
: lim 1

1

z
q q

q q z Ts
z

S S S Tr
q q

    



    
  

с с с с  (A1.15) 

in the limit 1z q  , we recover the von Neumann relative entropy (A1.12) as 

        1,1 ,
1

: lim log logq z vN
z q

S S S Tr    
 

   с с с с  (A1.16) 

in the limit z q  , we recover the divergence function of the Bures metric tensor 

        1 1 ,1,
2 2 2

: lim 4 1q z B
z q

S S S Tr   
 

    
 

с с с с  (A1.17) 

and finally, in the limit 1,z q  , we recover the divergence function of the Wigner-Yanase metric 

tensor: 

        1 ,1,1 1,2 2

: lim 4 1q z WY
z q

S S S Tr   
 

    
 

с с с с  (A1.18) 

All these special cases belong to the range of parameters for which 
,q zS is actually a quantum diver-

gence function satisfying the DPI. Consequently, the family of associated quantum metric tensors satisfies 
the monotonicity property. 

Appendix 2: Entropic-like uncertainty relations 

The uncertainty principle is an essential feature of quantum mechanics, characterizing the experimental 

measurement incompatibility of non-commuting quantum mechanical observables in the preparation of 

quantum states. Heisenberg first introduced variance-based uncertainty. Later, Robertson proposed the well-

known formula of the uncertainty relation,      
21

, , ,
4

Var R Var S Tr R S   , for arbitrary observa-

bles R and S, where  ,R S RS SR   and  ,Var R  is the standard deviation of R. Schrödinger gave a 

further improved uncertainty relation: 

       
2 21 1

, , , ,
4 2

Var R Var S R S R S R S      

where  R Tr R , and  ,R S RS SR   is anti-commutator. Since then many kinds of uncertainty 

relations have been presented. In addition to the uncertainty of the standard deviation, entropy can be used to 

quantify uncertainties. The first entropic uncertainty relation was given by Deutsch and was then improved 
by Maassen and Uffink:  

    2

1
logH R H S

c
   

where  jR u  and  kS   are two orthonormal bases on d-dimensional Hilbert space H, and 

  logj jj
H R p p   (   logk kk

H S q q  ) is the Shannon entropy of the probability distribution 

j j jp u u  ( k k kq    ) for state   of H. The number c is the largest overlap among all 

2

jk j kc u   between the projective measurements R and S. Berta et al. bridged the gap between crypto-

graphic scenarios and the uncertainty principle and derived this landmark uncertainty relation for measure-
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ments R and S in the presence of quantum memory B:      2

1
logH R B H S B H A B

c
    where 

     RB BH R B H H    is the conditional entropy with 

   RB j j AB j jj
u u I u u I     (similarly for  H S B ), and d is the dimension of the subsys-

tem A. The term      AB BH A B H H    appearing on the right-hand side is related to the entangle-

ment between the measured particle A and the quantum memory B. The bound of Berta et al. has been further 

improved. Moreover, there are also some uncertainty relations given by the generalized entropies, such as the 

Rényi entropy and the Tsallis entropy, and even more general entropies such as the  ,h   entropies. These 

uncertainty relations not only manifest the physical implications of the quantum world but also play roles in 

entanglement detection, quantum spin squeezing and quantum metrology. 

An uncertainty relation based on Wigner–Yanase skew information  ,I H  has been obtained with 

quantum memory, where        
2

21
, ,

2
I H Tr i H Tr H Tr H H        

   
 quantifies the 

degree of non-commutativity between a quantum state   and an observable H, which is reduced to the 

variance  ,Var H  when   is a pure state. In fact, the Wigner–Yanase skew information  ,I H  is 

generalized to Wigner–Yanase–Dyson skew information: 

          1 2 11
, , ,   0,1

2
I H Tr i H i H Tr H Tr H H   

                   
.  (A2.1) 

Here theWigner–Yanase–Dyson skew information  ,I H   reduces to theWigner–Yanase skew in-

formation  ,I H , when   . The Wigner–Yanase–Dyson skew information  ,I H   reduces to the 

standard deviation  ,Var H  when   is a pure state. The convexity of  ,I H   with respect to   has 

been proven by Lieb. Kenjiro introduced another quantity: 

             1 2 1

0 0 0 0 0

1
, , ,   0,1

2
I H Tr H H Tr H Tr H H   

            
 

  (A2.2) 

where  0H H Tr H I   with I  being the identity operator. For a quantum state r and observables R, S 

and 0 1  , the following inequality holds: 

       
2

, , 1 ,R S Tr R S      U U  

where      , , ,R I R I R    U  can be regarded as a kind of measure for quantum uncertainty. For 

a pure state, a standard deviation-based relation is recovered from Eq. (A2.3).  

Let k k k    and k k k    be the rank 1 spectral projectors of two non-degenerate observa-

bles R and S with the eigenvectors k  and k , respectively. We can define 

         , , , , ,k k k

k k

N I I               U U U  as the uncertainty of   associated to 

the projective measurement  k , and  ,  U  to  k . 

Let AB  be a bipartite state on 
A BH H , where 

AH  and 
BH  denote the Hilbert space of subsystems 

A and B, respectively. Let V be any orthogonal basis space on 
AH  and k  be an orthogonal basis of 

AH . 

We define a quantum correlation of AB  as  
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      min , ,AB AB k B A k
V

k

D I I I            (A2.4) 

where the minimum is taken over all the orthogonal bases on 
AH , A B ABTr  . For any bipartite state AB  

and any observable 
AX  on 

AH , we have    , ,AB A B A AI X I I X    . Therefore,   0ABD   .  

Furthermore,   0ABD    when AB  is a classical quantum correlated state.  

 ABD   has a measurement on subsystem A, which gives an explicit physical meaning: it is the min-

imal difference of incompatibility of the projective measurement on the bipartite state AB  and on the local 

reduced state A .  ABD   quantifies the quantum correlations between the subsystems A and B. We have 

the following. 

Theorem A2.1. Let AB  be a bipartite quantum state on 
A BH H  and  k  and  k  be two sets of 

rank 1 projective measurements on 
AH . Then 

        2 2

,, , ,
AAB AB k k AB

k

N I N I L D             U U  (A2.5) 

where    
 

   

2

,

,
, 1

, ,
A

A k k

k k

A k A k

Tr
L

I I
 

 

  
   

   
  .  

Theorem A2.1 gives a product form of the uncertainty relation. Comparing the results (Eq. (A2.3)) 

without quantum memory with those (Eq. (A2.5)) with quantum memory, one finds that if the observables A 

and B satisfy  , 0A B  , the bound is trivial in Eq.(A2.3), while in Eq. (A2.5), even if the projective meas-

urements k  and k  satisfy  , 0k k   , that is,  , , 0
A k kL     ,  ABD   may still not be trivial 

because of correlations between the system and the quantum memory. 

Corresponding to the product form of the uncertainty relation, we can also derive the sum form of the 
uncertainty relation: 

Theorem A2.2. Let AB  be a quantum state on 
A BH H  and  k  and  k  be two sets of rank 1 

projective measurements on 
AH . Then 

       2

,, , 2 , 2
AAB AB k k AB

k

N I N I L D              U U      (A2.6) 

From Theorems A2.1 and A2.2, we obtain uncertainty relations in the form of the product and sum of 

skew information, which are different from the uncertainty, which only deals with the single partite state. 
However, we treat the bipartite case with quantum memory B. It is shown that the lower bound contains two 

terms: one is the quantum correlation  ABD  , and the other is  , ,
A k k

k

L     which characterizes the 

degree of compatibility of the two measurements, just as for the meaning of 2

1
log

c
 in the entropy uncertain-

ty relation. 

For the Shannon entropy, Rényi entropy, Tsallis entropy,  ,h   entropies and Wigner-Yanase skew 

information, theWigner-Yanase-Dyson skew information characterizes a special kind of information of a 

system or measurement outcomes, which needs to satisfy certain restrictions for given measurements and 

correlations between the system and the memory. Different   parameter values give rise to different kinds 

of information. 
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The uncertainty relations both in product and summation forms in terms of the Wigner-Yanase-Dyson 

skew information with quantum memory have investigated. It has been shown that the lower bounds contain 

two terms: one is the quantum correlation  ABD  , and the other is  , ,
A k k

k

L    , which characterizes 

the degree of compatibility of the two measurements.  
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