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The article consists of two parts. Part | shows the possibility of quantum / soft computing optimizers of
knowledge bases (OSCOptKB™) as the toolkit of quantum deep machine learning technology implementation
inthe solution ’s search of intelligent cognitive control tasks applied the cognitive helmet as neurointerface. In
particular case, the aim of this part isto demonstrate the possibility of classifying the mental statesin on line
of a human being operator with knowledge extraction from electroencephalograms based on SCOptKB™ and
QCOptKB™ sophisticated toolkit. Application of soft computing technologies to identify objective indicators
of the psychophysiological state of an examined person described. The role and necessity of applying intelli-
gent infor mati on technol ogi es devel opment based on computational intelligence toolkitsin the task of objective
estimation of a general psychophysical state of a human being operator shown. Devel oped information tech-
nology examined with special (difficult in diagnostic practice) examples emotion state estimation of autism
children (ASD) and dementia and background of the knowledge bases design for intelligent robot of service
useisit. Application of cognitive intelligent control in navigation of autonomous robot for avoidance of ob-
stacles demonstrated.
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Cmamus cocmoum u3 08yx uacmeti. Yacmo 1 noxaszvieaem 03MoACHOCHb PEanu3ayuu MexHoa02uu K8aH-
M0B020 21YOOK020 MAWUHHO20 00YYeHUs. HA OCHO8E K8AHMOB020 ONMUMU3AMOPA 643 3HAHULL HA MACKUX 6bl-
YUCTEHUAX 6 3a0aYax KOSHUMUGHO20 UHMELIEKMYAIbHO20 VAPAGLEHUs C UCNONb308AHUEM KOSHUMUBHO2O0
uiema 6 kavecmee nHeupounmepetica. Lleavio amoii uacmu cmamvu A615€MCs 0EMOHCMPAYUS 803MOIHCHO-
cmu Kiaccugurayuy MenmanbHblx COCMOAHULL Yel08eKa-0nepamopd ¢ U3gneueHuem SHAHUll U3 371eKmpodxye-
ganocpamm na ocnose uncmpymenmapues SCOptKB™ y QCOPtKB™. Onucano npumenenue mexnHono2uil
MASKUX 8bIUUCTEHUT 0151 8bIAGICHUS 00LEKMUBGHBIX NOKA3amenell HCUXoQU3UOL02UYECK020 COCMOAHUS UCCe-
dyemozo uenogexa. lloxkasana ponv u He0OXO0UMOCMb NPUMEHEHUS UHMENIEKMYATbHBIX UHDOPMAYUOHHBIX
MEeXHON02ULl HA OCHO8E UHMENNEKMYATbHO20 UHCIMPYMEHMAapus 8 3a0aue 00beKMUSHOU oYeHKU 06we2o ncu-
Xoghuzuueckoeo cocmosiHus yenogexka-onepamopa. Paspabomannas ungopmayuonnas mexnonozus pac-
CMOMPEHA HA 0COOBIX (CONACHBIX 6 OUALHOCMUYECKOU NPAKMUKE) NPUMEPAX OYEHKU IMOYUOHATILHO20 COCHO-
AHUA 0emell, Cmpadarwux aymusmom, a maxice OnUcau npoyecc co30anus 0asvl 3HAHUL 0 UHMEIeKNy-
anvHo20 poboma cepsucHoz2o obcayicueanus. Ilokazano npumeneHue UHMENIEKMYAIbHO20 KOSHUMUBHO2O
VIPABAeHUs 8 HABULAYUU ABIMOHOMHO20 poOOma 01 06X00a Npenamcmeuil.

KitoueBbie cioBa: HEMpPOHHAS CETh, HHTEIUIEKTyallbHAS CUCTEMa YIIPaBIIECHHs, TITyOOKOE MAIIMHHOE
o0ydJeHue, SMOIUY, KBAHTOBBIM ONTHMHU3ATOP 0a3 3HAHUIA, MATKUC BHIYHCICHHMSL.
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Introduction

The state-of-the-art sensing and processing tools, health-monitoring technologies attract significant
attention in research and industry in the last three decades[1, 2]. The inclusion of human being operator in the
feedback loop of intelligent control systems (ICS) for decision-making in complex situations creates both an
information resource that canimprove the efficiency of the devel opment and application of ICS. Unfortunately,
it is often associated with an increasing in the information risk of hazard situations due to the presence of an
unpredictable human health-monitoring and emotion state factors [2].

Thus, it isnecessary to have quantitative and qualitative indicatorsthat would not depend on theindividual
characteristics of the human being emotion operator and at the same time guaranteed objectivity of the obtained
indicators. In that case, the developed ICS will be able to perceive, adapt and make decisions in difficult
situations [3] due to the inclusion in the structure of these indicators as criteria for the quality of intelligent
control.

1. Cognitive intelligent control problems

1.1.Tasks of hybrid cognitive and intelligent control

A number of studies [4-7] showed the possibility of development a simplified mathematical model of
emotions. But due to physical limitations, the trade-off of informational boundaries on the applicability of the
developed model also have a significant influence on the correctness of description and reliability of the
extracted knowledge from the imperfect mathematical model. In ICS theory, one of the effective approaches
to the risk decreasing of decision-making is the development of robust ICS structures with corresponding
knowledge bases (KBs).

The problems of physical limitations and information boundaries solved by the possibility of forming KB
with the required level of robustness in the design process of ICS by extracting knowledge and valuable
information from the dynamic behavior of the model of the physical control object [§].

Figure 1 demonstrate general structure of hybrid cognitive intelligent control system. The structure based
on fuzzy and cognitive controllers, includes quantum fuzzy inference with quantum genetic algorithm in Box
“Quantum computing KB optimizer” and are the background of quantum cognitive self-organized controller
(see, in details Part I1).

The main problem of cognitive intelligent control system (presented in Fig. 1) is design optimal robust
control with minimal loss of value work and minimum of required initia information on externa
environments.
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Figure 1. Sructure of hybrid intelligent cognitive control system based on quantum soft computing
Let us consider briefly the solution of this problem using information-thermodynamic approach.

1.2.Synergetic effect of information-thermodynamic trade-off interrelations
between stability, controllability and robustness of robotic motion intelligent
control

Consider the distribution equation of the trade-off control qualities of a dynamic system
q; = ¢(q,t,S(t),u) ascontrol object in the form:

‘;_I: = ?=1 qi ' @(CI; t,S(t),u) + (Sp - SC) ' (Sp - SC) S 01 (1)
where Sp is an entropy production of control object (plant), S is an entropy production of controller,

S=5-% isageneralized entropy production of dynamic control system.

Eq. (1) in analytical form relates such qualitative concepts of control theory as stability, controllability
and robustness based on the concept of phenomenol ogical thermodynamics entropy. Such an approach designs
the necessary distribution between levels of stability, controllability and robustness, which allows achieving
the control goal in emergencies with a minimum consumption of useful resource due to the application of the
minimum generalized entropy production included in the right-hand side as a fitness function in the genetic
algorithm.

Now let us looked at (1), taking into account the connection between thermodynamic entropy and
Shannon'sinformation entropy. The definitions of thermodynamic entropy Sand information entropy H related
by the von Neumann relation in the form:

S =kH = —kzlplll’lpl, (2)
where k =~ 1.38 - 10723J /K and is the Boltzmann constant.
In EQ. (1) replace (t) with the Shannon’s entropy:
©)

n

dV . .

E - Z q; - (p(q' t, (Hp - HC)»u) + k(HP - HC) ) (Hp - HC) =<0
i=1
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Thus, Eq. (3) also relates stability, controllability and robustness, but aready based on Shannon's
information entropy, which aso allows one to determine control for guaranteed achievement of the control
goal in emergencies with a minimum required amount of information about the external environment and the
state of the control object.

A generalization of Egs (1) and (3) isthe following system of eguations:

Z qi: q,t, - (Slnt + SCog)) ,u) ( (Slnt + SCog)) ( (Slnt + SCog))

<0

(4)

Z qi- QJ t k (Hlnt + HCog)) ,u) + k (Hp - (Hlnt + HCog))

( P (Hlnt + HCog)) <

©®)

where (Sint + Scog) and (Hype + Heog) Means total thermodynamic and information entropies of intelligent
and cognitive controllers, respectively.

It follows from Eq. (4) that the robustness of an intelligent control system can increased by producing the
minimum entropy (value information) of the cognitive controller, which reduces the loss of useful life (saf ety
increasing), and Eq. (5) shows that the negentropy of the cognitive controller reduces the minimum
requirements for the initial information to achieve robustness. Moreover, information action based on
knowledge (in the knowledge base of the cognitive regulator) allows get an additional resource for useful work,
which is equivalent to the appearance of a targeted action on the control object to ensure the guaranteed
achievement of the control goal in uncertainty and information risk conditions.

Dueto the synergetic effect, an additional information resource created and the multi-agent systemisable
to solve complex dynamic tasks for performing mutual work. The given task may not be fulfilled by each
element (agent) of the system separately in various environments without external management, control or
coordination, however, exchange of knowledge and information allows perform useful mutual work to achieve
the management goal under the conditions of uncertainty of the initial information and limited consumption of
useful resources. In particular, it known that for closed-loop control systems, the maximal amount of useful
work W that extracted with information amount satisfies the inequality:

Wmax(t) =k fot Tminjcdtl < KkTI, (6)

where k isthe Boltzmann constant, T

min

(t) isinterpreted asthe lowest achievable temperature by the system

intime t for feedback control, assuming T, (O) =T and |, determinesthe amount of Shannon information

min

(entropy transfer), extracted by the system from the measurement process [9, 10].

Figure 2 demonstrate logical interrelations of information role in process of work extraction and trade-off
of control qualities.
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Figure 2. Interrelations between extracted work and information, and trade-off of control qualities

Physically, the synergetic effect means self-organization of knowledge and creation of additional
information that allows the multi-agent system to perform the most useful work with a minimum loss of useful
resource and with a minimum of the required initial information, without destroying the lower executive level
of the control system [9]. Together with the information-thermodynamic law of intelligent control (optimal
distribution of the management qualities "stability - controllability - robustness'), an intelligent control system
(ICS) is designed with multi-agent systems, ensuring the achievement of the management goal under the
conditions of uncertain initia information and limited useful resource [9-13].

1.3.Extracted work and information

If microscopic degrees of freedom are accessible to the observer in the form of the Maxwell demon, then
the second law of thermodynamics may violate (see, Fig. 2). Szilard showed from an analysis of the Maxwdll
demon model that work is extracted from the thermodynamic cycle in the form as the amount, kT In 2.
Moreover, in [12, 13] it shown that the recoverable work W, from the system determined by the amount of
information I (or quantum-classical mutual information) that measures the knowledge of the system when
measuring. At the sametime, such aratio in the form of alower boundary exists for the total cost of measuring
and erasing information Wg,, < —AFS + kTI and W2, > kTI, where AFS is determines the free energy of
the system. Then it is easy to notice that the speed of the extracted work W, is limited by the value W,,, <
kTI,i.e., itislimited by the speed of the extracted information [13].

Let us consider a network of loosely coupled groups of robots working together to solve tasks that go
beyond individual capabilities. Different nodes of such a system, as arule, have a different intelligent level
(knowledge, algorithms, and computational bases) and various information resources in designing. Each node
should be able to modify its behavior depending on the circumstances, as well as to plan its communication
and cooperation strategies with other nodes. Here the indicators of the level of cooperation are the nature of
the distribution of tasks, the unification of various information resources and, of course, the possibility of
solving a common problem in a given time.

1.4.Quantum algorithm of knowledge self-organization

A quantum algorithm (QA) model of ICS self-organization proposed in [9] based on the principles of
minimum information entropy (in the “intelligent” state of control signals) and a generalized thermodynamic
measure of entropy production (in the system “control object + controller”). The main result of the application
of the self-organization process is the acquisition of the necessary level of robustness and the flexibility
(adaptability) of the reproducible structure. It is noted that the property of robustness (by its physical nature)
actsasan integral part of self-organization, and the required level of robustness of ICSisachieved by fulfilling
the principle of minimum production of generalized entropy, which was noted above.
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The principle of minimum entropy production in control object and control system [14] serves as the
physical principle of optimal functioning with a minimum consumption of useful work and underlies the
development of robust ICS. This statement based on the fact that, for the general case of controlling dynamic
objects, the optimal solution to the finite variation problem of determining the maximum of the useful work W
is equivalent, according to [15], to the solution of the finite variation problem of finding the minimum of the
entropy production S. Therefore, the developed QA model used principle of minimum informational entropy
guarantees the necessary condition for self-organization — the minimum of the required initia information in
the teaching signals; the thermodynamic criterion of the minimum of a new measure of generalized entropy
production provides a sufficient condition for self-organization — the robustness of control processes with a
minimum consumption of useful resource.

More significant is the fact that the average amount of work done by dissipation force % =

Sk (Pr||Pg), i.e., the work of dissipation forces is determined by the Kullback-Leibler divergence for
probability distributions Pr, Pg. Note that the |eft side of this relation represents physically thermal energy,
and the right side defines purely information about the system. A similar relationship exists between the work
produced by the forces of dissipation and the difference between generalized Renyi divergences[16].

Figure 3 illustrates the QA structure of self-organization (QASO) in design process of robust intelligent
PID-controller with application of quantum fuzzy inference with quantum genetic algorithm for choice the
optimal quantum correlation type between PID-controller coefficient gainsin temporal schedule.
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Figure 3. Quantum algorithm of self—organization based on quantum fuzzy inference and quantum genetic
algorithm

Thus, substituting the rel ations between the information and the extracted free energy and work in (4) and
(5), we obtain the conclusion (noted above) that the robustness of the intelligent control system can increased
by producing the entropy of the cognitive controller. The optimal cognitive controller reducesthe loss of useful
resource of the control object, and negentropy of the cognitive regul ator reducesthe requirementsfor minimum
initial information to achieve robustness. Therefore, the extracted information, based on knowledge (in the
knowledge base of the cognitive controller), allows to get an additional resource for useful work, which is
equivalent to the appearance of a targeted action on the control object to guarantee the achievement of the
control goal in unpredicted situations.

Let us consider briefly Brain Emotional Learning Based Intelligent Controller (BELBIC) structure [17]
as the conseguence of the intelligent cognitive control system on Fig. 3.
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Example. In a biological system, emotional responses of human being operator are utilized for fast
decision-making in complex environments or emergencies. It isthought that the amygdal aand the orbitofrontal
cortex are the most important parts of the brain involved in emotional responses and learning. The amygdala
isasmall structure in the media temporal lobe of the brain that is thought to be responsible for the emotional
evaluation of stimuli (see, Appendices1 and 2). Thisevauationisinturn used as aquantum basisfor emotional
states and responses and is used for attention signals and laying down long-term memories. The amygdala and
the orbitofrontal cortex compute their outputs based on the emational signal (the reinforcing signal) received
from the environment. The fina output (the emotional responses) calculated by subtracting the amygdala’s
output from the orbitofrontal cortex’s (OFC) output (see Fig. 4).
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Figure 4. a) Sectional view of the human brain for emotion processing. b) Graphical depiction of the devel-
oped computational model of brain [18]

It should observe that it essentially converts two sets of inputs (sensory inputs and emotional cues or
reinforcing signals) into the decision signal (the emotional responses) asits output. Closed loop configurations
using this block (BELBIC) in the feed-forward-loop of the total system in an appropriate manner have
implemented so that the input signals have the proper interpretations. The block implicitly implemented the
critic, the learning algorithm and the action selection mechanism used in the functional implementations of
emotionally-based (or, generally, reinforcement learning-based) controllers, al at the same time.

The policies design for PID-based controller and the BELBIC controller are the same due to the equal
number of states, which needed for the feedback. The structure of the control circuit using the direct-adaptive
control strategy illustrated in Fig. 5.
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Figure 5. System configuration using brain emotional controller
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The PID controller contains a constant steady-state position error, yet in the BELBIC the steady-state
position error eventualy decreases. Unlike the PID controller, learning the dynamics through on line
implementation causes the BELBIC to track the reference signal inaccurately at the beginning of the
experiment (shown in [17]). Despite the fact that the initial weights are all set to zero, the BELBIC rapidly
learns the dynamics of the plant without any off-line training. During transient states, a dight overshoot
observed in the control signal of the BELBIC since the servo-valve draws more current; however, in the PID-
based controller no such change redized. As the BELBIC passes on to a steady state, the control signal
becomes uniform and smooth, which is an important advantage in practical use, especialy in high power
systems such as EHS systems. The energy consumption of the BEL BIC is about the same asthe PID controller,
whilst the BELBIC has less tracking error. The BELBIC tracks the reference signal with very low error in
comparison with the PID controller. The BELBIC displays good robustness to a change in the dynamics of the
system, an acceptable overshoot and a good tracking ability (compared to the PID [18]). A main advantage in
the performance of the controlled EHS system is in the high degree of the adaptability of the control system
and the robustness of the performance with respect to theinitial error in relation to modeling and identification
(even with atotal lack of knowledge about the system mode!) [17, 18].

1.5.Problems in intelligent control systems design

Modern control objects are complex dynamic systems that characterized by information uncertainty of
modéd structuresand control goals, ahigh degree of freedom and essentia nonlinearities, instability, distributed
sensors and actuators, high level of noise, abrupt jump changesin structure and dynamics, and so on. It isthe
typical information resources of unpredicted control situations. The structure design of robust advanced control
systems for unpredicted control situationsisthe corner stone of modern control theory and systems. The degree
to which a control system deals successfully with above difficulties depends on the intelligent level of
advanced control system.

In Step | of developed design technology, we focus the main attention on the description of particular
results of KB design and simulating intelligent control systems with essentially nonlinear CO with arandomly
time-dependent structure and control goals. In this case, the aim of this step is to determine the robustness
levels of control processes that ensure the required reliability and accuracy indices under the conditions of
uncertainty of the information employed in decision-making (learning situations).

For Step 2, the description of the strategy of robust structure’s design of an intelligent control system
based on the technol ogies of quantum and soft computing given. The devel oped strategy allows oneto improve
the robustness leve of fuzzy controllers under the specified unpredicted or weakly formalized factors for the
sake of forming and using new types of self-organization processes in the robust KB with the help of the
guantum computing methodology. A particular solution of a given problem obtained by introducing a
generalization of decision-making strategiesin models of fuzzy inferencein the form of anew quantum fuzzy
inference (QFI) on afinite set of fuzzy controllers designed in advance [19].

The basis for the development of control systems is the proportional-integral-differentiating (PID)
controller, which used in 70% of industrial automation, but often does not cope with the control task and works
very poorly in unforeseen situations. Fuzzy controllers allow to partialy expanding the scope of PID
controllers by adding production logic rules and partially adapt the system. The combined use of genetic
algorithms (GA) and a fuzzy neural network made it possible fully adapt the system, but it takestime to train
such a system, which is critical in emergency and unforeseen situations. Modeling the optimal training signal
makes it possible to create partia self-organization in the system due to the formation of optimal trajectories
of the gain of the PID controller. The application of quantum computing and, as aparticular example, quantum
fuzzy inference (QFI) allows increasing robustness without spending atemporary resource in on line.
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Figure6. Intelligent control systemincluding quantum fuzzy inference

The Fig. 6 shows ICS structure with the combination of several fuzzy regulators and the quantum fuzzy
controller. The main problem in the development and design of this structure that it is very difficult to design
aglobaly good and robust control structure for al possible cases, especialy when the system worksin poorly
predictable situations. One of the best solutions is the formation of a finite number of knowledge bases of a
fuzzy controller for a variety of fixed control situations. The goal of a quantum regulator is to combine the
knowledge bases obtained with the help of the soft computing optimizer knowledge base into self-organizing
guantum fuzzy regulators. The QFI model uses private individual knowledge bases of the fuzzy controller,
each of which designed using SCOptKB™ and QCOptKB™ toolkits.

Box “Kansei / Kawaii / Affective engineering” (Fig. 1) forming the knowledge abouit fillings of human
being operator and concentrate the attention on control goal. KBs of fuzzy controllers and cognitive controllers
designed with SCOptk B™ toolkit using objective information of control object response from measurement
system in feedback loop and affective response and will of human being operator described with new type of
computational intelligence technology. The main performance of Part | to show the description of emotion
estimation in Box “Kansei / Kawaii / Affective engineering” and the introduction of physical interpretation of
guantum interference in cognition as quantum models of patterns.

Example. In order to clarify the difference in the definition of emotions/ feelings used in [20], Figure 7
illustrates concrete examples. In the Figure 7, there is stimulus A and a bodily state that evoke the “Flight”
action, whereas a stimulus B and a bodily state activate the “Flight” action. In this case, the emotional state
that stimulus A and the bodily sate cause is labeled as “anger,” and the emotional state caused by the stimulus
B and the bodily sate is labeled as “Fear.” This definition directly connects emotions to the somatic marker
hypothesis, which means that the emotion should generated by considering internal appraisal, externa
appraisal, and decision-making mechanisms.
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Anger (Feeling) Fear (Feeling)

i N

1) [

Figure 7. Illustration of “anger” and “fear”, which highlights the difference: (a) emotional feeling of anger,
and (b) emational feeling of fear

However, the ICS structures do not have a specialized software module to describe and implement the
processes of adaptation and learning of the control system to the qualitative characteristics of human being
operator behavioral responses. Proven in a wide class of areas of soft computing (genetic agorithms, fuzzy
logic and fuzzy neural networks) and computational technology in the form of intelligent tools (Computational
Intelligence Toolkit), allowsto design an intelligent cognitive control system that has the required qualities.

The cognitive processes of non-verbal communication in the human brain (see Fig. 8) modeling on such
alevel: they explain the correlation between what the human perceives from the clinician's communication,
and what the human in turn communicates. The underlying condition of an observed human can then inferred
from the recorded interaction with the clinician.

Figure 8 describes general structure of intelligent cognitive robotic control with “brain-computer-robot-
device” neurointerface and affect decoding controller based on Kansei / Affective Engineering and its
cognitive computing technology.

Kansei / Affective Engineering technology and its cognitive computing toolkit include qualitative
description of human being emotion, ingtinct and intuition that used effectively in design processes of smart /
wise robotics and intelligent mechatronics as example robot for service use [11, 21] and robotic unicycle (see,
for example below).

—l lﬂl!flitlll ;3‘":'“ o }7 Gevers itnnture of
nteligeat cognitve contry
SO e hig “Srein-campaterrobar man”

| emction interfoce (affective

Reuer campatng)

Figure 8. General structure of intelligent cognitive human-robotic interaction control
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Remark. According to genera definition Kansei Engineering (Japanese: B4 T % kansei kougaku,
emotional / affective engineering) aims at the development or improvement of products and services by
tranglating the customer's psychol ogical feelings and needsinto the domain of product design (i.e. parameters).
Mitsuo Nagamachi, Ph.D, Professor Emeritus of Hiroshima University founded it. Kansel Engineering
parametrically links the customer's emotional responses (i.e. physical and psychological) to the properties and
characterigtics of a product or service. In consequence, products can design to bring forward the intended
feeling. The main part the mammalian brain is responsible for emotional processes and called the limbic
system. The computational models of the amygdala and orbitofrontal cortex are the main parts of the limbic
system recently introduced for the first time. Therefore, Kansei result is a synthesis of sensory brain cognitive
qualities. For example, it has argued that emotion, pain and cognitive control functionally segregated in distinct
subdivisions of the cingulate cortex of brain (see, Appendix 1).

The processes depicted in Fig. 8 represent incredibly complex, non-smooth, and non-linear mappings and
representations, which indicates that it will be suitable to use a deep neural network [4] approach. In this paper
we concentrate our attention on description on the box “Objective estimation of emotion state” of Fig. 8 for
design of knowledge base of robot for service use [11, 21]. Robotsfor service use can practically implemented
into current education and therapy interventions for children ASD.

1.6. Social human-robot emotion interaction and application

The Center for Disease Control (CDC), has recently announced that the incidence of autismis1inevery
59 children. There has been agrowth rate of 250% during thelast 15 years. Autism ishow emerging asapublic
health priority. ASD occursin al racial, ethnic, and socio-economic groups. However, the incidence is five
times more common among boys than among girls[22, 23]. In particular, according to the Centers for Disease
Control and Prevention, one in every 68 children (1:42 boys, 1:189 girls) ASD [24]. Individuals with ASD
exhibit impairments in three key areas: (&) communication, (b) social interaction, and (c) restricted interests
and repetitive behaviors. The American Psychiatric Association recently redefined qualifiers for ASD, citing
levels of severity, the impact deficits key areas have on the quality of life and the amount of support needed,
beginning with Level | (less support, formerly included diagnosis of Asperger Syndrome, Pervasive
Developmenta Delay-Not Otherwise Specified), Level 11 (moderate support), and Level I11 (most support).

The schema at the Fig. 9 shows how the child-robot interaction loop and the software modules are used
by the robot to interact with the child: The Robot Intelligent Module (RIM) and the Behavior Manager (BM).
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Figure 9. Artificial Intelligence System for Robot-Assisted Treatment of Autism

The RIM is composed of four components. head pose, body posture, eye contact, and facial expression.
The BM consist of two components: the treatment protocol and the NAOqi API [25].

Although robot therapists are better than human therapists in these three areas, they are not yet perfect.
Therobotsfor the therapies come at a high cost. Robokind, the company that makes Milo, reportsthat its robot
has an initial cost of $5,000 plus an additional cost of $4,500 every year after. Thisis lower than the $29,000
cost of human therapy, but Robokind’s cost estimates are still too optimistic. A 2015 study found that parents
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have a preference that there is a human complementing the robot in autism therapy. If humans have to
complement robots in robot-assisted therapy, the cost might even be higher than the human-led therapy cost
of $29,000 per year.

Asyou can see at the Figs 10 and 11, robots used in autism therapy.
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Figure 10. ROBOJJANG devel oped by Robocare Co., Ltd.

Interacting with robots can be particularly empowering for children with ASD, because it may overcome
various barriers experienced in face-to-face interaction with humans. Moreover, robot assisted interventions
can betailored to the needs of the specific child and can be used in an identical manner as often as needed.

Figure 11. Robots used in autism therapy

Figure 11 shows the robots used in autism therapy all around the world:

— Kaspar (courtesy of the Adaptive Systems Research Group, University of Hertfordshire, UK),
— Tito (courtesy of F. Michaud),
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— Roball (courtesy of F. Michaud),

— Muu (courtesy of M. Okada, Toyohashi University of Technology, Japan),

— Pleo (courtesy of Innvo Labs Corporation),

— Bubble blower (courtesy of D. Feil-Seifer),

— Nao (courtesy of Aldebaran),

— Robota (courtesy of A. Billard), (1) Infanoid (courtesy of H. Kozima),

— Bandit (courtesy of M. Mataric, USC, USA), and (K) Robojjang (courtesy of Robocare Co., Ltd.).

1.7.Therapy of the autism using the intelligent cognitive system

It isbelieved that effective therapy for autism is extremely expensive. It is not because it is complicated,
but because the small number of the specialists who own behavioral techniques. There is a situation when the
magjority of families do not have access to the necessary treatment [26].

Remark. This work is a continuation of the development of a cognitive-intelligent system for the
diagnosis, adaptation and training of autistic children (CISDAEAC). A more detailed description of the
CISDAEAC may befoundin [27-29].

Themain part of thiscognitive-intelligent system isthe data processing module (see Fig. 12). It represents
the structure of a child’s interaction and training program through the application of fuzzy logic.

The data processing module is designed to extract the EEG based on a cognitive helmet, process and filter
the received signal, create a cognitive process training program on the platform, diagnose problems with the
child’s work with the system and evaluate the operator’s response to the tasks generated by the training module.

CISDAEAC designed to extract process and formulate alearning program based on cognitive processes,
in particular, EEG signal's, adaptation of autistic children to society and training in basic household skills. One
of thetasks of thiswork isthe processing of the EEG signal, based on the recognition of emations, and forming
an encephal ographic portrait of the child on the next step.

Before working with the system, a detailed assessment of the current level of socid interaction of the
child, revealing the difference between the difficultiesin acquiring. Next creating a minimum training package
to determine the starting point consisting of basic logical tasks. To receive feedback, the Emotiv EPOC+
cognitive helmet used, which allows recording the brain activity signal and transferring it to the data processing

module.
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Figure 12. CISDAEAC Data processing module
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Next, by the EEG signal, evaluating the child's reaction to the interaction with environment, and
monitoring parameters for solving the tasks. Then forming the strategy of |earning using the technology of soft
computing. The signal from the EPOC signal recognition unit, the decision time, the correctness of the solution
and the task identification number are using as the input data. After this, the system sets the appropriate
coefficients for adjusting the training program.

2. EEG signal processing

2.1.Features of experimental EEG registration and informative parameters of the
patient's condition

The electroencephal ogram (EEG) of the human operator can be used as a biometric parameter, since the
brain activity isindividual. It is made unigue by synchronized activity of groups of neurons that process the
same signals to form metastable group. Signals corresponding to one external stimulus or cognitive event
trigger synchronized activity of neurons grouped together. A certain level of synchronization is maintained at
rest state. Synchronized neuronal activity is observed on the EEG.

Recording EEG signal is a contact and long-term procedure, since the electrical activity of the brainisa
value extended in time, and the data cannot be recorded for along time because of the nonlinear distortions of
the EEG signal appear at large intervals. The nonlinearity of the signa can be solved by a series of short
measurements, during which the signal can be considered linear. Emotiv EPOC+ cognitive helmet was used
for recording the brain activity (see Fig. 13).

Figure 13. Emotiv EPOC+ cognitive helmet

EPOC has 14 electrodes, which are passive sensors that allow register electromagnetic signals. Sensors
are attached to the surface of the skin (non-submersible, non-invasiveinterface). Figure 8 presentsthe structure
of Emotiv EPOC+, consisting of channels AF3, F7, F3, FC5, T7, P7, O1, 02, P8, T8, FC6, F4, F8, AF4 and
two reference sensors CMSDRL, which purpose is to receive and filter bioelectric signals of muscle activity
from the EEG signal.

Figure 14 study selection and multivariate modeling.
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Figure 14. Hierarchical structure of studies and tasks

Remark. On Fig. 14 a, Hierarchica structure of studies and tasks. Dendrograms convey theoretical
groupings of fMRI activity at levels of study (level 1: studies S1-S18), subdomain (level 2: thermal, visceral,
mechanical, working memory (WM), response selection (RS), response conflict (RC), visua, social, and
auditory), and domain (level 3: pain, cognitive control, and negative emotion). Colored regionsillustrate model
based partitioning of neural similarity into components that generalize across subjects (unique to a study, top
18 squares), studies (unique to a subdomain, middle nine squares), and subdomains (unique to a domain,
bottom three regions). b, Decomposing multivariate pattern similarity into study-, subdomain-, and domain-
specific components.

The matrix in the left panel shows the dissimilarity of fMRI patterns across al subjects (n = 270) in the
entire medial frontal cortex. Each row represents oneindividual participant and each element the dissimilarity
(1-Pearson’ s correlation coefficient) in brain activity patterns for two individuals. Colored bars to the left
indicate corresponding levels in the functional hierarchy. The right panel shows how the observed neura
dissimilarity across pairs of images from the 18 studies is modeled as a weighted summation of theoretical
dissimilarity matrices constructed according to study (18 parameters), subdomain (9 parameters), and domain
(3 parameters) membership, in addition to a constant term (not shown).

The supplied software alows in on line to receive, recognize and register the EEG signal from the helmet
[31]. As part of the solution of the problem it is necessary to obtain the most informative fragments of the
signal. Frequency rhythms of EEG are distinguished for the analysis. The concept of frequency rhythm
determines the type of electrical activity corresponding to a certain state of the brain which boundaries of the
frequency range are determined (see Fig. 15).

102



CeTteBoe Hay4Hoe usgaHune « CMCTEMHBIN aHanu3 B Hayke 1 obpasoBaHnn» Bobinyck Ne 4, 2019 roa

- . - - - -
PR R Veacdusns P o b o et e
matde s dhuisen bevismssam v oo - - chode e

Thotn o © #har Lregrwrsicnm - Canssivire Cerles
. " N

Slpetum t% A0 Mhan [ T TR - :A--~~ Mabonabion u.-‘-rn -
- wes Creosimival soplowe

Moabanwd
e
Bora i b IW bas - ras dewaviviong Cavirnidonm Fin o Topicalls n fwaat
= 3 13 A P gt P b s i by -
Tocabel- D

Comm——  mw My A reprrnni — Loarmimy e @t w——

L SR e o

Figure 15. EEG frequency rhythms

Thisinvolves the decomposition of the EEG signal into frequency components, which is achieved by fast
Fourier transforms (FFT), which returnsfor each frequency buffer acomplex number containing the amplitude
and phase.

N -

1 .
X, :zxn LgizAkIN. (6)
n=0

where N is the number of time samples, k = 0, N is 1 is the current frequency, n = 0..., N-1 is the current
sample, Xq-input samplesin the time domain, xx-output samples in the frequency domain.

2.2.Definition of emotional arousal

A well-known marker of cognitive processes is the restructuring of brain rhythms which occurs in the
superficially recorded human EEG. Strong emotional experience, as a form of cognitive activity, can lead to
inhibition of other mental processes, realization of behaviora appropriate reactions, violation of conscious
control over actions, as a result of which uncontrolled actions can be committed [32]. States arise against the
will, conscious control over their actionsis not possible. The occurrence of such situations can lead to acritical
error in the control loop [33].

Therefore, the first task was to determine the level of emotional arousal of the human being operator.

Figure 16 identifying latent brain representationsthat predict the occurrence of distinct functional domains
in each region of interest.
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Figure 16. Representational mapping of pain, cognitive control, and negative emationin MFC

On Fig. 16a, Searchlight maps display where local patterns of brain activity are consistent with domain-
specific representation of pain (red), cognitive control (green), and negative emotion (blug, n = 270
participants). b, Additive conjunction of searchlight maps, with each domain mapped onto orthogonal
dimensionsin the red-green-blue (RGB) color space. Overlap between pain and cognitive control is depicted
in yellow; overlap between pain and negative emotion is colored magenta. Maps are thresholded at P < 0.05,
two-tailed, uncorrected cutoff to highlight any possible overlap (n!= 1270 participants). ¢, Brain maps of Bayes
factors indicating relative evidence against overlap among the three domains at each voxel. Smaller values
indicate evidence against overlap; values less than 0.1 are considered strong evidence (n = 270 participants).
d, River plots depict the similarity between searchlight maps and anatomical parcellation of MFC (left) and
functional parcellation of cortical regionsfrom resting-state data48 (right). Line thicknessindicates the degree
of correspondence between sets. v, Attention, ventral attention; d Attention, dorsal attention. Images are
displayed using radiological convention.

2.3.Experimental results

During the study, the operator's EEG signal was recorded while in a calm state and in a state of stress.
The source signal of each sensor, with a sampling frequency of 128Hz, is decomposed into frequency rhythms
using a discrete Fourier transform.

For visual assessment of differencesin emotiona states, graphs of the spectral power of signalsfrom AF3,
AF4,F7,F3, F4, F8, FC5, FC6, T7, T8, O1, O2 sensorswere constructed in the range of significant frequencies
from 1to 50 Hz. (see Fig. 17).
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Figure 17. A graph of the spectral power density of the EEG signal obtained by discrete Fourier transform
for the state and stress of rest

A comparative analysis of the spectral power of various emotiona states for the frontal, temporal, and
occipital-parietal lobes of the cerebral cortex has been carried out (see Figs 18, 19 and 20).
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Figure 18. The level of spectral power of the EEG signal for sensors AF3, AF4, A3, A4 for each of the fre-
quencies for two emotional states: calmand fright
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Figure 19. Thelevel of spectral power of the EEG signal for sensors P7, P8, O1, O2 for each of the frequen-
ciesfor two emotional states: calm and fright
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Figure 20. The level of spectral power of the EEG signal for sensors F7, F8, 77, T8 for each of the frequen-
ciesfor two emotional states: calm and fright

Based on the assessment of the total tonic activity, aswell as the values of the total spectral power of the
frequency ranges, it was concluded that it is possible to estimate the emotiona background of a human being
operator.

Figure 21 is demonstrated graphs of signal activation integral accumulation for various emotional states.

Siznal activation when setting a threshold value of 1000 uV
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Siznal activation when setting a threshold value of 4000 pV

Figure 21. The accumulation of signal activation when setting a threshold value of 1000 and 4000 uV

At calm state, the signal integral does not exceed 200 pV, while in a state of emotional arousal a threshold
value of 1000 puV achieved by one iteration, and for 4000 uV in 38 iterations.

The EEG signal registered by the software product using the knowledge base returns the coefficient
determining the level of emotional arousal. Based on this coefficient a warning about the level of emotional
arousal is displayed on the screen through expert judgment (see Fig. 22).
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Figure 22. Ul of the warning about the level of emotional arousal

3. Detecting the mental state of a human operator

First of al, we investigate fear emotion — the marker of valence measurement of emotional states. Fear is
realized more clearly, unlike other emotions, and finding its causes is much easier. In the case of autistic
children, the emotion of fear ismost critical to recognition.

Figure 23 shows a graph of the EEG signal taken by the sensors F3, F4, FC5, FC6 in two emotional states:
on theleft isfear, on theright isaneutral state.
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Figure 23. The value of the EEG signal of different emotional states
On the exampl e of the data of the EEG signal val ues, the implementation of the visual display of the signal
is considered, and also these data were used to form the knowledge base. This requires a transition from the
representation of the EEG signal asafunction of time, to the representation of thesignal in the spatia frequency
domain. Thistransition is carried out by decomposing the signal into harmonic components using the Fourier

transform. Figure 24 shows a graph of the spectral power density of the EEG signal taken by the AF3 sensor
in two emotiona states. on the left isfear, on theright is a neutral state.
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Figure 24. The value of the total spectral power density of the EEG signal for various emotional states

This approach reduces the amount of processed data for visual assessment, makes it possible to quickly
classify electroencephal ograms. Regardless of emotions sign, it can be generated in both hemispheres of the
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brain, but a number of studies focuses the attention of the anterior sections of the brain in the generation of
emotions (see Fig. 23).

Figure 25. The location of the electrodes used in the experiment

The combination of simultaneously present rhythms forms a specific spatial-frequency EEG pattern.
Patterns are typical for different types of cognitive activity and are highly individually specific. The ability of
an individua to establish rhythmic EEG patterns when performing certain cognitive tasks called
“encephalographic” portrait of personality [29].

During the experiment an EEG signal was recorded with a sampling frequency of 128 Hz for various
emotional states. calm (neutral), positive emotions and negative emotions. There was no state of strong
emotiona arousal. The source signal of each sensor is decomposed into frequency rhythms using a discrete
Fourier transform. Figure 26 shows a graph of the average spectral power of the frequency bandsin 6 secs for
the AF3 sensor in various emotional states.
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Figure 26. Average power spectra of AF3 sensor

Determining the sign of an emotionisaclassic classification task. To solveit, it isnecessary to determine
the sign of the emotion at a specific point in time by analyzing the EEG signd. If we consider the state of rest
as 0, positive emotion as +1, negative as —1, the definition of the sign of the emotion can be considered as a
deviation from the neutral state.

A number of studies shows [34] that in determining the sign of an emotional reaction, it is necessary to
rely on changes in the power of the apha rhythm and beta rhythm in the frontal and temporal lobes. With
positive emotions, there is a strong depression of the apha rhythm in comparison with the neutral condition,
aswell asanincreasein the power of the beta rhythm (see tab. 1).
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Table 1. Freguency rhythms with different emotional signs

Bbinyck Ne 4, 2019 rog

Frequency
rhythm

Positive emotions

Negative emotions

Alpharhythm

More pronounced depression of the alpha
rhythm in comparison with the neutra
condition in the frontal and temporal

|obes.

The power of the alpharhythm is greater
than or equa to the power of the apha
rhythm with a neutral condition in the

frontal and temporal lobes.

Increase of betarhythm power compared

Decrease in amplitude in comparison

parison with the neutral condition de-
pending on the gender.

Betarhythm to neutral condition in frontal and tem- | with aneutral condition in frontal assign-
poral leads. ments.
The change in the power of thetarhythm | The change in the power of the theta
in the frontal and temporal leads in com- | rhythm in the frontal and temporal |eads
Thetarhythm

in comparison with the neutral condition

depending on the gender.

The coefficients are placed in accordance with the significance of the spectral power, they also reflecting
the weight of the frequency rhythm to determine the sign of emational activity.

4. Description of the software platform

Asasoftware platform for processing the EEG signal, the Python programming language version 3.7 was
chosen. The NumPy package was chosen as a library for mathematical operations. NumPy is a fundamental
package for scientific computing in Python, providing:

— powerful N-dimensional array object;

— complex (broadcast) functions;

— toolsfor integrating C / C ++ and Fortran code;

— algorithmslinear algebra, Fourier transform and extended possibilities of random numbers.

In addition to obvious scientific applications, NumPy can also be used as an effective multidimensional
container of common data. The ability to define arbitrary datatypes allows you to easily and quickly integrate
with awide range of databases.

4.1.Using the deep machine learning in the task of classifying an emotional sign

TensorFlow was used as a library for machine learning. It is a neural network that learns how to solve
problems by positive amplification and processes data at various|evels (nodes), which helpsto find the desired
correct result with a given level of the training signal approximation error. This kind of machine learning is
very well adapted for research purposes. The library was developed by the Google Brain team for avariety of
tasks, including searching for images and improving speech recognition algorithms. As a starting point for the
use of machine learning technologies (and later - soft computing), for recognizing emotions through the EEG
signal, the TensorFlow library makes it easy to integrate into the applications self-learning e ements and
functions of artificial intelligence designed for speech recognition, computer vision or natural language
processing.

The principle of working with TensorFlow involvesthe compilation of agraph of operations, datatransfer
and the work of calculations. The graphs allow define the calculation process, where the vertices perform
operations, and the edges describe the connection between them. Thus, when adding two numbers, it is
necessary to define a vertex with two inputs (numbers for addition), some calculations (addition function of
two numbers) and an output (result).

Deep learning is a subset of machine learning. Usually, when people use the term deep learning, they are

110



CeTteBoe Hay4Hoe usgaHune « CMCTEMHBIN aHanu3 B Hayke 1 obpasoBaHnn» Bobinyck Ne 4, 2019 roa

referring to deep artificial neural networks, and somewhat lessfrequently to deep reinforcement learning. Deep
artificial neural networks are a set of agorithms that have set new records in accuracy for many important
problems, such as image recognition, sound recognition, recommender systems, natural language processing
etc. We areusing it to identify the sign of emotion.

It was decided to implement a classifier based on a convolutional neural network in order to be able to
assign features in the original data set. This feature is especially useful in the problem under study, sinceit is
practically impossible to select significant features in the initial data set in manual mode in accordance with
desired output. This significantly limits the possibility of using other types of classifiers. The training of the
classification algorithm for EEG signals was based on data from four channels AF3, T7, F71 and F8. As an
activation function, arectified linear unit, specified by the expression, was used:

f@x) = max(0,x), S
where x is the input to a neuron.

In order for TensorFlow to train the model, it is necessary to set the loss function. As the loss function
cross entropy was used. Cross entropy is extremely important for modern systems, because it makesit possible
to create highly accurate forecasts, even for aternativeindicators. Into the learning algorithm, the power values
of the spectra are fed to the input for each of the frequencies (alpha, beta, gamma, theta, delta). The task of
recognizing an emotion is the task of classification, so the loss function will return:

— Neutral state - 0;
— Negative state — - 1,
— Poditive state— +1.

Figures 27 and 28 show the visualization of datato the input of the neural network.
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10

-

Delta 0-4 Hz Theta 5-8 Hz Alpha 9-12 Hz Beta 13-25 Hz Gamma 25-50 Hz
Positive state, AF3 Positive state, T7 Neutral state, AF3
Neutral state, T7 ™ Negative state, AF3 Negative state, T7

Figure 27. AF3 and T7 sensor power spectra for positive, negative emotions and a calm state
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Delta 0-4 Hz Theta 5-8 Hz Alpha 9-12 Hz Beta 13-25 Hz Gamma 25-50 Hz
Positive state, F7 Positive state, F8§ Neutral state, F7

Neutral state, F8 = Negative state, py Negalive state, F8

Figure 28. Power ratings of the F7 and F8 sensor spectra for positive, negative emotions and a calm state

Figure 27 reflects the total tonic activity of the spectra of emotions of a different sign for sensors located
in the same hemisphere of the brain, and Figure 28 show sensors symmetrically located on opposite points of
the two hemispheres of the brain.

4.2.Soft Computing Optimizer

Figure 27 shows the result of the neural network: the coefficient of deviation from the neutral state,
obtained after processing the EEG signal, decomposed into frequency bands.

The coefficients of deviation

= | % Mok Il v etate
Figure 29. The coefficients of deviation from the neutral state of emotions of a different sign

As apart of the task, machine learning is used to determine the sign of the emotion at a particular point
in time. For a correct description of the general psychophysical state of the operator, it is necessary to use the
soft computing optimizer. Since emotions are characterized by clearly pronounced intensity, limited duration,
awareness of the reasons for its appearance; connection with a specific object, circumstance; polarity, an
approximation of the coefficient of deviation from the neutral state is necessary.

Remark. SCOptimizer software is used to create sophisticated knowledge bases. Soft Computing
Optimizer of knowledge base (SCOptKB™) is a software toolkit for creating automatic fuzzy models and
solves the universal approximator design problem of ill-defined control objects. The SCO uses sets of values
of the input-output vector to create and optimize afuzzy model. To perform various optimization agorithms,
alearning signal is needed, which represents sampl es of input val ues and corresponding output values. Training
signal files can be created using the SCO or taken from other sources. Text filesare processed based on regional
settings that define characters for the decimal point, the thousands separator, and so on. The default valuesfor
these parameters are set in Windows. If the settings do not match the signal format, they can be changed at any
time. After the change, the parameters are saved in the model and will be used for further data processing.
Regional settings affect the reading and writing of text data and model files.
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The first step of model optimization is the definition of shape of membership functions of fuzzy sets of
input and (if used by the model) of output variables. SCOptimizer supports two modes of MF’s shape
definition: using uniform distribution method or with GA1 optimization algorithm.

Uniform distribution method distributes fuzzy sets on signal change interval according to signal
probability distribution and user selected shape of membership functions.

GA1 agorithm tries to find best possible combination of number of fuzzy sets per variable, membership
function shape and overlap coefficient between neighbor fuzzy sets. For each combination it performs uniform
distribution algorithm and tries to maximize the mutual possibility of the fuzzy sets of each variable.

Themain part of themodel isarule database. It stores data, which shows which output should be activated
for given input. SCOptimizer supports two types of rule database: complete database and LBRW database.

Rules of complete database present all possible combinations of fuzzy sets of input variables. Number of
rules in complete database equals to product of numbers of fuzzy sets of input variables. This will result in
extremely large database and very dow optimization speed if you will try to use it with more than one-two
variables. LBRW database store not al the rules, but only a number of rules selected with “Let the Best Rule
Win” algorithm. LBRW algorithm selects those rules, which contribute the most noticeabl e part of the output.
Reducing number of rules with LBRW agorithm provides faster optimization speed without loss of model
precision.

After the database was created it should be filled with actua rule data. Thisis accomplished on the final
step of model creation — rule database optimization. SCOptimizer uses genetic optimization algorithm (GA2)
to tune database parameters.

Quality of the model created during previous steps may still be inadequate. In order to improve model
quality GA3 algorithmis used. It alters shapes of membership functions and optimizes model output with fixed
number of membership functions and database structure. Error back propagation algorithm can be used to
improve model output but fine-tuning database parameters using classica gradient optimization method.

SCOptKB™ supports model export in a C program. The code in these files is written with minimal use
of functions from the standard C language library and can be compiled by any C compiler, including those
oriented to embedded systems and microcontrollers [8]. To approximate the training signal, the knowledge
optimizer is used with the selected model of fuzzy inference (Sugeno O order). The coefficient of deviation
from the neutra state and the identification value of the corresponding emotion are used. At the next stage of
designing a knowledge base for fuzzy inference, a full knowledge base is automatically generated, and the
right parts of the rules are further optimized (see Fig. 30).

Thefirst layer isalayer of input variables: the spectral density of the signal power and expert eva uation.
The second layer isfuzzy term-sets of input variables. Thethird layer correspondsto therules of the knowledge
base with the corresponding rule number in the rule base. The last layer isthe output layer, which displays the
numeric parameters of therule.

The optimizer of knowledge bases on soft computing automatically forms the optimal structure of the
neural network, allows from the point of view of computational mathematicsto approximate thetraining signa
with the required (given) approximation error, and from the point of view of the theory of artificial intelligence
implements a deep machine learning algorithm.
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Figure 30. Therule base isin the form of a network with four layers
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In Figure 31, the first graph shows the training signa and the model of the output variable.
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Figure 31. Theresult of the model isthe output variable

The green line displays the training signal and the blue line shows the model output. On the second and
third graphs presented the maximum level of activations of the rules and the number of activated rules.

5. Examples of solutions

In 1995 the robotic unicycle [35-37] and in 1994 robot for service use [11] was developed with the
bi omechanical mechanism description of emotion, instinct and intuition as corresponding look-up tables based
on expert estimation of finite number of production rules and linguistic variables with fuzzy logic inference.
In addition to design of look-up table in [35] in the structure of intelligent control system (for the feeling
support of comfort car passenger) “friendly ship” bio-inspired frequency filter was introduced; robust control
of passenger comfort feelings based on quantum soft computing technology is achieved [36]. In this article
applied SCOptKB™ toolkit [37] extract information from EEG signal, design optimal structure of fuzzy neura
network and create the universal approximator of deep machine learning processes with optimal finite number
of production rules, choice optimal type and parameters of linguistic variables for fixed model of fuzzy logic
inference. The learning architecture and the associated unsupervised |earning a gorithm of recurrent quantum
neura network [38] have been modified to take into account the complex nature of EEG signal. The basic
approach is to ensure that the statistical behavior of input signa is properly transferred to the wave packet
associated with the response of quantum dynamics of the network. EEG signal s can be considered arealization
of arandom or stochastic process. When an accurate description of the system isunavailable, astochastic filter
[39] can be designed on the basis of probabilistic measures cooperated with fuzzy modeling. This approach
for Social Robotics design with successful emotion state recognition of ASD children and for detecting early
signs of dementia [40] based on quantum deep machine learning with smart quantum computational
intelligence toolkit [42] can be applied.

5.1.Cognitive intelligent control in navigation of autonomous robot

Usually, a regulator is installed at the facility as a control system, which, depending on the mental
commands of the operator, generates a control action for the actuators. Such a controller can be asimple relay
controller, where the same control actions are generated for a finite set of output commands (forward,
backward, left, right). In this work, we tested a proportional controller, a proportional -integral (Pl) controller
with afuzzy output unit, and a proportional -integral dirivative (PID) controller with various gain factors.

For the experiment was been sel ect the object of control — mobilerobot intheform of three-wheel vehicle
with Bluetooth-control showed on Figure 32. The control device as a control processor used the Arduino Uno.
Together with the engine driver- Pololu Dual MC33926. 2 (micromotor) Motor- DC 9V Motor Bluetooth
module- HC-05. Power supply serves 3 3.7V Li-On battery.

114



CeTteBoe Hay4Hoe n3gaHue «CUCTEMHbIA aHanu3 B Hayke U obpasoBaHUny Bobinyck Ne 4, 2019 roa

Microcontroller
Arduino

BlueTooth
receiver

power source

Figure 32. Control Unit

The first and easiest implementation regulator for vehicle is a proportional controller. Such a regulator
sends a proportional value of motors cars depending on which team has the greatest affinity to recorded in
advance mental command (see Figs 33 and 34).
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Figure 33. Activating the commands in the proportional controller

P-regulator

Figure 34. Control impact produced p-controller while moving back and forth

For example, activation command associated in pairs of movement forward and backward was made
according to the difference of activation levels for these commands.
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Next, let uslook at the process of design Pl regulator using SCO. To do this, in the first phase the expert
generates a training signal, driving based on proportional regulator machine. During system operation,
recording the signals received from the block recognizer. Coming from this signal by adding formed integral
component (see Fig. 35). Then the expert put the respective control impact based on previous experience with
the system.

To approximate the teaching signal (see Fig. 36) applied the developed SCO with selected the modd of
fuzzy inference (Sugeno type models). As teaching signal used the signal from the block signal recognition
EPOC, aswell asthe integral value of the signal.
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Figure 36. Neural network fuzzy inference

At the next stage of design for fuzzy knowledge base withdrawad is carried out in automatic mode
formation full knowledge base and further optimization of right-hand sides (see Fig.37).
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Figure 37. Block diagram the formation rules in the knowledge base

In other words, at the entrance to the neura net receives commands from the software module signal
recognition (forward, backward, left and right) the output value is the commands then receives vehicle.

Theknowledge baseisapplied in conjunction with Pl controller. Using soft computing need to build more
"soft" structure to control. For this purpose, created linguigtic variables (LV) for each of the commands
recorded in the system, was formed a complete knowledge base (see Fig. 38). The right side of the regulator
contains appropriate values for control action using Pl controller. Thus, the activation level of rules in base
corresponds to the activation level of the control action.

Linguistic variable "forward"

~Membership functions

Activation level in system of recognition

Figure 38. An example of the linguistic variable for the team forward

Figure 39 shows the result of cognitive motion control of mobile robot in maze based on the Pl-regul ator.
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Figure 39. Controalling the trajectory of mobile robot based on the PI-regulator

The following verified regulator to control machines was PID controller with constant coefficients. The
coefficients of the regulatorswere PID 1[1 0.1 1] and for PID 2[3 0.1 10].

In Figs 40 and 41 shown the commands of control systemsto manage control object. Thefirst chart, green
introduced the target signal, which corresponds to a movement back and forth, and the rest of the colors
allocated to the activation levels and Pl controller with knowledge base.
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n
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= Pregulator - the management . Pjthe regulator with the knowledge base
purpose '

Figure 40. Controlling actions produced by standard signal and PI regulator. Forward and backward

As can be seen from the graphsin Fig. 40, when the task motion vehicleis back, and concentration occurs
thinking process on that team, recognition block is not always correctly identifying and contral the machine.
Vehicle work in spurts or even goes to the other side (false positives), Pl control compensates this, and
additional add-in as an integral component in the knowledge base, alows a smooth sequence of commands
and reduce errors in reaching the goal. Moreover, the system becomes adaptive and learnable, because The
basis of the base is the software tool SCO.

On Fig. 41, move to right corresponds to 1, and the movement to the left corresponds to -1.

118



CeTteBoe Hay4Hoe n3gaHue «CUCTEMHbIA aHanu3 B Hayke U obpasoBaHUny Bobinyck Ne 4, 2019 rog

3 4 the ma nt purpose - the movement right
incorrect operation — OVEmERL

W—l 7680 1536

i .

o
wv

D L= o =

level of activation
o

&
v

the management purpose - the ement left

.] 4
=~ Pregulator - themanagement . pjthe regulator with the knowledge base

purpose ]
Figure 41. Control actions produced by relay and PI adjuster when moving left and right

Additionally, there was decry the problem of the motion using control system with PID regulator.

Figure 42. Detour obstacles control systemwith PID regulator

Figure 42 presents the results of an experiment using PID controllers with different coefficients of gain
control action. The odds were set in manual mode. Differential component in PID controller associated with
the speed of the operator activates the mental command.
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Figure 43. Control actions produced PID regulators when driving forward

The choice of gain factorsinfluence naturally on the computation the action of controller and the operation
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of the system as a whole. However, establishing the optimal values of coefficients for each point in timeis
relevant and very interesting task. When incorrect (false) installation values the same way there has been an
incorrect actuation, control object movesin spurts.

To compare the results obtained in the experiments used value is the mean deviation from the desired
result. As can be seen from table 2 and Fig. 44, using a more complex controller, the deviation has reduced.
However, the wrong setting of the gain increases the deviation of the system from the intended target.

Table 2. Compare mean deviation of different controllers

/ P Pl PID1 PID2

0,84 0,85
Mean deviation 0,860 0,505

Integrated assessmaent models deviation

|||||
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Figure 44. Cumulative score deviation module

Analysis of results of experiments showed that quality control is greatly improved when more complex
control schemes.

5.2.Robotic unicycle

We attempted in the present work the emulation of human riding a unicycle by arobot. It iswell known
that the unicycle system is an inherently unstable system and both longitudinal and lateral stability control are
simultaneously needed to maintain the unicycle's postural stability. It is an unstable problem in three
dimensions (3D). However, arider can achieve postura stability on aunicycle, keep the wheel speed constant
and change the unicycl€'s posture in the yaw direction at will by using hisflexible body, good sensory systems,
skill and intelligent computational abilities.

Investigating this phenomenon and emulating the system by arobot, we aim to construct a biomechanical
model of human motion dynamics, and also evaluate the new methods for the stability control and analysis of
an unstable system. We developed a new biomechanical model with two closed link mechanism and one
turntable to emulate a human riding a unicycle by a robot. This study of rider’s postural stability control on a
unicycle began from the observation of a human riding on a unicycle with vestibular model as intelligent
biomechanical model including instinct and intuition mechanisms.

We consider the dynamic behavior of the biomechanical model from the standpoint of mechanics,
decision-making process, action logic, and information processing with distributed knowledge base levels. The
physical and mathematical background for the description of the biomechanical model is introduced. In this
paper a thermodynamic approach is used for the investigation of an optimal control process and for the
estimation of an artificial life of mobile robots [36, 37].

A new physical measure (the minimum entropy production) for the description of the intelligent dynamic
behavior and thermodynamic stability condition of a biomechanical model with an Al control system for the
robot unicycle isintroduced. This measureis used as afithess function in a GA for the computer simulation of
the intuition mechanism as a global searching measure for the decision-making process to ensure optimal
control of the global stability on the robot unicycle throughout the full space of possible solutions. The
simulation of an instinct mechanism based on FNN is considered as alocal active adaptation process with the
minimum entropy production in the learning process of the vestibular system by teaching the control signal
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accordingly to the model representation results of [35]. Computer smulations in this study are carried out by
the usage of thermodynamic equations for the motion of the robot unicycle. Entropy production and entropy
measures for the robot unicycle motion and the control system are calculated directly from the proposed
thermodynamic equations of motion.

Figs 45 and 46 are demonstrated the unicycle model and results of simulations.

Figure 45. Robotic unicycle model

In particular, Fig. 45 shows the main idea of robotic unicycle design using Kansei and System of System
Engineering approaches. With genetic algorithm the intuition of solution search is developed based on bio-
inspired model of unicyclerider behavior. Instinct and emotion are introduced based on fuzzy neura network
and corresponding look-up tables.

From the results obtained in this study, showed at Figure 46, by the fuzzy simulation and soft computing,
based on GA and FNN, it is obvious that the intelligent behavior controllability and postural stability of the
robot are largely improved by two fuzzy gain schedule PD-controllers in comparison to those controlled only
by a conventional PD and a fuzzy gain schedule PD-controller As a result of this investigation the look-up
tables for fuzzy robust controllers of the robotic unicycle are formed with minimum production entropy in
intelligent controllers and the robotic unicycle model uses this approach. The FNN controller offers a more
flexible structure of controllers with a smaller torque, and the learning process produces less entropy. FNN
controller gives amore flexible structure to controllers with smaller torque and the learning process produces
less entropy than GA.

Thus, an instinct mechanism produces less entropy than an intuition mechanism. However, the necessary
time for achieving an optimal control with the learning process on FNN (ingtinct) is larger than that with the
global search on GA (intuition). The genera approach for forming a lookup-table with GA and the fuzzy
classifier system based on FNN. Intuition and instinct mechanisms are considered as global and local search
mechanisms of the optimal solution domains for an intelligent behavior and can be realized by GA and FNN
accordingly. For the fitness function of the GA, a new physical measure as the minimum entropy production
for adescription of the intelligent behavior in a biological model is introduced.
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Figure 47. System simulation results of mechanics and thermodynamic behavior
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Figure 48. System simul ation of robotic unicycle model

Thus, the posture stability and driving control of a human riding-type unicycle have been realized. The
robot unicycle is considered as a biomechanical system using an internal world representation with a
description of emotion, instinct and intuition mechanisms. We introduced intelligent control methods based on
soft computing and confirmed that such an intelligent control and biological instinct as well as intuition
together with afuzzy inference is very important for emulating human behaviors or actions.

Intuition and instinct mechanisms are considered as global and local search mechanisms of the optimal
solution domains for an intelligent behavior and can be realized by genetic al gorithms (GA) and fuzzy neural
networks (FNN) accordingly. For the fitness function of the GA, a new physica measure as the minimum
entropy production for a description of the intelligent behavior in a biologica modd is introduced. The
calculation of robustness and controllability of the robot unicycle is presented. This report provides a general
measure to estimate the mechanical controllability qualitatively and quantitatively, even if any control scheme
isapplied.

The measure can be computed using a Lyapunov function coupled with the thermodynamic entropy
change. Described aboveinterrelation between Lyapunov function (stability condition) and entropy production
of motion (controllability condition) in aninterna biomechanical model isamathematical background for the
design of soft computing algorithms for the intelligent control of the robotic unicycle.

Fuzzy simulation and experimental results of arobust intelligent control motion for the robot unicycle are
discussed. Robotic unicycleisanew Benchmark [25] of non-linear mechatronics and intelligent smart control.
It is confirmed that the proposed fuzzy gain schedule PD-controller is very effective for the handling of the
system's nonlinearity dealing with the robot's posture stability controls. Furthermare, an important result isthat
the minimum entropy production gives a quantitative measure concerning the controllability and aso
gualitative explanations.

Thus, we provide a new benchmark of Kansei engineering for the controllability of unstable nonlinear
nonholonomic dynamic systems by means of intelligent tools based on a new physical concept of robust
control: the minimum entropy production in control systems and in control object motion in general.
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6. Quantum computing approach — quantum deep learning and quantum
neural network

Thework carried out showed that it is possible (in principle) to classify the mental states of ahuman being
operator, demonstrates the optimal deep machine learning ability of the system, the ability to create knowledge
bases based on the recorded EEG signal and use the results to recognize emotions.

Since emotions are characterized by clearly pronounced intensity, limited duration, awareness of the
reasons for its appearance; connection with a specific object, circumstance; polarity, the use of machine
learning and intelligent superstructure in the form of SCO, based on fuzzy controllers, is the best tool for
correctly describing the general psychophysical state of the human being operator in Affective / Kansel
Engineering approach [41, 42].

The ICSrobustness, obtained on the basis of such an approach, requires aminimum of initial information,
both on the behavior of the control object, and on external disturbances.

An assessment of the accumulation of integral error (without using intellectual tools) can only evaluate
the tonic activity of the brain, which shows a strong surge in the emotional background. Fuzzy controls alow
yeu to dightly expand the ability to recognize the emotional background by adding production logic rules.

The combined use of an artificial neural network and soft computing optimizer on fuzzy controller allows
to fully adapt the system, but it takesalong timeto learn. Thisiscritical in emergency and unforeseen situations
for a system of intelligent robust control. The percentage of successful classification of the emotional signin
a human operator when working with quantum neural networks is much higher than that of classical neura
networks. Thisleadsto anincreasein thereliability of the system asawhole, and allowsthe formation of more
robust knowledge bases.
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Figure 49. Intelligent control system with the integration of several fuzzy regulators

The Figure 49 shows the system with the integration of severa fuzzy regulators and quantum fuzzy
inference, contributing to the creation of a new quality of management: self-organization of knowledge bases
online apply quantum neural network.

6.1.Quantum neural network application

Classic neural networks have some attractive features: paralel processing, error tolerance, the ability to
learn and generalize the knowledge gained. The generalization property is understood as the ability of the
neutral network to generate the correct outputs for input signals that were not taken into account during the
learning. However, artificial neutral networks also face many difficulties: lack of rules for deterministic
optimal architectures, limited memory capacity, time-consuming learning, etc. But there are quantum neura
networks that solve these problems.
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Remark. The idea of a quantum neural network was first described in [43]. It is a combination of the
concept of a conventional neural network and the paradigm of quantum computing. In 1997, A. Vlasov
proposed a hypothetical model of a quantum neural network using optical interference [42]. The first
systematic review of artificial quantum neural networks is given in the dissertation of T. Menner [44]. The
main advantage of quantum computing over classical is quantum parallelism, which alows to work with al
valid states at the same time.

There are various prototypes of quantum neural networks. Some of them are very similar to their classical
counterparts, while others use quantum operators that do not have classical equivalents, for example, phase
shifts. Distinguish awide range of different structures of the quantum neural networks. It isimportant to note
that the efficiency of using neural networks is associated with massive parallel distributed processing of
information and the nonlinearity of the transformation of input vectors by neurons. In addition, quantum
systems have a much more powerful quantum parallelism, expressed by the principle of superposition.

The idea of creating an artificial quantum neural network consists in replacing the classical signals
arriving at the input of a neuron with quantum states with amplitude and phase. At the same time, a quantum
state, depending on the linear superposition of the incoming states, should also be formed at the output of the
neuron. The weights in the case of a quantum neural network (QNN) are complex numbers (which change
during the training of the network (see, Fig. 50)), so that each input quantum state is not only weighted in
amplitude, but also shifted in phase.

Figure 50. The mathematical model of a quantum neuron

Consider the parameterized quantum channel depicted in Fig. 51a, which describesageneral feed-forward
artificial QNN. The device maps inputs - a tuple of quantum and classical data - to outputs that may also

contain quantum and classical parts, i.e., (| X> , x) — (| y), y). Supervised training of the QNN uses input-

output pairs astraining data (e.g., thexand y = f (X) values from a nonlinear function) or quantum channel

(e.g., a unitary quantum circuit or dissipative evolution), and attempts to optimize the QNN's parameters to
makethe QNN's outputs for each input match thetraining set. In addition to depending on the QNN architecture
(the layout of the QNN and its trainable parameters), C and W also depend on the execution and training
protocols (which include, e.g., the input data encoding and learning method). Applies universaly, regardless
of whether the learning machine and / or training involves quantum, classical, or hybrid operations, whether
thetrained parameters are classical or quantum, how many uses of the QNN (or repeats of the input data) occur
per input, or how the datais encoded.
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Figure 51. Schema of a general feed-forward QNN

Fig. 51a shows schema of a general feed-forward QNN, a parameterized quantum channel (which could
include unitary and/or dissipative quantum evolutions, classical data processing, ancillary parameter states,

etc.) whichistrained in asupervised fashion to optimize the classical and quantum parameters @ and/or p,

so that the QNN best approximates the transformation implied by the training data. (b) Schematic of a feed-
forward quantum reservoir computer based on a Gaussian Boson Sampler. For classical tasks considered here,

|X) =|0) and data is then encoded through the squeezing parameters, and for all tasks we take Win to be the
identify matrix [44].
Quantum tasks, such as preparing states or learning a quantum circuit, are unitary approximation tasks.
6.2.EEG Data processing based on QNN

EEG signals can be considered a readlization of a random or stochastic process [8]. When an accurate
description of the system is unavailable, a stochastic filter can be designed on the basis of probabilistic
measures. Every solution to a stochastic filtering problem involves the computation of a time-varying
probability density function (pdf) on the state-space of the observed system. The architecture of recurrent
quantum neural network RQNN model isbased on the principles of QM with the Schrodinger wave equation
(SWE) playing a major part. This approach enables the online estimation of a time-varying pdf that allows
estimating and removing the noise from the raw EEG signal.

Fig. 52a shows a basic architecture of RQNN model in which each neuron mediates a spatio-temporal
field with a unified quantum activation function in the form of Gaussian that aggregates pdf information from
the observed noisy input signal. Thus, the solution of SWE (which is complex valued and whose modulus
square isthe pdf that localizes the position of quantum object in the vector space) gives the activation function.
From a mathematical point of view, the time-dependent single-dimension nonlinear SWE is a partid
differential equation describing the dynamics of wave packet (modulus-square of this wave is the pdf) in the
presence of a potential field (or function) (which isthe force field in which the particles defined by the wave
function are forced to move). Thus, the RQNN model isbased on novel concept that aquantum object mediates
the collective response of a neural lattice (a spatia structure of an array of neurons where each neuron is a
simple computational unit as shown in Fig. 52a.
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Figure 52. Conceptual framework of RQNN model (a) Signal estimation using RQNN model (b) RQNN
model framework for EEG signal enhancement (c)

Such RQNN filter used for stochastic filtering is able to reduce noise, because of its stability being highly
sensitiveto model parameters, in case of imperfect tuning, the system may fail to track the signal and its output
may saturate to absurd vaues. In the architecture used in Fig. 52b), the spatial heurons are excited by the input
signal y(t). The difference between the output of spatial neurona network and the pdf feedback |y (x, ) is
weighted by aweight vector W(X) to get the potentia energy V(x). The model can thus be seen as a Gaussian
mixture model estimator of potential energy with fixed centersand variances, and only theweightsare variable.
These weights can be trained using any learning rule.

In the RONN architecture (see Fig. 52b) makes the assumption that the average behavior of neura lattice
that estimates the signal is a time-varying pdf which is mediated by a quantum object placed in the potential
field V(x) and modulated by the input signal so as to transfer he information about pdf. SWE to recurrently
track this pdf because it is awell-known fact that the square of the modulus of  function, the solution of the
wave eguation, is aso a pdf.

The potential energy iscalculated as V (X) = gW(x,t) ¢(X,t), where

and y(t) isthe input signal and the synapses are represented by the time-varying synaptic weights W, t).

Thevariable ¢ represents the scaling factor to actuate the spatial potential energy V (x, t), and o isthewidth
of the neuronsin the lattice (taken here as unity). This potential energy modul ates the nonlinear SWE described
by:

Lov(xt) ®
ifi P 2sz;1(x,t)+V(x,t)w(x,t)

where ¢ (%, t) represents the quantum state, V isthe Laplacian operator and V (%, t/ is the potential energy.

The neuronal lattice sets up the spatia potential energy V(). A quantum process described by the
quantum state ¢ which mediates the collective response of neurond lattice, evolvesin this spatial potential V

(x) according to (2). As V (x) sets up the evolution path of the wave function, any desired response can be

obtained by properly modulating the potential energy. Such RQNN filter used for stochagtic filtering. Although
thisfilter is able to reduce noise, because of its stability being highly sensitive to model parameters, in case of
imperfect tuning, the system may fail to track the signal and its output may saturate to absurd values.

In the architecture used in this paper (Fig. 52b), the spatial neurons are excited by the input signal y ).
The difference between the output of spatial neuronal network and the pdf. The filtered estimate is cal cul ated

using MLE as §(t)= E[|V/(X,t)|2:|=jX|V/(X,t)|2 dx, where X represents the different possible values
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which may be taken up by the random process y. The variable x can be interpreted as the discrete version of
guantum space with the resolution within this discrete space being referred to as Jx (taken as 0.1). Thus, all
the possible values of x will construct the number of spatial neurons N for RQNN model.

On the basis of MLE, the weights are updated and a new potential V (x, t) is established for the next time
evolution. It is expected that the synaptic weights W(x, t) evolve in such amanner so asto drive the y function

to carry the exact information of pdf of the filtered signal §/(t) . To achieve this goal, the weights are updated
using the following learning rule:
AW (x,t)
ot

where £ is the learning rate, and fd is the delearning rate. Delearning is used to forget the previous
information, asthe input signal is not stationary, rather quasistationary in nature.

=~ (xt)+ B (x1)(L+ (1)) ©

The second right-hand side term in the above equation maybe purely positive and so in the absence of
delearning term, the value of synaptic weights W may keep growing indefinitely. Delearning thus prevents
unbounded increase in the values of the synaptic weights W and does not let the system become unstable. The
variable v(t) in the second term is the difference between the noisy input signal and the estimated filtered

signal, thereby representing the embedded noise as 9(t) = y(t)—¥(t). If the statistical mean of the noiseiis

zero, then thiserror correcting signal v(t) haslessimpact on weights, and it isthe actual signal content ininput
y(t) that influences the movement of wave packet along the desired direction which resultsin helping the goal
of achieving signal filtering.

Figure 52c¢ shows the position of RQNN model within the BCI system. The raw EEG signal is fed one
sample at atime and an enhanced signal is obtained as aresult of filtering process. Theraw EEG isfirst scaled
in the range 0-2 before it is fed to the RQNN model. During the off-line classifier training process, all the
trials from a particular channel of EEG are available. Therefore, the complete EEG is scaled using the
maximum of amplitude value from that specific channel. During the online process, the EEG signa is
approximately scaled in the range 0-2 using the maximum of amplitude value obtained from the off-line
training data of that specific channel. The net effect is that the input signal during the online processis also
maintained approximately in the region 0-2, and this enables the tracking of sample using a reduced range of
the movement of wave packet. In addition, the number of spatial neurons has also been reduced along the x-
axis from an earlier value of 401 to 612 in the present case. The primary assumption in doing this is that the
unknown nonstationary and evolving EEG signal during the evaluation stage will stay within the bound of the
range of 61 spatial neurons which can cover theinput signal range up to three. If the scaling of the input signal
is not implemented, then the number of neurons required to cover the input signal range will be larger thereby
leading to an increased computational expense [45, 46].

Conclusion

One of the important tasks is the intelligent robust control systems is a control in unforeseen / unsharp
situations. Modern solutionsto this problem already make it possible to achieve good results, but such systems
cannot be trained in on line, so the set of reaction methods to events is extremely limited. With the quantum
computing and, in particular, the quantum fuzzy algorithm, it is possible to solve such problems by increasing
the speed of deep machine learning. The use of quantum fuzzy inference can increase robustness without the
expense of atime. One of the most optimal solutionsin the design of intelligent robust control systemsisthe
formation of knowledge bases for a variety of fixed control situations. The goal of a quantum regulator is to
combine the knowl edge bases obtained using the SCO into self-organi zing quantum fuzzy regulators. Quantum
deep machine learning on quantum artificial network and optimization on quantum genetic agorithm and
applied examplesin cognitive intelligent roboticsin Part |1 considered.
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