
Электронный журнал «Системный анализ в науке и образовании» Выпуск №1, 2021 год

58

УДК 512.6, 517.9, 519.6

EFFICIENT SIMULATION OF QUANTUM SEARCH ALGORITHMS
ON A CLASSICAL COMPUTER. PT. 1: SHOR’S QUANTUM ALGORITHM FOR

FACTORING

Ulyanov Sergey V.1, Tyatyushkina Olga Yu.2, Korenkov Vladimir V.3

1Doctor of Physical and Mathematical Sciences, professor;

Dubna State University;

19 Universitetskaya Str., Dubna, Moscow region, 141980, Russia;

Leading Researcher of LIT JINR;

Joint Institute for Nuclear Research;

6 Joliot-Curie Str., Dubna, Moscow region, 141980, Russia;

e-mail: ulyanovsv@mail.ru.

2PhD in Engineering Sciences, associate professor;

Dubna State University;

19 Universitetskaya Str., Dubna, Moscow region, 141980, Russia;

e-mail: tyatyushkina@mail.ru.

3Laboratory Director;

Joint Institute for Nnuclear Rresearch;

6 Joliot-Curie Str., Dubna, Moscow region, 141980, Russia;

Doctor of Technical Sciences, head of the Department;

Dubna State University;

19 Universitetskaya Str., Dubna, Moscow region, 141980, Russia;

e-mail: korenkov@jinr.ru.

The result of the proof of the effective implementation of the simulation on classical computers of quan-
tum algorithms based on quantum algorithmic cells is demonstrated. The Shor factorization algorithm is
considered as an example.

Keywords: quantum computing, Shor’s quantum algorithm, quantum software engineering, classical ac-

celerators of quantum computing.

For citation:__

Ulyanov S., Tyatyushkina O., Korenkov V. Efficient simulation of quantum search algorithms on a classical

computer. Pt 1: Shor’s quantum algorithm for factoring. System Analysis in Science and Education,

2021;(1):58–80. Available from: http://sanse.ru/download/427.

ЭФФЕКТИВНОЕ МОДЕЛИРОВАНИЕ КВАНТОВЫХ ПОИСКОВЫХ АЛГОРИТМОВ
НА КЛАССИЧЕСКОМ КОМЬЮТЕРЕ. Ч.1: КВАНТОВЫЙ АЛГОРИТМ

ФАКТОРИЗАЦИИ ШОРА

Ульянов Сергей Викторович1, Тятюшкина Ольга Юрьевна2,

Кореньков Владимир Васильевич3

1Доктор физико-математических наук, профессор;

Государственный университет «Дубна»;

141980, Московская обл., г. Дубна, ул. Университетская, 19;

Ведущий научный сотрудник;

Объединенный институт ядерных исследований;

141980, Московская обл., г. Дубна, ул. Жолио-Кюри, д. 6;

e-mail: ulyanovsv@mail.ru.

2Кандидат технических наук, доцент;

Государственный университет «Дубна»;

141980, Московская обл., г. Дубна, ул. Университетская, 19;

e-mail: tyatyushkina@mail.ru.

Электронный журнал «Системный анализ в науке и образовании» Выпуск №1, 2021 год

59

3Директор лаборатории;

Объединенный институт ядерных исследований;

141980, Московская обл., г. Дубна, ул. Жолио-Кюри, д. 6;

Доктор технических наук, заведующий кафедрой;

Государственный университет «Дубна»;

141980, Московская обл., г. Дубна, ул. Университетская, 19;

e-mail: korenkov@jinr.ru.

Демонстрируется результат доказательства эффективной реализации моделирования на клас-
сических компьютерах квантовых алгоритмов на основе квантовых алгоритмических ячеек. В каче-
стве примера рассматривается алгоритм Шора факторизации.

Ключевые слова: квантовые вычисления, квантовый алгоритм Шора, квантовая программная

инженерия, классические ускорители квантовых вычислений.

Для цитирования:___

Ульянов С. В., Тятюшкина О. Ю., Кореньков В. В. Эффективное моделирование квантовых

поисковых алгоритмов на классическом комьютере. Ч.1: Квантовый алгоритм факторизации

Шора // Системный анализ в науке и образовании: сетевое научное издание. 2021. № 1.

C. 58–80. На англ. языке. URL : http://sanse.ru/download/427.

Introduction

One of the most radical changes that is being pursued in the last 20 years, is a change in the way that

calculations are implemented physically. Rather than trying to avoid the quantum mechanical effects that

manufacturers of processors face, researchers in the field of quantum computing try to harness these effects.

Computers that are based on these quantum mechanical laws are collectively referred to as quantum comput-

ers, as opposed to classical computers that rely on the classical laws of physics.

There are, roughly speaking, two difficult moments that have to be overcome in order to realize a func-

tional quantum computer. First of all, one needs to be able to construct a physical system that can be manipu-

lated according to these quantum mechanical laws. Recently, headway has been made in this direction by

researchers from IBM, as they have provided the scientific community with a first functional quantum com-

puter. The experimental realization of the quantum computer, though, will not be the topic of this article.

The other challenge that needs to be overcome, is harnessing the full potential of such a quantum com-

puter, when it is constructed. To this end, powerful quantum algorithms, we can use to build programs that

can be run on quantum computers, need to be developed. Researchers that take up the challenge of devising

these quantum algorithms will find that it is eminent to adopt the logic of quantum mechanics as an alterna-

tive form of reasoning, in contrast to the classical one we use on a daily basis.

This article will focus on covering the basis of quantum mechanics, and giving the reader insight in the

alternative form of reasoning described above. These observations will be used to introduce quantum cir-

cuits. To this end, exemplary results will be covered. The first one shows that any quantum algorithm can be

implemented using a finite set of component. Thereafter, the exemplary algorithm provided by Shor to

factorize integers is covered.

Shor’s algorithm is the most important algorithmic result in quantum computing. The algorithm builds

on ideas that already appear in Deutsch and Jozsa’s algorithm and in Simon’s algorithm, and like these

algorithms the basic ingredient of the algorithm is the Fourier Transform (FT) stated as follows:

Input: An integer N

Output: A non-trivial factor of N, if exists

Remark. There is no proof that there is no polynomial classical factorization algorithm. The problem is

even not known to be NP-complete. However, factorization is regarded as hard, because many works have

tried to solve it efficiently and failed. In 1994, Shor published a polynomial (in log(N)) QA for solving this

problem. In fact, Shor presented a QA not for factoring, but for a different problem:

Электронный журнал «Системный анализ в науке и образовании» Выпуск №1, 2021 год

60

Order modulo N:

Input: An integer N, and Y coprime to N

Output: The order of Y, i.e. the minimal positive integer r such

that NY r mod1= .

In order to factor a number N it is enough to be able to find the order of x in ZN.

Let us consider theoretical aspects of Shor’ algorithm.

1. Reduction of factorization to order-finding

Let us describe Shor’s algorithm for finding the prime factors of a composite number N. Think of a

large number such as one with 300 digits in decimal notation, since such numbers are used in cryptography.

Though N is large, the number of qubits necessary to store it is small. In general, log2N is not an integer, so

let us define
2log N . A quantum computer with n qubits can store N or any other positive integer less than

N. With a little thought, we see that the number of prime factors of N is at most n. If both the number of

qubits and the number of factors are less than or equal to n, then it is natural to ask if there is an algorithm

that factors N in a number of steps which is polynomial in n.

More technically, the question is: is there a factorization algorithm in the complexity class P?

Reduction of factorization of N to the problem of finding the order of an integer x less than N is as fol-

lows. If x and N have common factors, then gcd(x,N) gives a factor of N, therefore it suffices to investigate

the case when x is coprime to N. The order of x mod N is defined as the least positive integer r such that

1modrx N . If r is even, we can define y by
/2 modrx y N .

Remark. The above notation means that y is the remainder of xr/2 divided by N and, by definition,

0 ≤ y < N. Note that y satisfies y2 ≡ 1 mod N, or equivalently (y − 1)(y + 1) ≡ 0 mod N, which means that N

divides (y − 1)(y + 1). If 1 < y < N − 1, the factors y −1 and y +1 satisfy 0 < y −1 < y +1 < N, therefore N

cannot divide y −1 nor y +1 separately. The only alternative is that both y −1 and y +1 have factors of N (that

yield N by multiplication).

So, gcd(y −1, N) and gcd(y +1, N) yield non trivial factors of N (gcd stands for the greatest common di-

visor). If N has remaining factors, they can be calculated applying the algorithm recursively.

Example. Consider N = 21 as an example. The sequence of equivalences

4 5 62 16mod 21, 2 11mod 21, 2 11 2 1mod 21,

show that the order of 2 mod 21 is r = 6.

Therefore, y ≡ 23 ≡ 8 mod 21. y – 1 yields the factor 7 and y + 1 yields the factor 3 of 21.

In summary, if we pick up at random a positive integer x less than N and calculate gcd(x, N), either we

have a factor of N or we learn that x is coprime to N. In the latter case, if x satisfies the conditions (1) its

order r is even, and (2) 0 < y − 1 < y + 1 < N, then gcd(y − 1, N) and gcd(y + 1, N) yield factors of N. If one

of the conditions is not true, we start over until finding a proper candidate x. The method would not be useful

if these assumptions were too restrictive, but fortunately that is not the case. The method systematically fails

if N is a power of some odd prime, but an alternative efficient classical algorithm for this case is known. If N

is even, we can keep dividing by 2 until the result turns out to be odd. It remains to apply the method for odd

composite integers that are not a power of some prime number. It is cumbersome to prove that the probabil-

ity of finding x coprime to N satisfying the conditions (1) and (2) is high; in fact, this probability is 1−1/2k−1,

where k is the number of prime factors of N. In the worst case (N has 2 factors), the probability is greater

than or equal to ½.

At first sight, it seems that we have just described an efficient algorithm to find a factor of N. That is not

true, since it is not known an efficient classical algorithm to calculate the order of an integer x mod N. On the

other hand, there is (after Shor’s work) an efficient QA.

Let us describe it.

Электронный журнал «Системный анализ в науке и образовании» Выпуск №1, 2021 год

61

Theorem: If there is a polynomial (in log N) algorithm to solve order modulo N, then there is a polyno-

mial algorithm to solve factorization.

Proof: We show a (classical probabilistic) reduction from FACTORING to ORDER. That is, we assume

we have a black box algorithm for finding the order of a given integer x (coprime to N), in ZN.

Lemma 1. A solution to the equation)(mod12 Nx with 1,1 +−x gives a factor of N.

This is true since this equality implies (x + 1)(x−1) = mN for some integer m, and both

11,11 −+− Nxx . This means that either NNx ,1),1gcd(− or NNx ,1),1gcd(− , as N

divides (x + 1)(x −1). This proves the lemma.

Now pick a random (nonzero) element of ZN. If gcd(x, N) > 1, then we have found a factor of N. If not,

find the order r of x in ZN. Assume we are lucky, and r is even and also 1,1: 2/ +−= rxy . Then y is a

nontrivial solution to the equation)(mod12 Ny , which gives us a factorization of N by the previous

lemma. What is the probability that we are lucky?

Lemma 2. Let m

mpppN

= ...21

21 , where ip are distinct primes, N is odd and not prime

(i.e. m > 1, ip 2). Choose x ZN randomly. Then

Prob)((xORD
NZ is even, and 2/121)1,12/ −+− −mrx

We will not prove this lemma (proof can be found in Nielsen-Chuang (2000)). This shows that a ran-

domly chosen x will give a factor of x using the procedure described above with probability ½. This can, as

usual, be amplified by repeating this process several times. We have thus proved theorem.

Example. Reduction to Period-Finding. Shor’s algorithm finds a factor by finding the period of some

sequence. We first show how efficient period-finding suffices for efficient factoring. Suppose we want to

find factors of the composite number N > 1. Randomly choose some integer }1,...,2{ − Nx . Consider the

sequence:

,...mod,mod,mod1 210 NxNxNx=

This sequence will cycle after a while: there is a least Nr 0 such that Nxr mod1= . This r is

called the period of the sequence. It can be shown that with probability ¼, r is even and 12/ +rx and

12/ −rx are not multiples of N. In that case:

 rx Nmod1

 22/)(rx Nmod1

)1)(1(2/2/ −+ rr xx Nmod0

)1)(1(2/2/ −+ rr xx = kN for some k.

Not that k > 0 because both 12/ +rx > 0 and 12/ −rx > 0 (x > 1). Hence 12/ +rx or 12/ −rx will

share a factor with N. Because 12/ +rx and 12/ −rx are not multiples of N this factor will be <N, and in

fact both these numbers will share a non-trivial factor with N. Accordingly, if we have r then we can effi-

ciently (in)(log
~

NO steps) compute the greatest common divisors gcd),1(2/ Nxr + and gcd),1(2/ Nxr − ,

and both of these two numbers will be non-trivial factors of N. If we are unlucky, we might have chosen an x

that does not give a factor (which we can detect efficiently), but trying a few different random x gives a high

probability of finding a factor.

Thus, the problem of factoring reduces to finding r.

We will show below how the QFT enables us to do this.

Электронный журнал «Системный анализ в науке и образовании» Выпуск №1, 2021 год

62

2. Shor’s algorithm for finding the order

Given N choose a random (with the uniform distribution) m (1 < m N). We assume gcd(m, N) = 1,

otherwise we would already know a divisor of N. We want to find the order of m, i.e. the least integer r such

that

).(mod1 Nmr

Fix some q of the form
sq 2= with .2 22 NqN The algorithm will use the Hilbert space

1Nq kH C C C=

where
qC and 1N

C are two quantum registers which hold integers represented in binary. Here
1N is an

integer of the form
lN 21 = for some l such that N

1N . There is also the work space
kC to make arithmet-

ical operations.

We will not indicate it explicitly. If s

s aaaaa 2...222 2

2

1

10

0 ++++= is the binary representation

)1,0(=ia of an integer a then we write saaa = ...0
where ,

0

1
0

=

=

1

0
1

is the basis in

the two-dimensional complex space
2C . We have the data (N, m, q).

As abovementioned, the algorithm for finding the order r of m consists of 5 steps:

1. Preparation of quantum state.

2. Modular exponentiation.

3. Quantum Fourier transform.

4. Measurement.

5. Computation of the order at the classical computer.

Description of the algorithm

Step 1: Preparation of quantum state. Put the first register in the uniform superposition of states repre-

senting numbers)(mod qa . The quantum computer will be in the state 1

1
0 .a

q
 =

Step 2: Modular exponentiation. Compute)(mod Nma
 in the second register. This leaves the quantum

computer in the state

()
1

2

0

1
mod .

q
a

a

a m N
q

−

=

=

Step 3: Quantum Fourier transform (QFT). Perform the QFT on the first register, mapping a to

1
2 /

0

1
.

q
iac q

c

e c
q

−

=

The quantum computer will be in the state

=3 ()
1 1

2 /

0 0

1
mod

q q
iac q a

c c

e ñ m N
q

− −

= =

 .

Step 4: Measurement. Make the measurement on both registers ñ and ()modam N .

Remark To find the period r we will need only the value of ñ in the first register but for clarity of

computations we made the measurement on the both registers. The probability))(mod,(NmcP k
 that the

quantum computing ends in a particular state

Электронный журнал «Системный анализ в науке и образовании» Выпуск №1, 2021 год

63

() ()(; mod modk kc m N ñ m N=

according to quantum mechanics law is

2

3(, (mod)) (mod);k kP c m N m N c=

where we can assume 0 k < r.

We will use the following Theorem, which shows that the probability))(mod,(NmcP k
 is large if the

residue of)(mod qrc is small. Here r is the order of m in the group
*)/(NZZ of residues of modulo N.

Theorem: If there is an integer d such that
22

r
dqrc

r
−−

and N is sufficiently large then

23

1
))(mod,(

r
NmcP k .

Step 5: Computation of the order at the classical computer. We know N, c and q and we want to find the

order r. Because
2Nq , there is at most one fraction d/r with r < N that satisfies the inequality. We can

obtain the fraction d/r in lowest terms by rounding c/q to the nearest fraction having a denominator smaller

than N. To this end we can use the continued fraction expansion of c/q and Theorem.

We will introduce the following theorem which summarizes main results of the quantum algorithm for

finding the order.

Theorem: If the integer N is sufficiently large then by repeating the first four steps of the algorithm for

finding the order)log(log NO times one can obtain the value of the order r with the probability 0

where the constant does not depend on N.

3. The quantum algorithm for order finding: Circuit work analysis

Again, we will work with two registers. The first one will hold a number between 1 to Q. (Q will be

fixed later: it is much larger than N, but still polynomial in N). The second register will carry numbers be-

tween 1 to N. Hence the two registers will consist of))(log(NO qubits.

Let us now understand how this algorithm works. In the second step of the algorithm, all the numbers

between 0 and Q – 1 are present in the superposition, with equal weights. In the third step of the algorithm,

they are separated to sets, each has periodicity r. This is done as follows: there are r possible values written

on the second register: 110 ,...., − rYYYa . The third state can thus be written as:

=+++

−

==

−

==

−

==

1

0

1

0

1

0

2

2

1(...)()(
1 Q

YYl

Q

YYl

Q

YYl

r

l l rl

YlYlYl
Q

Note that the values l that give aY l = have periodicity r: If the smallest such l is ,0l then rll += 0 ,

rl 20 + , … will also give aY l = . Hence each term in the brackets has periodicity r. Each set of l’s, with

periodicity r, is attached to a different state of the second register. Before the computation of
lY , all l’s

appeared equally in the superposition. Writing down the
lY on the second register can be thought of as

giving a different “color” to each periodic set in [0, Q – 1]. Visually, this can be viewed as follows:

Электронный журнал «Системный анализ в науке и образовании» Выпуск №1, 2021 год

64

The measurement of the second register picks randomly one of these sets, and the state collapses to a

superposition of l’s with periodicity r, with an arbitrary shift 0l . Now, how to obtain the periodicity? The

first idea that comes to mind is to measure the first register twice, in order to get two samples from the same

periodic set, and somehow deduce r from these samples.

However, the probability that the measurement of the second register yields the same shift in two runs

of the algorithm, i.e. that the same periodic set is chosen twice, is exponentially small.

How to gain information about the periodicity in the state without simply sampling it?

This is done by the FT. To understand the operation of the FT, we use a diagram again:

Step Shor’s algorithm

1 00

2
Apply FT over QZ on the first register

−

=

1

0
0

1 Q

l
l

Q

3
Call subroutine which computes NYdldl l mod

−

=

1

0
mod

1 Q

l

l NYl
Q

4

Measure second register

−

=

−

==
+=

1

0 0

1

0

0

0

0
11 A

j

lQ

YYl

l
Yljr

A
Yl

A
ll

5
Apply FT over QZ on the first register

−

=

−

=

+

1

0

1

0

/)(2 00
11 Q

k

lA

j

Qkljri
Yke

AQ

6 Measure first register.

7

Let
1k be the outcome. Approximate the fraction

Q

k1 by a fraction with

denominator smaller than N, using the (classical) method of continued

fractions.

If the denominator d doesn’t satisfy NY d mod1= , throw it away. Else

call the denominator
1r .

8 Repeat all the previous steps poly(log(N)) times to get
1r ,

2r , ..

9 Output the minimal r.

Each edge in the diagram indicates that there is some probability amplitude to transform from the bot-

tom basis state to the upper one.

Электронный журнал «Системный анализ в науке и образовании» Выпуск №1, 2021 год

65

Now we measure the first register, to obtain k. To find the probability to measure each k, we need to

sum up the weights coming from all the j’s in the periodic set.

0

2 2
1 1

2 ()/ 2 /

0 0

1 1
Prob() ()

A A
ik jr l Q ikr Q j

j j

k e e
QA QA

− −

+

= =

= =

Hence, in order to compute the probability to measure each k, we need to evaluate a geometrical series.

Alternatively, the geometric series is a sum over unit vectors in the complex plane.

 Exact periodicity. Let us assume for a second exact periodicity, i.e. that r divides Q exactly. Then A =

Q/r. In this case, the above geometrical series is equal to zero, unless 1/2 =Qikre
. Thus, we measure with

probability 1 only k’s such that Qkr mod0= . This is where destructive interference comes to play: only

“good” k’s, which satisfy Qkr mod0= , remain, and all the others cancel out. Why are such k’s “good” ?

We can write kr = mQ, for some integer m, or k/Q = m/r. We know k since we have measured it. Therefore,

we can reduce the fraction k/Q. If m and r are coprime the denominator will be exactly r which we are look-

ing for. The probability for all “good” k’s is the same, so m is chosen randomly between 0 to r – 1. By the

prime number theorem, there are approximately)log(/ rr primes smaller than r. Repeating the experiment a

large enough number of times we will with very high probability eventually get m prime, i.e. coprime to r.

Example. r divides q (easy case). Assume we have picked a random x and we want to find the corre-

sponding period r. We can always efficiently pick some smooth q such that
22 2NqN (for instance

take q a power of 2). The QFT for qZ can be implemented using))((log))((log 22 NOqO = elementary

gates. We will first assume that the unknown r divides q, in which case everything works out smoothly. It is

known that in))((log
~ 2NO steps we can compute the transformation Nxaa a mod0 → using the

Schonhage-Strassen algorithm for fast multiplication. We now find r as follows. Start with 00 , two

registers of qlog and Nlog zeroes, respectively. Apply the QFT to the first register to build

−

=

=
1

0

.0
1

:
q

a

a
q

QFT

1 register
1O → qlog

2 register
2O → Nlog

Then compute Nxa mod in quantum parallel:
−

=

1

0

mod
1 q

a

a Nxa
q

. Observing the second register

gives some Nxs mod , with s < r. Note that because r divides q, the a of the form)/0(rqjsjra +=

are exactly the a for which Nxa mod equals the observed value Nxs mod . Thus, the first register collapses

to a superposition of srqsrsrs +−++ ,...,2,, and the second register collapses to the classical

state Nxs mod . We can now ignore the second register, and gave in the first:
−

=

+
1/

0

.
rq

j

sjr
q

r

Apply the

QFT again gives

bee
q

r
be

q

r rq

j

q

jrb
iq

b

q

sb
irq

j

q

b

q

bsjr
i

=

−

=

−

=

−

=

−

=

+ 1/

0

21

0

21/

0

1

0

)(
2

.

Using that
−

=
−−=

1

0
)1/()1(

n

j

nj aaa for 1a , we compute:

Электронный журнал «Системный анализ в науке и образовании» Выпуск №1, 2021 год

66

=

−

−
=

−

−

=

=

=

−

=

−

=

10

1

1

1

1

1/

2

2

2

2

/

2

2

1/

0

21/

0

2

q

rb
i

q

rb
i

ib

q

rb
i

rq

q

rb
i

q

rb
i

j
rq

j

q

rb
irq

j

q

jrb
i

eif

e

e

e

e

eifrq

ee

Note that 1/2 =qirbe
 iff rb/q is an integer iff b is a multiple of q/r. Accordingly, we are left with a su-

perposition where only the multiples of q/r have non-zero amplitude. Observing this final superposition gives

some random multiple b = cq/r, with c a random number rc 0 . Thus, we get a b such that
r

c

q

b
= ,

where b and q are known and c and rare unknown. There are)loglog/()(rrr numbers smaller than r

which are coprime to r, so c will be coprime to r with probability)loglog/1(r . Accordingly, an expected

number of)log(log NO repetitions of the procedure of this section suffices to obtain a b = cq/r with c

coprime to r. Once we have such a b, we can obtain r as the denominator by writing b/q in lowest terms.

Example. r does not divide q (hard case). In case r does not divide q (which is actually quite likely), it

can be shown that applying exactly the same algorithm will still yield with high probability a b such that

,
2

1

qr

c

q

b
− with b, q known and c, r unknown. Two distinct fractions, each with denominator N , must

be at least qN /1/1 2 apart.

Remark. Consider two fractions z = x/y and '/'' yxz = with Nyy ', . If 'zz then 1'' − yxxy ,

and hence
2/1'/)''(' Nyyyxxyzz −=− .

Therefore c/r is the only fraction with denominator N at distance q2/1 from b/q. Applying con-

tinued-fraction expansion to b/q efficiently gives us the fraction with denominator N that is closest to b/q.

This fraction must be c/r. Again, with good probability c and r will be coprime, in which case writing c/r in

lowest terms gives r. The whole algorithm finds a factor of N in expected time))((log
~ 2NO .

Let us consider this case more in detail.

Example. Imperfect periodicity. In the general case, r does not divide Q, and this means that the picture

is less clear. «Bad» k’s do not completely cancel out. We distinguish between two types of k’s, for which the

geometrical series of vectors in the complex plain looks as follows:

In the left case, all the vectors point in different directions, and they tend to cancel each other. This will

cause destructive interference, which will cause the amplitude of such k’s to be small. In the right case, all

vectors point almost to the same direction. In this case there will be constructive interference of all the vec-

tors. This happens when
Qikre /2

 is close to one, or when Qkrmod is close to zero.

This means that with high probability, we will measure only k’s which satisfy an approximate criterion

Qkr mod0 . In particular, consider k’s which satisfy: 2/mod2/ rQkrr − . There are exactly r

values of k satisfying this requirement, because k runs from 0 to 1−Q , therefore kr runs from 0 to rQ)1(− ,

and this set of integers contains exactly r multiples of Q.

Электронный журнал «Системный анализ в науке и образовании» Выпуск №1, 2021 год

67

Note, that for such k’s all the complex vectors lie in the upper half of the complex plane, so they are in-

structively interfering. Now the probability to measure such a k is bounded below, by choosing the largest

exponent possible:

Prob(k)

=

2
1

0

/

2
1

0

/2)(
1

)(
1

−

=

−

=

A

j

jQri
A

j

jQikr e
QA

e
QA

=

2

/

/

1

11
Qri

QirA

e

e

QA

−

−

=

2

2
sin

2
sin

1

Q

r

Q

rA

QA

r2

4

4. Quantum algorithm to calculate the order

Let us any practical examples of Shor’s algorithm application.

Example. Quantum circuit for finding the order of the positive integer x mod N. Consider the circuit of

Fig. 1. It calculates the order r of the positive integer x less than N, coprime to N.

Fig. 1. Quantum circuit for finding the order of the positive integer x mod N

Vx is the unitary linear operator

() j

xV j k j k x= + , (1)

where j and k are the states of the first and second registers, respectively. The arithmetical operations

are performed mod N, so 0 ≤ k + xj < N. DFT is the Discrete Fourier Transform operator which will be de-

scribed ahead.

The first register has t qubits, where t is generally chosen such that N2 ≤ 2t < 2N2, for reasons that will

become clear later. As an exception, if the order r is a power of 2, then it is enough to take t = n. In this

section we consider this very special case and leave the general case for next section. We will keep the

variable t in order to generalize the discussion later on.

The states of the quantum computer are indicated by
0 to

5 in Fig. 1. The initial state is

0 0 0 0 0

t n

 = .

The application of the Hadamard operator on each qubit of the first register yields

Электронный журнал «Системный анализ в науке и образовании» Выпуск №1, 2021 год

68

2 1

1

0

1
0

2

t

t
j

j
−

=

= . (2)

The first register is then in a superposition of all states of the computational basis with equal amplitudes

given by
1

2t
. Now we call the reader’s attention to what happens when we apply Vx to

1 as:

()
2 1 2 1

2 1

0 0

1 1
0

2 2

t t

j

x x
t t

j j

V V j j x
− −

= =

= = = . (3)

The state
2

is a remarkable one. Because Vx is linear, it acts on all 0j

for 2t values of j, so this

generates all powers of x simultaneously. This feature is called quantum parallelism. Some of these powers

are 1, which correspond to the states
2

0 1 , 1 , 2 1 , , 1 1
t

r r r
r

−

. This explains the choice (3)

for Vx.

Classically, one would calculate successively xj , for j starting from 2 until reaching j = r.

Quantumly, one can calculate all powers of x with just one application of Vx.

At the quantum level, the values of j that yield xj ≡ 1 mod N are “known”. But this quantum information

is not fully available at the classical level. Classical information of a quantum state is obtained by practical

measurements and, at this point, it does not help if we measure the first register, since all the states in the

superposition (1.10) have equal amplitudes. The first part of the strategy to find r is to observe that the first

register of the states 0 1 , 1 , 2 1 , , 2 1tr r r− is periodic. So the information we want is a period.

In order to simplify the calculation, let us measure the second register. Before doing this, we will rewrite

2 collecting equal terms in the second register. Since xj is a periodic function with period r, substitute ar

+ b for j in Eq. (10), where 0 ≤ a ≤ (2t/r) −1 and 0 ≤ b ≤ r −1. Recall that we are supposing that t = n and r is

a power of 2, therefore r divides 2t. Eq. (3) is conveted to

2
1

1

2

0 0

1

2

t

r r
b

t
b a

ar b x

−
−

= =

= +

 (4)

In the second register, we have substituted xb for xar+b, since xr ≡ 1 mod N. Now the second register is

measured. Any output x0, x1,..., xr − 1 can be obtained with equal probability. Suppose that the result is 0b
x .

The state of the quantum computer is now

0

2
1

3 0

02

t

r
b

t
a

r
ar b x

−

=

= +

 . (5)

Remark. Note that after the measurement, the constant is renormalized to / 2tr , since there are 2 /t t

terms in the sum (5). Figure 2 shows the probability of obtaining the states of the computational basis upon

measuring the first register.

Электронный журнал «Системный анализ в науке и образовании» Выпуск №1, 2021 год

69

Fig. 2. Probability distribution of 3 measured in the computational basis (for the case b0 = 3 and r = 8)

The horizontal axis has 2t points. The number of peaks is 2t/r and the period is r. The probabilities form

a periodic function with period r. Their values are zero except for the states

0 0 0 0, , 2 , , 2 .tb r b r b r b+ + − +

How can one find out the period of a function efficiently? The answer is in the Fourier transform (FT).

The FT of a periodic function with period r is a new periodic function with period proportional to 1/r. This

makes a difference for finding r.

The FT is the second and last part of the strategy. The whole method relies on an efficient QA for calcu-

lating the FT, which is not available classically. In next section, we show that the FT is calculated efficiently

in a quantum computer.

Example. The quantum discrete FT (DFT).

The FT of the function :F 0, , 1N − → is a new

function : 0, , 1F N − → defined as

() ()
1

2 /

0

1 N
ijk N

j

F k e F j
N

−

=

= (6)

The FT can be applied either on a function or on the states of the computational basis. The FT applied to

the state k of the computational basis 0 , , 1N −

is

()
1

2 /

0

1 N
ijk N

k

j

DFT k e j
N

−

=

= =

 (7)

where the set : 0, , 1k k N = −

forms a new orthonormal basis, i.e., k k k k = . The FT is a

unitary linear operator. So, if we know how it acts on the states of the computational basis, we also know

how it acts on a generic state: ()
1

0

N

a

F a a
−

=

= .

The FT of

can be performed indistinctly using either (6) or (7).

Now we will continue the calculation process of the circuit of Fig. 1. We are ready to find out the next

state of the quantum computer — 4 . Applying the inverse FT on the first register, using Eq. (7) and the

linearity of DFT†, we obtain

() ()()0 0

2 2
1 1

2 /2†

4 3

0 0

1

2 2

t t

tr r
ij ar b b

t t
a j

r
DFT e j x

− −

− +

= =

= =

 .

Inverting the summation order, we have

Электронный журнал «Системный анализ в науке и образовании» Выпуск №1, 2021 год

70

0

0

2
1 222 1

2 2
4

0 0

1

2

t

t

t t

ijbijar r
b

t
j a

r
e e j x

r

−
− − −

= =

=

 (8)

Using (7), we see that the expression in the square brackets is not zero if and only if j = k2t/r, with k =

0,..., r − 1. When j takes such values, the expression in the square brackets is equal to 1. So, we have

0
0

1 2

4

0

1 2
k tr i b

br

k

k
e x

rr

− −

=

=

 (9)

In order to find r, the expression for
4

has two advantages over the expression for

3 (Eq. (6)): r

is in the denominator of the ket label and the random parameter b0 moved from the ket label to the exponent

occupying now a harmless place.

Figure 2 shows the probability distribution of
4

measured in the computational basis. Measuring the

first register, we get the value k02
t/r, where k0 can be any number between 0 and r – 1 with equal probability

(the peaks in Fig. 2). If we obtain k0 = 0, we have no clue at all about r, and the algorithm must be run again.

If 0 0k , we divide k02
t/r by 2t, obtaining k0/r. Neither k0 nor r are known. If k0 is coprime to r, we simply

select the denominator.

If k0 and r have a common factor, the denominator of the reduced fraction k0/r is a factor of r but not r

itself. Suppose that the denominator is r1. Let r = r1r2. Now the goal is to find r2, which is the order of 1rx .

We run again the quantum part of the algorithm to find the order of 1rx . If we find r2 in the first round, the

algorithm halts, otherwise we apply it recursively. The recursive process does not last, because the number of

iterations is less than or equal to log2 r.

Take N = 15 as an example, which is the least nontrivial composite number.

The set of numbers less than 15, coprime to 15 is {1, 2, 4, 7, 8, 11, 13, 14}. The numbers in the set {4,

11, 14} have order 2 and the numbers in the set {2, 7, 8, 13} have order 4. Therefore, in any case r is a power

of 2 and the factors of N = 15 can be found in a 8-bit quantum computer ()22 log 15 8t n+ = = . A 7-qubit

quantum computer is used, bypassing part of the algorithm.

We have considered a special case when the order r is a power of 2 and t = n (t is the number of qubits

in the first register — Fig. 1 — and 2logn N=).

Now we consider the factorization of N = 21, that is the next nontrivial composite number.

Example. Generalization by means. We must choose t such that 2t is between N2 and 2N2, which is al-

ways possible. For N = 21, the smallest value of t is 9. This is the simplest example allowed by the con-

straints, but enough to display all the properties of Shor’s algorithm.

The first step is to pick up x at random such that 1 < x < N, and to test whether x is coprime to N. If not,

we easily find a factor of N by calculating gcd (x, N). If yes, the quantum part of the algorithm starts. Sup-

pose that x = 2 has been chosen. The goal is to find out that the order of x is r = 6. The quantum computer is

initialized in the state
0 0 0 = , where the first register has t = 9 qubits and the second has n = 5 qubits.

Next step is the application of
9H

on the first register yielding

511

1

0

1
0

512 j

j
=

= .

The next step is the application of Vx, which yields

Электронный журнал «Системный анализ в науке и образовании» Выпуск №1, 2021 год

71

511

2

0

1
2 mod

512

0 1 1 2 2 4 3 8 4 16 5 11
1

6 1 7 2 8 4 9 8 10 16 11 11
512

12 1

j

j

j N
=

= =

 + + + + + +

= + + + + + +

+

Notice that the above expression has the following pattern: the states of the second register of each

«column» are the same.

Therefore, we can rearrange the terms in order to collect the second register:

() ()

() ()

() ()

2

0 6 12 504 510 1 1 7 13 505 511 2

1
2 8 14 506 4 3 9 15 507 8

512
4 10 16 508 16 5 11 17 509 11

 =

+ + + + + + + + + + + +

= + + + + + + + + + +

+ + + + + + + + +

. (10)

This feature was made explicit in Eq. (4). Because the order is not a power of 2, here there is a small

difference: the first two lines of Eq. (10) have 86 terms, while the remaining ones have 85.

Now one measures the second register1, yielding one of the following numbers equiprobably: {1, 2, 4,

8, 16, 11}. Suppose that the result of the measurement is 2, then

()3

1
1 7 13 505 511 2

86
 = + + + + + (11)

Notice that the state
3

was renormalized in order to have unit norm. It does not matter what is the

result of the measurement; what matters is the periodic pattern of (11).

The period of the states of the first register is the solution to the problem and the FT can reveal the value

of the period. So, the next step is the application of the inverse Fourier transform on the first register of

3 :

()
85

† †

4 3

0

6511 85 2 2
512 512

0 0

1
6 1 2

86

1 1
 2

512 86

a

ja j
i i

j a

DFT DFT a

e e j

=

− −

= =

= = +

=

 (12)

where we have used Eq. (8) and have rearranged the sums. The last equation is similar to Eq. (10), but

with an important difference. We were assuming that r divides 2t. This is not true in the present example (6

does not divide 512), therefore we cannot use the identity to simplify the term in brackets in Eq. (9). This

term never vanishes, but its main contribution is still around j = 0, 85, 171, 256, 341, 427, which are obtained

rounding 512 k0/6 for k0 from 0 to 5.

To see this, let us plot the probability of getting the result j (in the interval 0 to 511) by measuring the

first register of the state
4 . From (12), we have that the probability is

()
2

6
2

512
1

Prob
512 86

ja
i

j e
−

=

 (13)

The plot of Prob (j) is shown in Fig. 3.

Электронный журнал «Системный анализ в науке и образовании» Выпуск №1, 2021 год

72

Fig. 3. Plot of Prob(j) against j

We see the peaks around j = 0, 85, 171, 256, 341, 427, indicating a high probability of getting one of

these values, or some value very close to them. In between, the probability is almost zero. The sharpness of

the peaks depends on t (number of qubits in the first register). The lower limit 2t ≥ N2 ensures a high proba-

bility in measuring a value of j carrying the desired information.

Let us analyze the possible measurement results. If we get j = 0 (first peak), the algorithm has failed in

this round. It must be run again. We keep x = 2 and rerun the quantum part of the algorithm. The probability

of getting j = 0 is low: from Eq. (13) we have that Prob(0) = 86/512 ≈ 0.167. Now suppose we get j = 85 (or

any value in the second peak). We divide by 512 yielding 85/512, which is a rational approximation of k0/6,

for k0 = 1.

Compare to the plot of Fig. 2, where the peaks are not spread and have the same height.

How can we obtain r from 85/512? The method of continued fraction approximation allows one to ex-

tract the desired information. A general continued fraction expansion of a rational number j1/j2 has the form

1
0

2
1

1

1

1

p

j
a

j
a

a

= +

+

+

,

usually represented as [a0, a1, ..., ap], where a0 is a non-negative integer and a1, ..., ap are positive integers.

The q-th convergent (0 ≤ q ≤ p) is defined as the rational number [a0, a1, ..., aq]. It is an approximation to j1/j2

and has a denominator smaller than j2. This method is easily applied by inversion of the fraction followed by

integer division with rational remainder. Inverting 85/512 yields 512/85, which is equal to 6+2/85. We repeat

the process with 2/85 until we get numerator 1. The result is

85 1

1512
6

1
42

2

=

+

+

.

So, the convergent of 85/512 are 1/6, 42/253, and 85/512. We must select the convergent that have a de-

nominator smaller than N = 21 (since r < N). This method yields 1/6, and then r = 6. We check that 26 ≡ 1

mod 21, and the quantum part of the algorithm ends with the correct answer. The order r = 6 is an even

number, therefore gcd(2(6/2) ± 1, 21) gives two non-trivial factors of 21. A straightforward calculation shows

that any measured result in the second peak (say 81 ≤ j ≤ 89) yields the convergent 1/6.

Consider now the third peak, which corresponds to k0/6, k0 = 2. We apply again the method of continued

fraction approximation, which yields 1/3, for any j in the third peak (say 167 ≤ j ≤ 175). In this case, we have

obtained a factor of r (r1 = 3), since 23 ≡ 8 6≡ 1 mod 21. We run the quantum part of the algorithm again to

find the order of 8. We eventually obtain r2 = 2, which yields r = r1r2 = 3 × 2 = 6. The fourth and fifth peaks

yield also factors of r. The last peak is similar to the second, yielding r directly.

Электронный журнал «Системный анализ в науке и образовании» Выпуск №1, 2021 год

73

The general account of the succeeding probability is as follows. The area under all the peaks is approx-

imately the same: ≈ 0.167. The first and fourth peaks have a nature different from the others — they are not

spread. To calculate their contribution to the total probability, we take the basis equal to 1. The area under

the second, third, fifth, and last peaks are calculated by adding up Prob(j), for j running around the center of

each peak.

So, in approximately 17% cases, the algorithm fails (1st peak). In approximately 33% cases, the algo-

rithm returns r in the first round (2nd and 6th peaks). In approximately 50% cases, the algorithm returns r in

the second round or more (3rd, 4th, and 5th peaks).

Now we calculate the probability of finding r in the second round. For the 3rd and 5th peaks, the remain-

ing factor is r2 = 2. The graph equivalent to Fig. 3 in this case has 2 peaks, then the algorithm returns r2 in

50% cases. For the 4th peak, the remaining factor is r = 3 and the algorithm returns r2 in 66.6% cases. This

amounts to
2 50% 66.6%

3

 +
of 50%, which is equal to around 22%. In summary, the success probability

for x = 2 is around 55%.

Remark. We have shown that Shor’s algorithm is an efficient probabilistic algorithm, assuming that the

FT could be implemented efficiently. The complete circuit for the QFT is given in Fig. 4.

Fig. 4. The complete circuit for the quantum Fourier Transform

Now we can calculate the complexity of the quantum Fourier circuit. Counting the number of elemen-

tary gates, we get the leading term 5n2/2, which implies that the complexity is O(n2).

By now one should be asking about the decomposition of Vx in terms of the elementary Fourier Trans-

form. Vx is the largest gate of Fig. 1. Actually, Shor stated in his 1997 paper that Vx is the «bottleneck of the

quantum factoring algorithm» due to the time and space consumed to perform the modular exponentiation.

The bottleneck is not so strict though since, by using the well-known classical method of repeated squaring

and ordinary multiplication algorithms, the complexity to calculate modular exponentiation is O(n3). The

quantum circuit can be obtained from the classical circuit by replacing the irreversible classical gates by the

reversible quantum counterpart. Vx is a problem in recursive calls of the algorithm when x changes. For each

x, a new circuit must be built, what is troublesome at the present stage of hardware development.

Example: Quantum Shor’s Algorithm (Quantum factorization promise). Figure 5 shows the factoriza-

tion problem.

Электронный журнал «Системный анализ в науке и образовании» Выпуск №1, 2021 год

74

1. Classical factorization

- 1024 bits: 105 years

- 2048 bits: 5x1015 years

- 4096 bits: 3x1029 years

2. Quantum factorization

•1024 bits: 4.5 min

•2048 bits: 36 min

•4096 bits: 4.8 hours

➢Fast integer numbers Factorization

Fig. 5. Fast factorization problem and its solutions

Figure 6 shows the quantum Shor algorithm and its describing circuit (see Fig. 1).

Электронный журнал «Системный анализ в науке и образовании» Выпуск №1, 2021 год

75

Entanglement and interference

operators UF, QFT for Shor Algorithm

−
=

11

11

2

1
 H

Fig. 6. Quantum Shor’s algorithm circuit and main quantum operators

Factorization time using matrix and vector approach are here reported (see, Fig. 7 and Fig. 8).

Matrix approach

Vectorial approach

• 4 to 8 bits

• 8 to 11 bits

• 11 to 13 bits

8 sec

11 sec

 5 min

• 4 to 6 bits

• 6 to 7 bits

• > 8 bits

7 min

16 min

Overflow

Simulation program window

Fig. 7. SW simulation of Shor’s quantum factorization algorithm

Электронный журнал «Системный анализ в науке и образовании» Выпуск №1, 2021 год

76

Quantum

Algorithm

Superposition

Operator

Common

Part

 Deutsch - Jozsa Hn 1+
= HHn 1 Hn

Grover Hn 1+
= HHn 1 Hn

 Shor IH nn = IH nn Hn

Quantum

Algorithm

Interference

Operator

Common

Part

Deutsch - Jozsa IHn =
n H I IH

Grover

IDn = =− IHPhaseInvH 0

IHH

nn

−

−

1000

0100

0010

0001

IH

Shor

IQFT n

n =

n

n

n

IHIH

IInHIHn

=

=

IH

Fig. 8. Relations between the quantum operators in quantum algorithms

We can observe UF block that is a diagonal matrix of 2 22 2n n dimension. Finally output of entangle-

ment is processed by interference block composed of Quantum Fourier Transform (QFT) and identity matrix

I. The output of entire algorithm is therefore the vector obtained after application of operator n
nQFT I .

5. The Quantum Fourier Transform and Quantum Fourier Sampling

One of the most basic building blocks for quantum algorithms is the quantum Fourier transform (QFT)

algorithm. The Fourier transform, a critical step in many classical calculations and computations, is an opera-

tion that transforms one representation of a signal of interest into a different representational form. The

classical Fourier transform turns a signal represented as a function of time into its corresponding signal

represented as a function of frequency. For example, this could mean transforming a mathematical descrip-

tion of a musical chord in terms of air pressure as a function of time into the amplitudes of the set of musical

tones (or notes) that combine to form the chord. This transformation is reversible via the inverse Fourier

transform, so involves no information loss - a key requirement for any operation on a quantum computer.

Concretely, the input is an N-dimensional vector with complex entries (a1, a2, …, aN), and the output is an N-

dimensional vector with complex entries (b1, b2, …, bN) which is obtained by multiplying the input vector

with the N × N Fourier transform matrix. Given the utility of the Fourier transform, many clever algorithms

have been developed to implement it on classical computers. The best, the fast Fourier transform (FFT),

takes O(NlogN) time, which is only slightly longer than it takes to read the input data [O(N)]. While the

classical FFT is quite efficient, quantum Fourier transform (QFT) is exponentially faster, requiring only

O(log2 N) = O(n2) time (where N = 2n) in its original formulation, later improved to O(nlogn).

Электронный журнал «Системный анализ в науке и образовании» Выпуск №1, 2021 год

77

Before describing the QFT, it is important to understand how the input and output are represented as

quantum states. The input ()1 2, , , Na a a is represented as the quantum state i

i

a i , and the output

()1 2, , , Nb b b is represented as the quantum state i

i

b i . Thus, the input and output are represented as

states of just n qubits, where n = log N. This is shown in Fig. 9.

Fig. 9. An illustrative example of the quantum Fourier transform (QFT) applied to a three-qubit system

The three qubits must be initially prepared such that the eight (
32 8=) complex coefficients encode the

system state corresponding to the sequence of values to be transformed. Since the number of coefficients, N,

is 2n
, where n is the number of qubits, only log(N) bits are needed: 3 qubits can represent the 8 complex

values shown. The QFT effectively finds patterns in the input sequence and identifies their frequency of

repetition. In this example, all the input states have similar probability, with the real components of coeffi-

cients alternating sign four times. The coefficients of the output state (shown on the right) capture this pat-

tern: the coefficient of the i state, ia , is large if there are i cycles in the input sequence. Thus, in this exam-

ple all the outputs are all small except for one state, 100, corresponding to the input pattern frequency. Thus,

measuring this output is likely to provide the index of this strong pattern in the input sequence.

Exponential speedup is possible only if the input data has already been encoded into a compact quantum

state, or can be encoded into this state in O(log N) steps. The quantum circuit that carries out this transfor-

mation has total number of gates that scales as O(n log n). Another caveat is that one of course cannot access

the amplitudes ib through measurement. Indeed, if the output of the QFT is measured, it yields the index i

with probability
2

ib . Thus, measuring this algorithm’s output only yields the index of a probable output,

which is called quantum Fourier sampling (QFS). QFS is an important primitive in quantum algorithms, and

entails applying the QFT and measuring the output state, resulting in the sampling of an index i from a

certain probability distribution.

Электронный журнал «Системный анализ в науке и образовании» Выпуск №1, 2021 год

78

It turns out that sampling the output of the Fourier transform is useful in some cases for finding struc-

ture in a sequence of numbers, as illustrated in Fig. 9. Notice that the coefficients of the input data are peri-

odic, with four periods in this sequence. This periodicity causes the amplitude of state 100 to be much

larger than all the others, so with high probability, measuring the final system state will return 100 (binary

for 4), revealing the input sequence repeated 4 times, or had a repeat distance of 2. This example illustrates

the power and pitfalls of quantum computing. If the initial input superposition already exists, the Fourier

transform can be performed on the superposition coefficients exponentially faster than would be possible

classically. However, at the end of this operation, one samples only one of the N states, rather than obtaining

the entire set of output coefficients.

Furthermore, it is not clear in general how to create the input superposition without taking O(N) time -

although this becomes less of a problem if QFT is performed on a preloaded input quantum state as one step

in a longer algorithm. The QFT, which cleverly leverages the characteristics of quantum computation, is

useful in constructing a host of quantum algorithms.

There exist many different definitions of the Fourier transform, though, as every branch of science in

which the Fourier transform is used tends to use its own definition. In that respect, quantum computing is no

different, as the definition of the Fourier transform used in quantum computing is subtly different from the

definitions found in other areas. The version of the Fourier transform used in quantum computing is referred

to as the quantum Fourier transform. We will spend the next part of this section on introducing this transform

and after that, we will elaborate on how this transform can be implemented in a quantum circuit. It completes

the description of the implementation of the quantum Fourier transform as a quantum circuit. The entire

process is summarized and depicted in Fig. 10.

Fig. 10. N-qubit Fourier transform circuit

For extra clarification, let us write out the full quantum circuit implementing the three-qubit quantum

Fourier transform QFT2
3:

Recall that the R1/4 and R1/8 gates are equal to the S and T gates. Hence, we can rewrite the circuit as fol-

lows:

Электронный журнал «Системный анализ в науке и образовании» Выпуск №1, 2021 год

79

The elementary gate complexity is equal to 9, which is equal to the expected number when n = 3:

()1 / 2 3 / 2 4 3 / 2 3 1 6 3 9n n n+ + = + = + = .

Here shown how to implement the mapping QFT2
n exactly, using a number of elementary gates that

grows quadratically in n. Note that the number of CNOT-gates and the number of Hadamard gates grows

only linearly in n, though, and that only the number of controlled-R-gates grows quadratically in n. More

precisely, observe that we use exactly n – k + 1 controlled application of
1

2n

R . In addition, observe that the

controlled
1

2n

R -gates where k is big, are very close to the identity gate in operator norm, indicating that their

action is almost negligible. Hence, we might just as well leave out these controlled-R-gates where k is big.

This idea allows us to obtain a significant reduction in the elementary gate complexity. We can implement

the quantum Fourier transform up to some error in operator norm, using only O(n log(n)) elementary

gates.

The quantum Fourier transform (QFT) can be derived by further decomposing the diagonal factors of

the fast Fourier transform (FFT) matrix decomposition into products of matrices with Kronecker product

structure. Such a structure can take advantage of an important quantum computer feature that enables the

QFT algorithm to attain an exponential speedup on a quantum computer over the FFT algorithm on a classi-

cal computer. The connection between the matrix decomposition of the DFT matrix and a quantum circuit is

made.

The following complete QFT quantum circuit is shown on Fig. 11.

Fig. 11. Complete QFT quantum circuit. [adapted from D. Camps, Quantum Fourier transform revisited //

arxiv.org [math. NA]. 2003.03011v1. 6 March. 2020.]

In this QFT circuit, the control and target qubits swapped for all the controlled-R gates. This particular

choice gives the same QFT circuit [14].

Thus, the quantum Fourier transform algorithm can be derived as a decomposition of the discrete Fouri-

er matrix. The derivation starts from the radix-2 decomposition of the DFT matrix that yields the FFT algo-

rithm, and only makes use of Kronecker products to further decompose a diagonal matrix into a product of

simpler unitary matrices, each of which can be written as the sum of two Kronecker products of 2×2 matri-

ces. This alternative approach to the derivation of the quantum Fourier requires little knowledge of quantum

computing.

Электронный журнал «Системный анализ в науке и образовании» Выпуск №1, 2021 год

80

Conclusions

- First of all, it was shown that any quantum circuit can be implemented using a finite set of compo-

nents, up to arbitrary accuracy. Secondly, it was shown that the algorithm of Shor provides an efficient

way of factorizing integers using a quantum computer. Together, they provide an introduction into the

realm of quantum computing.

- If one were to do a follow-up study, then it would be interesting to investigate the lower bound on

the probability that Shor’s algorithm successfully factorizes the number given. This lower bound can

probably be improved by investigating which step introduces the most inaccuracy into the bound.

- Furthermore, the classical simulation of Shor’s algorithm could be improved significantly by having

a look at the implementation of the inverse Fourier transformation. Simple measurements reveal that

over 80% of the runtime of the code is spent calculating the inverse Fourier transform, which could be

significantly sped up by implementing other algorithms to perform this operation.

- Ultimately, though, the field of quantum computing will only become a very exciting field of study

when the quantum computer is at one’s disposal. Until this is experimentally feasible, devising other

quantum algorithms that definitively beat the implementations on classical computers is one of the most

important tasks for researchers. More generally, investigating the full potential of the concept of the

quantum computer is of vital importance to the field as a whole.

Reference

1. Gruska J. Quantum computing. Advanced Topics in Computer Science Series, McGraw-Hill Compa-

nies, London, 1999.

2. Nielsen M. A., Chuang I. L. Quantum computation and quantum information. Cambridge University

Press, Cambridge, England, 2000.

3. Hirvensalo M. Quantum computing. Natural Computing Series, Springer-Verlag, Berlin, 2001.

4. Hardy Y., Steeb W.-H. Classical and quantum computing with C++ and Java Simulations. Birkhauser

Verlag, Basel, 2001.

5. Hirota O. The foundation of quantum information science: Approach to quantum computer (in Japa-

nese), Japan, 2002.

6. Pittenberg A. O. An introduction to quantum computing and algorithms.-Progress in Computer Sciences

and Applied Logic. 1999. Vol. 19.

7. Brylinski F. K., Chen G. (Eds) Mathematics of quantum computation. Computational Mathematics

Series, CRC Press Co., 2002.

8. Lo H.-K., Popescu S., Spiller T. (Eds) Introduction to quantum computing and information. World

Scientific Publ. Co., 1998.

9. Berman G. P., Doolen G.D., Mainieri R., Tsifrinovich V.I. Introduction to quantum computers. World

Scientific Publ. Co., 1999.

10. Rieffel E., Polak W. An introduction to quantum computing for non-physicists // ACM Computing

Surveys. 2000. Vol. 32. N. 3. P. 300–335.

11. Hogg T., Mochon C., Polak W., Rieffel E. Tools for quantum algorithms // Intern. J. of Modern Physics.

1999. Vol. C10. N. 7. P. 1347–1361.

12. Uesaka Y. Mathematical principle of quantum computation (in Japanese). Corona Publ. Co. Ltd, 2000.

13. Marinescu D. C., Marinescu G.M. Approaching quantum computing. Pearson Prentice Hall, New Jer-

sey, 2005.

14. Cornelissen A. J. Quantum Computation: Shor’s algorithm. Bachelor Thesis // Electrical Engineering,

Mathematics and Computer Science Applied Sciences, 2016.

