
Электронный журнал «Системный анализ в науке и образовании»                        Выпуск №1, 2018 год 

1 

 

УДК 512.6, 517.9, 519.6 

BASIC RELATIONS OF QUANTUM INFORMATION THEORY. PT 1: MAIN 
DEFINITIONS AND PROPOERTIES OF QUANTUM INFORMATION 

Ulyanov Sergey1, Korenkov Vladimir2, Reshetnikov Andrey3, Tanaka Takayuki4, Rizzotto 

Giovanni5 

1Doctor of Science in Physics and Mathematics, professor;  

Dubna State University,  

Institute of system analysis and management;  

141980, Dubna, Moscow reg., Universitetskaya str., 19;  

e-mail: ulyanovsv@mail.ru. 

 
2Doctor of Technical science, professor;  

Deputy Director of the Laboratory;  

Joint institute for nuclear researches, Laboratory of Information Technologies;  

141980, Moscow reg., Dubna, Joliot-Curie, 6;  

e-mail: korenkov@cv.jinr.ru. 

 
3PhD in informatics, associate professor;  

Dubna State University,  

Institute of system analysis and management;  

141980, Dubna, Moscow reg., Universitetskaya str., 19;  

e-mail: agreshetnikov@gmail.com.  

 
4PhD, professor; 

The Graduate School of Information Science and Technology, Hokkaido University; 

N14, W9, Sapporo-shi, Hokkaido, Japan; 

e-mail:ttanaka@ssc.ssi.ist.hokudai.ac.jp. 

 
5PhD, professor; 

ST Microelectronics;  

20041 Agrate Brianza, Italy, Via C. Olivetti, 2;  

e-mail: gianguido.rizzotto@st.com 

 

The evolution of a quantum system can be examined from an information theory point of view. The 
complex vector entering the quantum evolution is considered as an information source both from the classi-
cal and the quantum level. 

Keywords: quantum computing, quantum information, von Neumann entropy, skew information. 

 

ОСНОВНЫЕ СООТНОШЕНИЯ КВАНТОВОЙ ТЕОРИИ ИНФОРМАЦИИ. Ч. 1: 

ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ И СВОЙСТВА КВАНТОВОЙ ИНФОРМАЦИИ 

Ульянов Сергей Викторович1, Кореньков Владимир Васильевич2, Решетников Андрей 

Геннадьевич3, Танака Такаюки4, Риззотто Джиовани5 

1Доктор физико-математических наук, профессор;  

ГБОУ ВО МО «Университет «Дубна»,  

Институт системного анализа и управления;  

141980, Московская обл., г. Дубна, ул. Университетская, 19; 

e-mail: ulyanovsv@mail.ru. 

 
2Доктор технических наук, профессор Института системного анализа и управления;  

Директор Лаборатории информационных технологий (ЛИТ, ОИЯИ),  

Объединенный институт ядерных исследований, Лаборатория информационных технологий;  

141980, Московская обл., г. Дубна, ул. Жолио-Кюри, 6;  

e-mail: korenkov@cv.jinr.ru. 

 
3Доктор информатики (PhD in Informatics), к.т.н., доцент;  

mailto:korenkov@cv.jinr.ru
mailto:agreshetnikov@gmail.com
mailto:ttanaka@ssc.ssi.ist.hokudai.ac.jp
mailto:gianguido.rizzotto@st.com
mailto:ulyanovsv@mail.ru
mailto:korenkov@cv.jinr.ru


Электронный журнал «Системный анализ в науке и образовании»                        Выпуск №1, 2018 год 

2 

 

ГБОУ ВО МО «Университет «Дубна»,  

Институт системного анализа и управления;  

141980, Московская обл., г. Дубна, ул. Университетская, 19;  

e-mail: agreshetnikov@gmail.com.  

 
4Доктор наук (PhD in Informatics),  

Высшая школа информатики и технологии,  

Университет Хокайдо;  
N14, W9, Саппоро-Ши, Хокайдо, Япония;  

e-mail: ttanaka@ssc.ssi.ist.hokudai.ac.jp. 

 
5Доктор наук, профессор; 

ST Microelectronics; 

Италия, 20041 Agrate Brianza, Via C. Olivetti, 2; 

e-mail: gianguido.rizzotto@st.com. 

 

Рассмотрена эволюция квантовой системы с точки зрения квантовой теории информации. 
Комплексный вектор состояния квантовой системы, описывающий квантовую эволюцию, рассмат-
ривается как источник информации как на классическом, так и на квантовом уровне. 
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Introduction: Basic concept of quantum entropy and information theory - Inter-
relations with measures of entanglement 

Information-theoretic analysis of quantum evolution is based on the results of classical and quantum in-

formation theory. Let us consider the main results of classical/quantum information theory and its role in 

information analysis of quantum evolution of successful solution searching.  

The most important tools and results of classical and quantum information theory Table 1 shows the 

most important results from classical/quantum information theory for information analysis and design of 

quantum evolution. 
Table 1: Summary of classical and quantum information theory 

                                                  Information theory 

Classical Quantum 

Shannon entropy: 

  logx x

x

H X p p   

Von Neumann entropy: 

   logS Tr     

Distinguishability and accessible information 

Letters always distinguishable: 

N X  

Holevo-Levitin bound: 

     : ,x x x x

x x

H X Y S p S p        

                                              Information-theoretic relations 

Fano inequality: 

     log 1e eH p p X H X Y    

Quantum Fano inequality: 

         2, 1 , log 1 ,H F E F E d S E       

Mutual information: 

     :H X Y H Y H Y X   

Coherent information: 

      , ,I E S E S E     

Data processing inequality: 

     : :

X Y Z

H X H X Y H X Z

 

 
 

Quantum data processing inequality: 

     

     

1 2 1

1 2 1, ,S I I

  

  

 

 

E E E

E E E
 

                                                 Noiseless channel coding 

 

Shannon’s theorem:  bitsn H X  Schumacher’s theorem: qubits x x

x

n S p 
 

  
 
  

Capacity of noisy channels for classical information 
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Shannon’s noisy coding theorem: 

 

   
 

max :
p x

C H X YN  

Holevo-Schumacher-Westmoreland theorem: 

   
 

   

 

1

,
max ,

,

j j

x x
p

x

x x x x

x

C S p S

p


 

   

 
   

 

   





E

E

 

The main problems that are investigated with these tools in information theory (that is important in an 
information analysis of quantum evolution) are the following:  

• Classical, quantum and total correlations: Interrelations with entanglement measures;  

• Accessible information and information-theoretical models of quantum measurement;  

• Extraction of information with efficient measurements and bounds on the mutual information.  

Design of quantum evolution and successful solutions is based on the same results.  

Let us consider briefly these results [1-17]. 

Information-theoretical models of quantum system evolution and irreversible 
measurements  

Mathematically output solutions of quantum evolution are described as quantum system entities and 

represented by Hilbert spaces vectors   usually normalized 1   . Quantum systems evolve unitari-

ly, that is, if a system is initially in a state 1 , it becomes later state 2  after unitary operations: 

1 2U   . Unitary operations are reversible, since 
† 1UU   and previous states can be reconstructed 

by:
†

1 2U U  . Because,
†

2 2 1 1 1 1 1UU I        , the operation of normalization, 

which soon will be interpreted as probability, is conserved. The measurement of the properties of these 

objects is described by a collection of operators  mM . The quantum object will found to be in the m -th 

state with probability   †

m mp m M M  , and after this measurement it is going to be in definite, 

possibly different from the starting one: 
†

m

m m

M

M M
 

 
  . 

In this case m should be viewed as the measurement outcome, hence information extracted from physi-

cal system. This way information can be assigned to each state of the quantum object. 

Example. In each energy state of an atom one can map four numbers or in each polarization state of a 

photon one can map two numbers say 0 and 1. It should be stressed here, that the measurement operators 

should satisfy the completeness relation: 
† 1m m

m

M M  , which results   † 1m m
m m

p m M M     as 

instructed by probability theory. However this implies that 
† 1m mM M    and looking at equation 

†

m

m m

M

M M
 

 
   one understands that measurement is an irreversible operation. 

Measurement process, trace and entropy Structurally, quantum mechanics has two parts: one part 

concerned with quantum states, the other with quantum dynamics. To find out what is going on inside a 
quantum system, one must perform a quantum measurement. And a partial trace operation can give the 

correct description of observable quantities for subsystems of a composite system: a partial trace operation 

consists to a projective measurement on a subsystem. The quantum operations formalism is a general tool for 
describing the evolution process of quantum systems, such process include unitary evolution, quantum 

measurement, and even more general processes.  
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Partial trace. The partial trace operator is the operation, which gives the description of observable 

quantities for subsystems of a composite system. The partial trace is defined by  

   BTr a a b b a a Tr b b  . 

The trace is cyclic and linear.  

Measurement. It is familiar that quantum mechanics describe projective measurements, “Positive-

Operator-Valued Measure” (POVM), and general measurements. A projective measurement is described by 

a Hermitian operator, M , on the state space of the system being observed 
m

m

M mP  , where 
mP  is the 

projector onto the eigenspace of M  with eigenvalue m . The possible outcomes of measurement correspond 

to the eigenvalues, m , of the observable. Upon measuring the state  , the probability of getting result m  

is given by   mp m P  .  

Example: The standard (projective) quantum measurement. We start by reminding the modalities of the 
standard quantum measurement (of one qubit). Let us consider a qubit in the superposition state: 

0 1a b   , where 0  and 1  form an orthogonal basis, called the computational basis, and a  and 

b , called probability amplitudes, are complex numbers such that the probabilities sum up to one: 
2 2

1a b  . The standard quantum measurement of the qubit   gives either 0  with probability 
2

a , 

or 1  with probability 
2

b . This is achieved by the use of projector operators.  

A projector operator   is defined by: 
2 † †, , T 

         .  

Thus a projector   is idempotent and Hermitian. Let us consider a general superposed quantum state: 

1

n

i i

i

c 


  in the Hilbert space 
nC , with 

2

1

1
n

i

i

c


 . The probability  Pr i  of finding the state   

in one of the basis states i  is, after a measurement:  
2

iPr i   . After the measurement, the state 


 has “collapsed” to the state 

 
i

Pr i




  . 

The n  projectors  1,2, ,i i n   are orthogonal: 
1

, 1
n

i j ij i i

i




      . For the case 0,1i   we 

have the two 2D-projectors: 
0 1

1 0 0 0
,

0 0 0 1

   
      

   
. 

For which it holds: 
2 2

0 1 1 0 0 0 1 1 0 10, , , 1               . The actions of 0  and 1  on the 

basis states are, respectively:  

0 0

1 1

1 0 1 1 1 0 0 0
0 0 , 1 0

0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0
0 0, 1 1

0 1 0 0 0 1 1 1

         
                

         

         
                

         

. 

From which it follows that their action on the superposed state is, respectively:  

0 10 , 1a b     . 

The probability of finding the qubit state in the state 0  is, for example:  
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 
2 2 2

00 0Pr a a    . 

After the measurement, the qubit has “collapsed” to the state: 

 
0

2

0
0

0

a

Pr a




    . 

Then, a lot of quantum information that encoded in qubit state is made hidden by the standard quantum 
measurement. As a projector is not a unitary transformation, the standard quantum measurement is not a 

reversible operation. This means that the hidden quantum information will never be recovered (i.e., we will 

not be able to get back the superposed state).  

We can see that a project measurement on a subsystem is the same as a partial trace. To see it clearly, let 

us consider an example. 

Exampe: GHZ state. In this case the GHZ state is as  

 
1

0 0 0 1 1 1
2

GHZ A B C A B C    

of a three-qubit system ABC . Then trace one qubit (suppose of a system A ) out the three- qubit sys-

tem. It has 

  00 11

1 1

2 2

BC BC

A GHZ GHZTr      , 

where 00 110 0 0 0 , 1 1 1 1BC BC

B C B C B C B C   . After a partial trace on system A  the system of BC  

has a probability 
1

2
p   in state 

00

BC  or in the state 
11

BC . Obviously, the quantum measurement postulate 

tells us that is we perform a project measurement in basis  0 , 1  on the system A , the measurement 

result is in state 0  (consists to 
00

BC ) or in state 1  (consists to
11

BC ) with a probability 
1

2
p  . Consider 

the case the three qubit in the state w :  
1

1 0 0 0 1 0 0 0 1
3

A B C A B C A B Cw    . 

Let us suppose we trace out the qubit of the system A . Then we have 

  00

1 2

3 3

BC

A BC BCTr w w       , where  
1

0 1 1 0
2

BC B C B C

    is a Bell state. 

Clearly, after a project measurement on a system A  in basis 0 , 1 , the system A  has a probability 

1

3
p   in the state 1  (consists to

00

BC ) and a probability 
2

3
p   in the state 0  (consists to BC

 ).  

Remark: Physical interpretation of quantum measurement processes. Complementarity principle tells us 
the microscopic world has the behavior, wave-particle duality. One cannot draw pictures of individual quan-

tum processes. To gain information of a quantum system, one has to perform a quantum measurement. A 

unitary operation on a quantum system will keep the wave behavior of the system. But, a non–unitary opera-
tion will destroy the wave behavior of the system. In the quantum case, the completeness relation requires 

that trace of   equal to one,   1Tr   . We can see it consists to the quantum measurement: 

  †1 m m
m m

p m M M    . 

A trace process can be treated as a notion that we can find out the particle in the whole space to a cer-

tain. After a trace process on a quantum system, the wave behavior disappeared completely. If the quantum 
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system is trace-preserving (   1Tr   ), which means that the trace of this quantum system is unit, the 

probability of find out the particle is 1.  

Example: Quantum dualism and quantum measurement. Consider the case of quantum measurement. 

When we perform a projective measurement on a quantum system, the result of the measurement is in a state 

with the probability   †

m mp m M M  . Since the state is in an orthogonal state after a projective 

measurement, according to the definition i
i

a i    of quantum system, the behavior of this system is 

particle. The wave behavior disappeared. But, POVM maybe shows some wave behavior. Suppose a particle 

is a two-dimension  0 , 1  quantum system. Consider a POVM containing three elements: 

  1 2

2 2 1
1 1 ; 0 1 0 1 ;

21 2 1 2
E E        

 
3 1 2E I E E   . 

We can see that 1E , 
2E and 

3E  are not orthogonal to each other. Then after a POVM, the quantum sys-

tem will keep some wave behavior and appear some particle behavior.  

Example: Information erasure and quantum measurement. We will assume to have a large number of 

bits but they will be erased individually, one by one. Landauer’s principle argues that since information 

erasure is a logical function, which does not have a single-valued, inverse, it must be associated with physi-
cal irreversibility and require heat dissipation. Suppose we have a quantum system, which is in an unknown 

state  . An information erasure process is that we prepare this system in a standard state, : 0 0 E , 

where   is an arbitrary state and 0 0  is a standard state. This information erasure process is non-unitary 

generally. If the system is in a known state, this information erasure process can be realized by a unitary 
operation. But in the case we have a large number of bits to erase, the information erasure operation must be 

irreversible. In this case information erasure will be considered as the quantum state erasure of a quantum 

system. Information erasure operation can be realized by a quantum projective measurement and a unitary 

operation: ( ) : ; ( ) : 0 0i M j j ii U j j   . 

First, we perform a projective measurement M . Then the quantum system will be in a known state 

(suppose in the state j j ) after the quantum measurement. We can perform a unitary operation U  on the 

state j j  to prepare the system in state 0 0 . Suppose we want to erase the state information of quan-

tum system A , which is in a known state  .  

We can perform a projective measurement described by projectors 
jP . We can gain the measurement 

result (suppose in state j ). Then we can perform a unitary operation U  to prepare the system in a 

state 0 . This is an information erasure process.  

An information erasure operation will destroy the wave behavior completely. After an information eras-

ure operation, the system is in state 0 0 . There is no wave behavior in this quantum system. Since the 

information erasure operation is physical irreversible, the wave behavior of the quantum system cannot be 
recurred.  

Quantum operations and von Neumann entropy 

The entropy of a system measures the amount of uncertainty about the system before we learn its value. 

It is a measure of the “amount of chaos” or of the lack of information about a system. If one has complete 

information, i.e., if one is concerned with a pure state,   0S   .  A unitary operation does not change the 

entropy of a system because a unitary transformation does not change the eigenvalues of  .  
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In general, a non-unitary transformation would change the eigenvalues of  . So a non-unitary opera-

tion would change the von Neumann entropy of a quantum system.  

Suppose 
jP  is a complete set of orthogonal projectors and   is a density operator. Then the entropy of 

the state 
†

i i
i

P P     of the system after measurement is at least as great as the original entropy, 

    0S S    , with equality iff   . So, the uncertainty of the system increases after under the 

projective measurement if we never learn the result of the measurement. The entropy of the system would 
increase under a projective measurement. How does the entropy behave depends on the type of measurement 

which we perform. Projective measurement increases entropy of a quantum system. But, generalized meas-

urements can decrease entropy of a quantum system.  

Example. Consider a trace operation. The information of quantum system disappeared completely after 
a trace operation. So the uncertainty of the quantum system would increase. In another view, a trace process 

can be realized by a projective measurement if we do not know the measurement result. So a trace operation 

would increase the entropy of the system. Information erasure process will induce the entropy of the envi-
ronment increase. Suppose a quantum system is in a state  . The von Neumann entropy of the system is: 

  0S   , where   0S    iff   is a pure state. After the information erasure operation, the system is in 

the known state 0 0 . The entropy of the system is zero. The entropy of the system is non-increasing. 

Since entropy does not decrease, the entropy of the environment must increase. To realize the information 
erasure process, there must be interaction between system and environment. An information erasure process 

has to exchange momentum-energy with environment randomly. In other view, an information erasure 

process can be realized by a projective measurement and a unitary operation. A unitary operation does not 

change the entropy of the system. The change of entropy is derived by the measurement. A measurement will 
induce exchange of momentum-energy between system and environment. Here, the projective measurement 

will decrease the entropy of a system because we have to know the result of the measurement if we want to 

realize the information erasure operation. 

Remark. The probabilistic features of quantum states are different from that of classical thermodynam-

ics. The difference is demonstrated by taking two totally independent facts A and B . Then the probability of 

both of them occurring would be:    Cl

ABP P A P B  . In contrast, in quantum mechanics the wave func-

tion should be added, and by calculating the inner product probabilities are obtained. More analytically,  

    

   

2Re

                                             2Re

Q

AB A B A B A A B B A B

in general
Cl

A B AB

Interference

P

P A P B P





     

   

         

 
. 

For this reason a quantum version of thermodynamics for description of quantum probability is needed. 

In the sequel the name “thermodynamical probabilities” is used to distinguish the statistical mixture of 

several quantum states, from the quantum probabilities occurring by observation of a quantum state.  

The unitary evolution of the system can be generalized by quantum operations   †

i i
i

E E  E , 

where 
†

i i
i

E E I . Quantum operations are sometimes referred as superoperators. Quantum thermodynam-

ics just can be viewed as a transition from classical to quantum thermodynamics.  

Example. Suppose an ensemble of n particles is given in equilibrium. For this ensemble says that for the 

i -th particle, there is a probability: 
1

i

j

E

i E

j

p e
e











, to be in this state, where  
1

Bk T


  with Bk  

Boltzmann’s constant and T  the temperature. If the particles, where described by quantum mechanics, then 

if the i -th would have an eigenenergy iE , given by the solution of the Schrodinger equation 

i i iH E  , where H is the Hamiltonian of the system.  
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With the help of equation 
1

i

j

E

i E

j

p e
e











the density matrix 
i i i

i

p  


 can be written as: 

 
1 1 1

i i

j j

E EH

i i i i i iE EH
i i

j j

p e e p e
Tr ee e

 

 
     

 
     

 
, 

which is a generalization of classical thermodynamic probability 
1

i

j

E

i E

j

p e
e











.  

Von Neumann entropy and relevant measures of quantum information theory 

Willing to describe quantum information and quantum disorder, one could use quantum version of en-
tropy, and in order to justify its mathematical definition, recall how Shannon entropy was given 

  logi i
i

H X p p  , and assume that a density matrix is diagonalized by x
x

x x   . Then naturally 

quantum entropy of  is defined as:   logx x
x

S   


 . 

Translating this into the mathematical formalism, the von Neumann entropy is defined as  

   logS Tr  


 . 

The last formula is often used for providing theoretical results and equation 

  logx x
x

S   


  

is used for calculations.  

Example. Let us consider the von Neumann entropy of the density matrix 

      
1

0 0 1 0 1 0 1
2

p p       

for the quantum state  
1

0 0 1
2

p
p


   that is found 

  1 1 2 2

1 1

2 2
log log

1 1

2 2

p p
p

S S
p p

    

    
  

     
   

    

, 

where 
2

1

1
1 1 2 2

2
p p     

 
 and 

2

2

1
1 1 2 2

2
p p     

 
are the eigenvalues of the correspond-

ing matrix.  

In general case,    ,1S H p p   even if the same probabilities where assigned for both of them.  

This shows that quantum probabilities are not expelled by quantum thermodynamics. The equality could 
only hold if the probabilities written in Shannon’s entropy are the eigenvalues of density matrix. 

Main information measures 
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Following the same path as for classical information theory, in the quantum case it is straightforward to 

define the joint entropy, the relative entropy of  and  , the entropy of A conditional on knowing B , and 

the common or mutual information of A and B . Each case is correspondingly: 

         

                 

( ) , log ; ( ) log log ;

( ) , ; ( ) : ,

AB ABi S A B Tr ii S Tr Tr

iii S A B S A B S B iv S A B S A S A S A B S A S A B

       
 

 

  

      

. 

One can see that there are a lot of similarities between Shannon’s and von Neumann’s entropies.  

Example: Shannon and von Neumann measure of entropy. As measure of classical information we shall 

use Shannon entropy 
ShH . Consider a complex vector of modulus 1 in the Hilbert space

nQQ HilHil  ...
1

, 

where 
kQHil has dimension 2 for every k, written as a complex linear combination of basis vectors: 

 
n

iii

iii iii
n

n
 



...2

1,0,...,,

1...

21

21
 . Then, the Shannon Entropy of   with respect to the basis 

 
 1,0,...,1

1

...



niinii  is so defined:  

 











1,0,...,,

2

...

2

...

21

2121
log

n

nn

iii

iiiiiiShH  , where 
2

...21 niii  

is interpreted as the probability of measuring vector niii ...21 .  

The Von Neumann entropy is used to measure the information stored in quantum correlation. Let 

   be the density matrix associated to state   and  n,...,1 . Then we define: 

     nTr ,..,1 ,  where    ...,..,1 nTr  is the partial trace operator (see below).  

The Von Neumann entropy of qubit j  in   is defined as:     


logTrS  

The following definitions are useful: 

 

          

 
           

        

      

          

1 ; ; ; ; ;

,
2 ; ;

, , , ,

3 ;

4 ; ; ; ; ;

VN VN

VN VN VN VN

VN VN VN

VN VN

VN VN

S h k l S h I h k I h l I h k l

S h S k S l S h k
I h k l

S h l S k l S h k l

S h k S h I h k

S h k l S h I h k I h l I h k l

    

   



  

  

    

   

  


  

 

   

 

 

for  , , 1,..,h k l n .  These quantities can be represented in a Wenn diagram of Figure 1.  

Remark. Measures of entropy are different from most physical quantities. In quantum mechanics one 

has to distinguish between observables and states. Observables (like position, momentum, etc.) are mathe-

metically described by self-adjoint operators in Hilbert space. States (which generally are mixed) are charac-

terised by a density matrix 0 , i.e. an Hermitian operator, with trace   1Tr . The expectation value of 

an observable A  in the state   is  ATrA  . Now entropy is not an observable that means that there 

does not exist an operator with the property that its expectation value in some state would be its entropy. It is 
rather a function of state.  
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 hS


 

 khI ;


 

 lkhS ;


  lhkS ;


 

 khlS ;


 

 lS


 

 hS


  kS


 

 lkhI ;;


 

 khS


 

 hkS


 

 kS


 

 khS ,


 

 

Figure 1. Wenn diagram for entropy and mutual information 

Due to the Jaynes relation between the information-theoretical and physical entropy via Boltzmann’s 

constant, Bk , one can ascribe to any quantum object a certain value of its physical entropy ShB

Cl

ph HkS  . 

The classical limit 
Cl

phS  of the expression for the entropy can be justified mathematically on coherent 

states. The best thing one can do is to measure the probability of finding a particle in a state with minimum 

uncertainty centred on the classical values, i.e. in a coherent state. 

Remark. In general case SS Cl

ph  . Let, with the usual observation
 

2
:

ipq
z


 ,   0zWz   be a co-

herent state with expectation values of position, or momentum, q  or p , respectively. In configuration 

space, 0  is explicitly given by the wave function 


2

4

2

1
x

e



 and  zW  is the unitary operator 

 
 qPpQ

ezW


 

1

 with PQ,  operators of position, or momentum, respectively. 

We now define the classical density distribution corresponding to the density matrix   by  

  zzz  : . 

For every function  zf  there exists at most one density matrix   that    zfz   and 

1  zz
dz

Tr 


 . The relation SS Cl

ph   is true because, for       00;0ln:  xxxxxs  due to 

concavity,     zszzzs   . 

Hence:          





SsTrzsz
dz

zs
dz

SCl

ph   .  

More generally, for any convex (concave) function f ,        zf
dz

fTr 


  . By continuity 

of  z , SS Cl

ph  would imply     zszzzs    for all z , i.e. regarding the strict concavity of  S , 

every z  must be an eigenvector of  , which is impossible.  

Hence, SS Cl

ph  . 

Remark. The classical entropy is not invariant under every unitary transformation, i.e. we do have not 

    Cl

ph

Cl

ph SUUS *
 for everyU but for a restricted class only. For instance if  0zWU  , then 



Электронный журнал «Системный анализ в науке и образовании»                        Выпуск №1, 2018 год 

11 

 

                  


 Cl

ph

Cl

ph SzzS
dz

zWzWzWzWS
dz

zWzWS   000000 00 . 

This argument also works for all unitary U  such that    'zWzUW   times a phase factor provided 

that 'dzdz   (canonical transformation).  

If    is a pure state (unit vector),   . Then  
2

zz   , and  

 
2

2

ln2 zz
dz

S cl

ph 


  . 

Inserting for 0z , we obtain:   1
22




 ze
dz

S
zcl

ph


 . 

On the other hand, there exist pure states with arbitrary high classical entropy: it suffices to show that 

for every 0  one can find unit vectors   such that  z  for all z .  

For them a well-known inequality tells us that:   2ln  cl

phS .  

We conjecture that the states with minimal classical entropy are exactly given by the density matri-

ces zz , and consequently,      1cl

phS .  

In order that  cl

phS  be small,  zSup   must be close to one, otherwise the inequality mentioned be-

fore gives a value too large for classical entropy. Now if  zSup   is exactly equal to 1, then, by continuity, 

there is some 0z  with   10 z , i.e. 100 zz  . Since 1 this implies 1  and   00 zz  ; 

on the other hand,   1Tr  , hence 00 zz  because all other eigenvalues of   must be 0.  

Thus in general case Cl vN
ph phS S . These entropies are used below in information analysis of the quantum 

evolution. 

The quantum conditional entropy ( | )S X Y  is defined by a natural generalization of the classical case as 

|( | ) lgvN
XY XY X YS X Y Tr  

 
    , where

1 1

| lim (I )

n

n n
X YX Y XYn





 
 
 
  

    , which should be an analogue to the 

conditional probability ( | )p x y . The quantity IX  is the unit matrix in the Hilbert space for X and 

Y XYTr      denotes a “marginal” density matrix – an analogue to the “marginal” probabil-

ity ( , )y
x

p p x y . The above definition of ( | )S X Y  leads to an analogue of the classical Shannon theory 

holds also for quantum entropy: ( | ) ( , ) ( )vN vN vNS X Y S X Y S Y  .  

The complicated expression of |X Y  and the fact that a limit has to be used are due to the fact that the 

joint density matrix ( )XY  and the marginal matrices IX Y  do not commute in general. If they do com-

mute, the whole expression gets much simpler, as discussed below. In spite of the apparent similarity be-

tween quantum ( | )vNS X Y  and classical ( | )ShS X Y  the fact that in the quantum case we deal with (density) 

matrices, rather than with numbers, as in the classical case, brings quite a different situation for quantum 

information theory and potential far exceeding the classical one.  

While ( | )p x y  is a probability distribution in x (i.e., 0 ( | ) 1p x y  ), its quantum analogue ( | )X Y is not 

a density matrix. It is Hermitian and positive but its eigenvalues can be larger than 1 and, consequently, the 

conditional entropy can be negative.  

This helps to explain the well-known fact that quantum entropy is non-monotonic, and it can be the case 

that ( , ) ( )vN vNS X Y S Y , i.e. the quantum entropy of the entire system can be smaller than entropy of one of its 
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subparts (what is not possible in the classical case). This happens, for example, in the case of quantum en-

tanglement as shown in the following example. 

Example. Consider the Bell state  
1

00 11
2

    of the Hilbert space AB A B H H H , where 

2A B H H H . The density matrices AB   , |,   A A B   are as follows:   

1
0

2

1
0

2

A

 
 
 
 
 
 

 , |

1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

A B

 
 
 
 
 
 
 


, and 

1 1
0 0

2 2

0 0 0 0

0 0 0 0

1 1
0 0

2 2

AB

 
 
 
 
 
 
 
 
 


. 

Hence: ( ) ( ) 1vN vNS A S B  . The density matrix is 1
| (I )A B AB A B     (because in this case the joint and 

marginal matrices AB and I BA   commute).  

Hence, ( ) ( ) ( | ) 1 1 0S AB S B S A B      because ( | ) 1.S A B    

Unlike in classical (Shannon) information theory, quantum (von Neumann) conditional entropies can be 
negative when considering quantum entangled systems, a fact related to quantum non-separability, so that 

entanglement might be viewed as super-correlation.  

Quantum mutual information ( : )I X Y , as an analogue of the classical mutual information ( : )I X Y  is de-

fined on the base of “mutual” density matrix 
11

: lim ( )

n

nn
X Y X Y XYn





 
 
 
  

     , and the definition implies the 

standard relation: ( : ) ( ) ( | ) ( ) ( ) ( )I X Y S X S X Y S X S Y S XY     . 

This definition is reduced to the classical one for the case where XY  is a diagonal matrix. 

However, not all basic equalities and inequalities of the classical information theory transfer from the 

classical to the quantum case. For example, in the classical case: ( : ) min ( ), ( )I x y S x S y   , but in the quan-

tum case the best upper pound possible is ( : ) 2min ( ), ( )S X Y S X S Y   . 

Additional basic properties of quantum von Neumann entropy are summarized below: 

 

1 Invariance: ( ) ( )vN vNS S U U   for any unitary matrix U; 

 

 

 

 

2 

2.1. Concavity:  

if 1 1 2 2 1 2 1 2,  1,  0              , then 1 1 2 2( ) ( ) ( )vN vN vNS S S      ;  

2.2. Strong concavity:  

a.      i i i i

i A B i A i B
i i i

S p p S S p        ; 

b.      i i i i

i A B i B i A
i i i

S p p S S p        ; 

c. 

          max ,i i i i i i

i A B i A i B i B i A
i i i i i

S p p S S p p S S p              

 

3 

3.1. Additivity: 1 2 1 2( ) ( ) ( )S S S      ; 

3.2. Subadditivity: if   is a density matrix of a bipartite system A B ,   
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1 2,B ATr Tr    , then 1 2 1 2( ) ( ) ( ) ( )vN vN vN vNS S S S        ; 

4 Lower bound: 1( ) logvNS    , where 1 is the largest eigenvalue of  . 

 

5 
Triangle inequality:  

1
2 ,

2
A B C A B C A BS S S S S S S S       

Relative entropy  

The classical Kullback-Leibler information admits several extensions to the quantum case. The most 
successful appeared the most straightforward definition due to Umegaki as:  

     log logS Tr Tr     


  . 

This entropy is an important tool in the quantum theory of noise channels. Its basic property is mono-

tonicity (Uhlmann inequality). We have for any quantum operation : 

   S S      . 

This inequality can be viewed the counterpart of the Boltzmann H-theorem in statistical physics.  

As such one can prove the following result: 

   0, 0S S         , 

and is known as Klein’s inequality. This inequality provides evidence of why von Neumann relative en-
tropy is close to the notion of metric. Relative entropy satisfies also the following inequality: 

 
1

2
S      , 

which is generalization of the similar one for Kullback-Leibler relative entropy.  

Main properties of relative entropy are as following: 

 

 

1 

Monotonicity of relative entropy under completely positive, trace preserving maps   

      S S       

 

2 

Monotonicity of relative entropy under partial trace 

   A B AC BCS S     

 

3 

Strong subadditivity of von Neumann entropy I and II, where I and II are equivalent 

(I)          A B AC BCS S S S      ; 

(II)         ABC B AB BCS S S S       

 

4 

Joint convexity of relative entropy 

   i i i i

i i i
i i

S p p p S      

 

5 

Generalized (equivalent) inequality, concavity of conditional entropy 
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       i i i i

i AB i B i AB B
i i i

S p S p p S S          
 

 

6 

The entropy exchange  ,exS  E  for a quantum operation 

      , 0exS S S    E E  

Since these five inequalities are equivalent, we can obtain any one of them from one of the other four 

inequalities. 

Remark. The Kullback-Leibler divergence offers an information-theoretic basis for measuring the diver-
gence between two given distributions. Its quantum analog fails, however, to ply a corresponding role for 

comparing two density matrices, if the reference states are pure states. The non-additive quantum infor-

mation theory inspired by nonextensive statistical mechanics is free from such a difficulty and the associated 
quantity, termed the quantum q -divergence, can in fact be a good information-theoretic measureof the 

degree of state purification. The corresponding relation between the ordinary divergence and the q -

divergence is violated for the pure states, in general.  

Example: Quantum Kullback-Leibler divergence. In classical information theory, a comparison of two 

distributions is customarily discussed by employing the Kullback-Leibler divergence. Its quantum-

mechanical counterpart is the quantum divergence of a density matrix   with respect to a reference density 

matrix , which is given by:  

 ln lnK Tr            , 

where the equality holds iff   . However, since ln  is a singular quantity if the reference state 

 is a pure state, this quantity turns out to be inadequate for a measuring degree of purification. The quan-

tum q -divergence is obtained by replacing the derivative 

 1

01

x xd
K Tr

xdx
    



   
, 

with the Jackson q -derivative:  1

01

x x

q qK D Tr
x

    



   
, where 

   

 1
q

f qx f x
D

x q





 

denotes the Jackson differential operator. Than qK      can be defined as  

   1 11
ln ln

1

q q q q

q q qK Tr Tr
q

                   
. 

The crucial difference between K      and qK      is that, in marked contrast with ln , 

lnq is a well-defined quantity for a pure reference state    . In fact, in this case, 

 1 0 1q      , whereas    ln 1I    , which is divergent, where I and  1  are the unit 

matrix, and the Riemann   function, respectively. 

Accordingly, equation  ln lnq

q q qK Tr            is seen to be:  

 
1

1
1

q

qK
q

           
. 

The additive limit 1q  cannot be taken in this equation anymore. 
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Particular case. Let   is also a pure state,    . Then 

2

1

FS
q

d
K

q
       

, 

where 
22 1FSd     is the Fubini-Study metric in the projective Hilbert space, which may give the 

geometric interpretation to quantum uncertainty and correlation. 

Example: Purification of Werner state. The Werner state is a state of a bipartite spin-
1

2
 system, i.e., two 

qubit, given as follows:  

 
1

3
W

F
F        

            , 

where    
1 1

01 10 , 00 11
2 2

        are the Bell states, and F is the fidelity with 

respect to the reference state      .  

Its allowed range is 
1

1
4

F  , and 
W is known to be separable iff 

1

2
F  .   

The quantum q -divergence of 
W with respect to the reference state       is calculated to be 

 
1

1 0
1

q

q WK F
q

         
  

, 

where the zero value is realized when 1F  or 0q  . However, as already stressed, the limit 

01q   is singular and does not commute with the limit 01F  .  

Remark. The relative entropy is used as a distance; this distance is not a metric because it is not sym-

metric under interchange of the states. Corresponding to Shannon’s entropy, 

   
1

log , logS d S d
d

      . In addition to this from definition of von Neumann entropy it 

follows that:    0, 0S S is pure     . 

One can also prove that supposing some i  states, with probabilities ip  have support on orthogonal 

subspaces, then: 

     i i i i i
i i

S p H p p S    . 

Directly from this relation the joint entropy theorem can be proved, where supposing that ip are proba-

bilities, i are orthogonal states for a system A , and i is an set of density matrices of another system B , 

then:  

     i i i i i
i i

S p i i H p p S     . 
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Example: Splitting of information in a particular quantum state into classical and quantum part. Con-

sider performing a general measurement on the state,
†

i iA A , such that 
 

†

†

i B ii

B

i B i

A A

Tr A A





 . The final state 

of subsystem B  is then
† i

i B i i B
i i

A A p   . The entropy of the residual states is  i

i B
i

p S  . The classi-

cal information obtained by measuring outcomes i with probabilities ip is  H p . If the states 
i

B  have 

support o orthogonal subspaces, then the entropy of the final state is the sum of the residual entropy and the 
classical information, i.e.,  

     i i

i B i B
i i

Classical
Quantum

S p H p p S    . 

It has been shown that the state 
i

B i B
i

p    can be reconstructed with arbitrary high fidelity from the 

classical measurement outcomes and the residual states iff the residual states 
i

B  are on orthogonal subspac-

es. We see then that the information in a quantum state may be split into a quantum and a classical part.   

The entropy of tensor product    is found to be      S S S      . Another result can 

be derived by Schmidt decomposition (see, in details Vol. 83).  

If a composite system AB is in a pure state, it has a subsystems A and B with density matrices of 

equal eigenvalues, and    S A S B . 

A great discrepancy between classical and quantum information theory is quantum entanglement and its 

measures. The tools described in above can help reveal a great discrepancy between classical and quantum 
information theory: entanglement.  

Entanglement  

 In quantum mechanics two states are named entangled if they cannot be written as a tensor product of 

other states. For the demonstration of the above mentioned discrepancy, let for example a composite system 

AB be in an entangled pure state AB , then, because of entangled, in the Schmidt decomposition it should 

be written as the sum of more than one terms: i A B

i I

AB i i


  , with 1I  , where Ai and Bi  are 

orthonormal bases. The corresponding density matrix is obviously 

,

AB

i j A B A B

i j I

AB AB i i j j 


  . 

As usually the density matrix of the subsystem B can be found by tracing out system A , 

  2

, ,

B AB

A i j A A B A A B i B B

i j k I i I

Tr k i i j k j i i   
 

    . 

Because of assumption 1I   and the fact that Bi are orthonormal bases and it is impossible to collect 

them together in a tensor product, subsystem B is not pure. Thus, according to the property: 

  0,S     0S B  , AB  is pure and   0S is pure   , thus  , 0S A B  and obviously by the 

definition 

     ( )   ,iii S A B S A B S B


  ,   0S A B  , 

i.e., negative.  
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The last steps can be repeated backward and conclusion, which can be drawn, is that a pure composite 

system AB is entangled iff   0S A B  .  

Remark. In classical information theory conditional entropy only be   0H X Y   and that is obviously 

the reason why entangled states did not exit at all. This is an exclusive feature of quantum information theo-

ry. Entangled states are named after the fact      0 ,S A B S A B S B   , which means that the igno-

rance about a system B can be in quantum mechanics more than the ignorance than of both A and B . This 

proposes some correlation between these two systems. 

Example. Imagine a simple pair of quantum particles, with two possible states each 0 and 1 . Then a 

possible formulation of entanglement can be a state 
1 1

0 0 1 1
2 2

     .  

After a measurement mM of the first particle for example, according to  

†

m

m m

M

M M
 

 
  ,      1 0 1 1mM m m m m m m         , 

hence they collapse to state m .  

This example sheds light into the quantum property, where ignorance of both particles is greater than 

the ignorance of one of them, since perfect knowledge about the second.  

Basic properties of von Neumann entropy and Wigner-Yanase-Dyson skew 
entropy 

The basic properties of von Neumann entropy (which can be compared to the properties of Shannon en-

tropy) shown in Table 2. 

Table 2. Main properties of von Neumann entropy 

N Property of von Neumann entropy 

1 Symmetry:        , , ; : :S A B S B A S A B S B A   

2 Unitary operations preserve entropy:    †S U U S   

3 Subadditivity:      ,S A B S A S B   

4 Triangle (or Araki-Lieb) inequality:      ,S A B S A S B   

 

 

 

5 

Strict concavity of the entropy: Suppose that are probabilities 0ip  and the correspond-

ing density matrices i , then  

   i i i i
i i

S p p S   and    i i i i i
i i

S p p S      for which 0ip   are all 

identical 

 

 

6 

Upper bound of a mixture of states: Suppose i i

i

p  where 0ip   are probabili-

ties and the corresponding density matrices i , then 

     i i i
i

S p S H p    and      i i i i
i

S p S H p     have support 
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on orthogonal subspaces 

 

7 

Strong subadditivity:        , , , ,S A B C S B S A B S B C   , or equivalently  

       , ,S A S B S A C S B C    

8 Conditioning reduced entropy:    ,S A B C S A B  

9 Discarding quantum system never increase mutual information: Suppose ABC is a com-

posite quantum system, then    : : ,S A B S A B C  

 

 

1

0 

Trace preserving quantum operations never increase mutual information: Suppose 

AB is a composite quantum system and E is a trace preserving quantum operation on system 

B . Let  :S A B denote the mutual information between systems A and B before E applied 

to system B , and  :S A B  the mutual information after E is applied to system B . Then 

   : :S A B S A B    

 

1

1 

Relative entropy is jointly convex in its arguments: Let 0 1  , then 

          1 2 1 2 1 1 2 21 1 1S A A B B S A B S A B             

1
2 

The relative entropy is monotonic:    A B AB ABS S     

Partial trace, entropy inequalities and skew-entropy  

The partial trace operation described above and the strong subadditivity property of entropy in quantum 

information theory can be explained also in linear algebra terms. Let A  be a density matrix and K  any self-

adjoint operator. For 0 1t   let  

  11
, , ,

2

t t

tS A K Tr A K A K        , 

where ,X Y XY YX   stands for commutator.  

This quantity is a measure of non-commutativity of A  and K , and is called skew-entropy of Wigner-

Yanase-Dyson (see below). This too is a concave function of A , a consequence of a more general theorem. 

Theorem 1 (Lieb): The function    1, t tf A B Tr X A XB   of positive matrices ,A B  is jointly con-

cave for each matrix X and for 0 1t   

Using the familiar identification of  L H  with 
H H , this statement can be reformulated as: the 

function   1, t tg A B A B    is jointly concave for 0 1t  . 

Another quantity of interest is the relative entropy:  

   log logS A B TrA A B   

associated with a pair of density matrices ,A B . If f  is any convex function on the real line, then for 

Hermitian matrices ,A B   

       Tr f A f B Tr A B f B         . 
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This inequality (called Klein’s inequality) applied to the function   logf t t t  on the positive half-

line shows that for positive matrices ,A B ,  

   logTrA A LogB Tr A B     . 

If ,A B are density matrices, then   0Tr A B    , and hence   0S A B  . It is easy corollary of 

Lieb’s concavity theorem A9.1 that   0S A B   is jointly convex in ,A B .  

Remark. Choose X I  in    1, t tf A B Tr X A XB  and differentiate this function at 0t  . 

Finally, we come to the properties of entropy von Neumann  S A and  S A B  related to partial trace. 

Let 
1 2,A A be density matrices. It is easy to see that  S A is additive over tensor product: 

     1 2 1 2,S A A S A S A  . Now let A be a density matrix on 1 2H H and let 
1 2,A A be its partial traces. 

The subadditivity of  S A says that:      1 2S A S A S A  .  

This can be proved as follows. From   0S A B  we have 

         

 

1 2 1 2 1 2

1 1 2 2

0 log log

                                                                       log log log

                                                       

S A A A TrA A log A A TrA A log A I log I A

Tr A A A A A A

         

  

     1 2                S A S A S A   

 

It is obvious that    S UAU UBU S A B   for every unitary matrix U .  

Hence, from the representations  

   
1 1

1 2

0 0

1 1
, ,

m m
k k k k

k k

A W AW A X AX
m m

 
 

 

      

 W U U U n copies    ,  X V V V n copies    , 

if 1 1, ,ijA A j n      is partial trace we see that 

           2 1 2 1 1 1S A B S A B S A B        . 

Thus we have    1 1S A B S A B . 

More general result can be proved using same techniques: if   is any completely positive, trace-

preserved (CTP) map, then       S A B S A B   . 

Now consider a tensor product  1 2 3H H H of three Hilbert spaces. For simplicity of notation let us 

use the notation 123A  for an operator on this Hilbert space, and drop the index j  when we take a partial trace 

j
Tr

jH . Thus 
3 1123 12 12 2,Tr A A Tr A A 
j jH H , etc. Using the diminish property 

      S A B S A B    

with respect to the partial trace 
3 123 12Tr A A
jH we see that 
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   12 1 2 123 1 23S A A A S A A A   . 

We have seen providing      1 2S A S A S A   that  

       1 2 1 2S T T T S T S T S T     . 

So the above inequality can be written as  

           12 1 2 123 1 23S A S A S A S A S A S A        

and on rearranging terms, we are received strong subadditivity of entropy is the following statement. 

Theorem 2 (Lieb-Ruskai): Let 123A be a density matrix on  1 2 3H H H . Then  

       123 2 12 23S A S A S A S A   . 

The partial trace operation described above and the strong subadditivity property of entropy in quantum 

information theory can be explained also in linear algebra terms.  

Information-theoretic models of quantum measurements. There are two types of evolution a quantum 

system can be undergone: unitary; measurement.  

The first one is needed to preserve probability during evolution.  

The information-theoretic interpretation of entropy is in this case as following: Entropy is the amount of 

knowledge one has about a system.  

One is relieved by seeing that knowledge can decrease or increase by measurement, as seen by Results 1 
and 2 (see below), and that is what measurement was meant to be in the first place. 

Result 3 instructs that if only unitary evolutions were present in quantum theory, then no knowledge on 

any physical system could exist.  

Thus information theory can explain why a second type of evolution is needed as following. 

 

Measurement Entropy law of evolution 

 

 

 

 

 

1. Projective 

measurement 

Projective measurement can increase entropy: This is derived using strict 

concavity. Let P be a projector and Q I P


  the complementary projector, 

then exist unitary matrices 
1 2,U U  and a probability p  such that for all  , 

 † †

1 1 2 21P P Q Q pU U p U U       ,  

thus  

    

     
       

† †

1 1 2 2

† †

1 1 2 2

1

1

1

S P P Q Q S pU U p U U

pS U U p S U U

pS p S S

   

 

  

   

  

   

 

Because of strict concavity the equality holds iff P P Q Q     

 

 

 

 

General measurement can decrease entropy: One can convenient by con-

sidering a qubit in state
1 1

0 0 1 1
2 2

   , which is not pure thus 

  0S   , which is measured using the measurement matrices 1 0 0M   
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2. General                 

measurement 

and 2 0 1M  .  

If the result of the measurement is unknown then the state of the system 

afterwards is 
† †

1 1 2 2 0 0M M M M      , which is pure, hence 

   0S S     

3. Unitary 

evolution 

Unitary evolution preserves entropy: This is already seen as von Neu-

mann’s entropy property 

Accessible information  

Some very important results derived by information theory, which will be useful for the development, 

concern the amount of accessible information and how data can be processed.  

Accessible classical information: Fano’s inequality. Let  X f Y is some function, which is used as 

the best guess for X and let  ep p X X


   be the probability that this guess is incorrect. Then an “error” 

random variable can be defined as following: 

1,

0,

X X
E

X X

 
 


, 

thus    eH E H p . Of major importance, in classical information theory, is the amount of information 

that can be extracted from a random variable X  based on the knowledge of another random variableY .  

That should be given as an upper bound for  H X Y  and is known as Fano’s inequality:  

     log 1e eH p p X H X Y   . 

 

 

Accessible quantum information: quantum Fano’s inequality and the Holevo 
bound 

There exists analogous relation to above classical Fano’s inequality, in quantum information theory, 

named quantum Fano’s inequality:  

         2, , 1 , log 1S H F F d     E E E , 

where  ,F  E  is the entanglement fidelity of a quantum operation defined as    
2

, i

i

F Tr E E , 

iE  are the operation elements of E . Quantum fidelity quantifies how much entanglement between subsys-

tems sent a quantum channel E  is preserved (see measure definition of quantum fidelity below). In the 

above equation, the entropy exchange of the operator E upon  was introduced as    , ,S S R Q  E , 

purified by R . The prime notation is used to indicate the states after the application of E . The entropy 

exchange does not depend upon the way in which the initial state of subsystem Q  is purified by R . This is 

because any two purifications of Q  into RQ  are related by a unitary operation on the system R , and be-

cause of von Neumann entropy property.  
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Remark. Quantum Fano’s inequality is proven by taking an orthonormal basis i  for the system RQ , 

chosen so that the first state in the set 1 RQ . Forming the quantities 
R Q

ip i i
 

 , then it follows 

that    21, , ,
d

S R Q H p p   , and with some algebra  

       
2

2

22
1 1 1

1 1

, , 1 , , log 1
1 1

d

d

pp
H p p H p p H d

p p

 
     

  
 

and  since  1 ,p F  E . 

Holevo bound  

Another result giving an upper bound of accessible quantum information is the Holevo bound as:  

     : ,x x x x

x x

H X Y S p S p       . 

The right side of this inequality is useful in quantum information theory, and hence it is given a special 
title: Holevo  -quantity. While the von Neumann entropy is intuitively associated with information content 

of the pure state ensemble, for ensembles of mixed states it is not a good candidate. A natural generalization 

is here the Holevo  -quantity (called also H-information) given by:  

   H x x x x
x x

I S p p S      . 

The second term in this formula reflects the fact that the information content of the ensemble is lower if 

the components are impure. When 
x are pure then 

HI reduces to the von Neumann entropy. The H-

information has physical meaning in terms of the so-called classical capacity of quantum channel. Namely, it 

was shown that if we wish to communicate classical bits via quantum states, then 
HI maximized over the a 

priori probabilities associated with the states gives the classical capacity of such channel. In contrast with the 
von Neumann entropy, the H-information does not have interpretation in terms of quantum bits so far.  

It is a lower bound for the optimal compression rate of ensemble – the quantity that may be regarded as 

the ensemble information content.  

Holevo-Schumacher-Westmoreland (HSW) theorem  

HSW-theorem tell us the asymptotic rate at which classical information can be transmitted over a quan-

tum channel E per channel use is given by the maximum output Holevo quantity  across all possible sig-

naling ensembles: 
   

 
     1

,

max , ,
j j

x x x x x x
p

x x

C S p S p


     
 

        
 

 E E , or 

 
   

,
max ,

i i

i i i
p

p

   C E . Using the unique nature of the average output state of an optimal signaling 

ensemble for a special class of qudit unital channels the HSW channel capacity is  

    2log mind S


 C E , 

where d is the dimension of the qudit. Thus, the connection between the minimum von Neumann entro-

py at the channel output and the transmission rate for classical information over quantum channels extends 

beyond the qubit domain.  

An alternative, but equivalent, description of HSW channel capacity can be made using relative entropy:  
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  
    1

,
max

k k

k k
all possible p

p S


  C E E , 

where the k  are the quantum input to the channel and 
k k

k

p   .  

Example: Relative entropy in the Bloch sphere representation. In the Bloch sphere representation the 

key formula is relative entropy. The respective Bloch sphere representation for two density matrix  and   

have  
1

,
2

I W     
1

2
I V    . We can define  cos  as:  cos

W V

r q



  where 

r W W  and q V V  , and   is the angle between W and V . The following formula for the relative 

entropy  

     

   
 

2 2

2 2 2 2

2 2

2 2 2 2

1 1 1 1
log 1 log log 1 log

2 2 1 2 2 1

cos1 1 1 1
log 1 log log 1 log

2 2 1 2 2 1

r r W V q
S r q

r q q

rr r q
r q

r q

 



    
        

    

   
        

    

 

Ordinarily,    S S    . However, when r q , we can see from above formula that 

   S S    . A few special case of  S    are worth examining. Consider the case when   in 

 S    is the maximally mixed state:
1

2
I  . In this case, 0q  , and  S    becomes the radially 

symmetric function  

   

 

2

2 2

2 2

1 1 1
log 1 log

2 2 2 1

1 1 1 1 1 1
log log 1

2 2 2 2 2 2

r r
S S I r

r

r r r r r r
S

  



   
      

  

        
        

   

. 

Thus,  
1

1
2

S I S 
 

  
 

, where  S   is the von Neumann entropy of  , the first density matrix 

in the relative entropy function.  

E. Fannes type inequalities. We will present basic inequalities relating two “information-like” quantities 

(von Neumann entropy and Holevo H-information) with the “fidelity-like” quantities. All of them are varia-

tions of the Fannes inequality that has been recognized as an important tool in quantum information theory 
and information analysis of QA’s evolution.  

Fannes inequality: Let 
1

3
   . Then the following inequality holds 

     logdim ,S S H           H  

where   logH x x x  .  

Remark.  The physical interpretation of the inequality is the following. Assume that  and  are the 

states of n  particles so that they act on the Hilbert space 
n 1H H , where 1H is the single particle space. 

Then the inequality says that if the states are closely to each other, then their entropies per particle are also 

close to each other. 
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Fannes inequality with fidelity is as follows:      2log dim 1 , 1,S S F       H  

and Fannes inequality for ensembles one can derive the following version: 

     4logdim 1 , 1.S S F      E E H  

Other useful inequality, obtained by applying concavity of square root to the above inequality with fi-

delity, is the following one:      2logdim 1 , 1.i i i
i

p S S F      H E E  

Finally, from these inequalities we obtain Fannes inequality for Holevo H-information:  

     6logdim 1 , 2.H HI I F    E E H E E  

Recent development in quantum information theory has motivated extensive study of entanglement. 

Furthermore, an exciting subject of characterizing other types of correlations has emerged. For example,  
quantum correlation, classical one, or quantum and classical correlation have been studied.  
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