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The article consists of two parts. Part I shows the possibility of quantum / soft computing optimizers of 
knowledge bases (QSCOptKB™) as the toolkit of quantum deep machine learning technology implementation 
in the solution’s search of intelligent cognitive control tasks applied the cognitive helmet as neurointerface. In 
particular case, the aim of this part is to demonstrate the possibility of classifying the mental states in on line 
of a human being operator with knowledge extraction from electroencephalograms based on SCOptKB™ and 
QCOptKB™ sophisticated toolkit. Application of soft computing technologies to identify objective indicators 
of the psychophysiological state of an examined person described. The role and necessity of applying intelli-
gent information technologies development based on computational intelligence toolkits in the task of objective 
estimation of a general psychophysical state of a human being operator shown. Developed information tech-
nology examined with special (difficult in diagnostic practice) examples emotion state estimation of autism 
children (ASD) and dementia and background of the knowledge bases design for intelligent robot of service 
use is it. Application of cognitive intelligent control in navigation of autonomous robot for avoidance of ob-
stacles demonstrated.  
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Статья состоит из двух частей. Часть 1 показывает возможность реализации технологии кван-
тового глубокого машинного обучения на основе квантового оптимизатора баз знаний на мягких вы-
числениях в задачах когнитивного интеллектуального управления с использованием когнитивного 
шлема в качестве нейроинтерфейса. Целью этой части статьи является демонстрация возможно-
сти классификации ментальных состояний человека-оператора с извлечением знаний из электроэнце-
фалограмм на основе инструментариев SCOptKB™ и QCOptKB™. Описано применение технологий 
мягких вычислений для выявления объективных показателей психофизиологического состояния иссле-
дуемого человека. Показана роль и необходимость применения интеллектуальных информационных 
технологий на основе интеллектуального инструментария в задаче объективной оценки общего пси-
хофизического состояния человека-оператора. Разработанная информационная технология рас-
смотрена на особых (сложных в диагностической практике) примерах оценки эмоционального состо-
яния детей, страдающих аутизмом, а также описан процесс создания базы знаний для интеллекту-
ального робота сервисного обслуживания. Показано применение интеллектуального когнитивного 
управления в навигации автономного робота для обхода препятствий. 

Ключевые слова: нейронная сеть, интеллектуальная система управления, глубокое машинное 
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Introduction 

The state-of-the-art sensing and processing tools, health-monitoring technologies attract significant 
attention in research and industry in the last three decades [1, 2]. The inclusion of human being operator in the 
feedback loop of intelligent control systems (ICS) for decision-making in complex situations creates both an 
information resource that can improve the efficiency of the development and application of ICS. Unfortunately, 
it is often associated with an increasing in the information risk of hazard situations due to the presence of an 
unpredictable human health-monitoring and emotion state factors [2].  

Thus, it is necessary to have quantitative and qualitative indicators that would not depend on the individual 
characteristics of the human being emotion operator and at the same time guaranteed objectivity of the obtained 
indicators. In that case, the developed ICS will be able to perceive, adapt and make decisions in difficult 
situations [3] due to the inclusion in the structure of these indicators as criteria for the quality of intelligent 
control.  

1. Cognitive intelligent control problems 

1.1. Tasks of hybrid cognitive and intelligent control 

A number of studies [4-7] showed the possibility of development a simplified mathematical model of 
emotions. But due to physical limitations, the trade-off of informational boundaries on the applicability of the 
developed model also have a significant influence on the correctness of description and reliability of the 
extracted knowledge from the imperfect mathematical model. In ICS theory, one of the effective approaches 
to the risk decreasing of decision-making is the development of robust ICS structures with corresponding 
knowledge bases (KBs).  

The problems of physical limitations and information boundaries solved by the possibility of forming KB 
with the required level of robustness in the design process of ICS by extracting knowledge and valuable 
information from the dynamic behavior of the model of the physical control object [8]. 

Figure 1 demonstrate general structure of hybrid cognitive intelligent control system. The structure based 
on fuzzy and cognitive controllers, includes quantum fuzzy inference with quantum genetic algorithm in Box 
“Quantum computing KB optimizer” and are the background of quantum cognitive self-organized controller 
(see, in details Part II).  

The main problem of cognitive intelligent control system (presented in Fig. 1) is design optimal robust 
control with minimal loss of value work and minimum of required initial information on external 
environments.  
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Figure 1. Structure of hybrid intelligent cognitive control system based on quantum soft computing 

Let us consider briefly the solution of this problem using information-thermodynamic approach.  

1.2. Synergetic effect of information-thermodynamic trade-off interrelations 
between stability, controllability and robustness of robotic motion intelligent 
control  

Consider the distribution equation of the trade-off control qualities of a dynamic system  
𝑞̇𝑖 = 𝜑(𝑞, 𝑡, 𝑆(𝑡), 𝑢)  as control object in the form: 

                               
𝑑𝑉

𝑑𝑡
= ∑ 𝑞𝑖 ∙ 𝜑(𝑞, 𝑡, 𝑆(𝑡), 𝑢) + (𝑆𝑝 − 𝑆𝑐) ∙ (𝑆̇𝑝 − 𝑆̇𝑐)𝑛

𝑖=1 ≤ 0,                                       (1) 

where pS
 is an entropy production of control object (plant), cS  is an entropy production of controller, 

p cS S S= −
 is a generalized entropy production of dynamic control system. 

Eq. (1) in analytical form relates such qualitative concepts of control theory as stability, controllability 
and robustness based on the concept of phenomenological thermodynamics entropy. Such an approach designs 
the necessary distribution between levels of stability, controllability and robustness, which allows achieving 
the control goal in emergencies with a minimum consumption of useful resource due to the application of the 
minimum generalized entropy production included in the right-hand side as a fitness function in the genetic 
algorithm.  

Now let us looked at (1), taking into account the connection between thermodynamic entropy and 
Shannon's information entropy. The definitions of thermodynamic entropy S and information entropy H related 
by the von Neumann relation in the form: 

𝑆 = 𝑘𝐻 =  −𝑘 ∑ 𝑝𝑖 ln 𝑝𝑖  𝑖 , (2) 

where 𝑘 ≈ 1.38 ∙ 10−23𝐽/𝐾 and is the Boltzmann constant. 

In Eq. (1) replace S(t) with the Shannon’s entropy: 

𝑑𝑉

𝑑𝑡
= ∑ 𝑞𝑖 ∙ 𝜑(𝑞, 𝑡, (𝐻𝑝 − 𝐻𝑐), 𝑢) + 𝑘(𝐻𝑝 − 𝐻𝑐) ∙ (𝐻̇𝑝 − 𝐻̇𝑐) ≤ 0

𝑛

𝑖=1

 
(3) 
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Thus, Eq. (3) also relates stability, controllability and robustness, but already based on Shannon's 
information entropy, which also allows one to determine control for guaranteed achievement of the control 
goal in emergencies with a minimum required amount of information about the external environment and the 
state of the control object. 

A generalization of Eqs (1) and (3) is the following system of equations: 

𝑑𝑉

𝑑𝑡
= ∑ 𝑞𝑖 ∙ 𝜑 (𝑞, 𝑡, (𝑆𝑝 − (𝑆𝐼𝑛𝑡 + 𝑆𝐶𝑜𝑔)) , 𝑢) + (𝑆𝑝 − (𝑆𝐼𝑛𝑡 + 𝑆𝐶𝑜𝑔)) ∙ (𝑆̇𝑝 − (𝑆̇𝐼𝑛𝑡 + 𝑆̇𝐶𝑜𝑔))

𝑛

𝑖=1

≤ 0 
 

(4) 

𝑑𝑉

𝑑𝑡
= ∑ 𝑞𝑖 ∙ 𝜑 (𝑞, 𝑡, 𝑘 (𝐻𝑝 − (𝐻𝐼𝑛𝑡 + 𝐻𝐶𝑜𝑔)) , 𝑢) + 𝑘 (𝐻𝑝 − (𝐻𝐼𝑛𝑡 + 𝐻𝐶𝑜𝑔))

𝑛

𝑖=1

∙ (𝐻̇𝑝 − (𝐻̇𝐼𝑛𝑡 + 𝐻̇𝐶𝑜𝑔)) ≤ 0 

 

(5) 

where (𝑆𝐼𝑛𝑡 + 𝑆𝐶𝑜𝑔) and (𝐻𝐼𝑛𝑡 + 𝐻𝐶𝑜𝑔) means total thermodynamic and information entropies of intelligent 
and cognitive controllers, respectively. 

It follows from Eq. (4) that the robustness of an intelligent control system can increased by producing the 
minimum entropy (value information) of the cognitive controller, which reduces the loss of useful life (safety 
increasing), and Eq. (5) shows that the negentropy of the cognitive controller reduces the minimum 
requirements for the initial information to achieve robustness. Moreover, information action based on 
knowledge (in the knowledge base of the cognitive regulator) allows get an additional resource for useful work, 
which is equivalent to the appearance of a targeted action on the control object to ensure the guaranteed 
achievement of the control goal in uncertainty and information risk conditions. 

Due to the synergetic effect, an additional information resource created and the multi-agent system is able 
to solve complex dynamic tasks for performing mutual work. The given task may not be fulfilled by each 
element (agent) of the system separately in various environments without external management, control or 
coordination, however, exchange of knowledge and information allows perform useful mutual work to achieve 
the management goal under the conditions of uncertainty of the initial information and limited consumption of 
useful resources. In particular, it known that for closed-loop control systems, the maximal amount of useful 
work 𝑊 that extracted with information amount satisfies the inequality: 

                                                 𝑊𝑚𝑎𝑥(𝑡) = 𝑘 ∫ 𝑇𝑚𝑖𝑛𝐼𝑐̇𝑑𝑡′ ≤ 𝑘𝑇𝐼
𝑡

0
, (6) 

where k  is the Boltzmann constant, ( )minT t   is interpreted as the lowest achievable temperature by the system 

in time  t  for feedback control, assuming ( )min 0T T=  and cI  determines the amount of Shannon information 

(entropy transfer), extracted by the system from the measurement process [9, 10]. 

Figure 2 demonstrate logical interrelations of information role in process of work extraction and trade-off 
of control qualities.  
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Figure 2. Interrelations between extracted work and information, and trade-off of control qualities 

Physically, the synergetic effect means self-organization of knowledge and creation of additional 
information that allows the multi-agent system to perform the most useful work with a minimum loss of useful 
resource and with a minimum of the required initial information, without destroying the lower executive level 
of the control system [9]. Together with the information-thermodynamic law of intelligent control (optimal 
distribution of the management qualities "stability - controllability - robustness"), an intelligent control system 
(ICS) is designed with multi-agent systems, ensuring the achievement of the management goal under the 
conditions of uncertain initial information and limited useful resource [9-13]. 

1.3. Extracted work and information 

If microscopic degrees of freedom are accessible to the observer in the form of the Maxwell demon, then 
the second law of thermodynamics may violate (see, Fig. 2). Szilard showed from an analysis of the Maxwell 
demon model that work is extracted from the thermodynamic cycle in the form as the amount, 𝑘𝑇 ln 2. 
Moreover, in [12, 13] it shown that the recoverable work 𝑊𝑒𝑥𝑡

𝑆  from the system determined by the amount of 
information 𝐼 (or quantum-classical mutual information) that measures the knowledge of the system when 
measuring. At the same time, such a ratio in the form of a lower boundary exists for the total cost of measuring 
and erasing information 𝑊𝑒𝑥𝑡

𝑆 ≤ −∆𝐹𝑆 + 𝑘𝑇𝐼 and 𝑊𝑒𝑥𝑡
𝑀 ≥ 𝑘𝑇𝐼, where ∆𝐹𝑆 is determines the free energy of 

the system. Then it is easy to notice that the speed of the extracted work 𝑊̇𝑒𝑥𝑡 is limited by the value 𝑊̇𝑒𝑥𝑡 ≤
𝑘𝑇𝐼,̇ i.e., it is limited by the speed of the extracted information [13]. 

Let us consider a network of loosely coupled groups of robots working together to solve tasks that go 
beyond individual capabilities. Different nodes of such a system, as a rule, have a different intelligent level 
(knowledge, algorithms, and computational bases) and various information resources in designing. Each node 
should be able to modify its behavior depending on the circumstances, as well as to plan its communication 
and cooperation strategies with other nodes. Here the indicators of the level of cooperation are the nature of 
the distribution of tasks, the unification of various information resources and, of course, the possibility of 
solving a common problem in a given time. 

1.4. Quantum algorithm of knowledge self-organization 

A quantum algorithm (QA) model of ICS self-organization proposed in [9] based on the principles of 
minimum information entropy (in the “intelligent” state of control signals) and a generalized thermodynamic 

measure of entropy production (in the system “control object + controller”). The main result of the application 

of the self-organization process is the acquisition of the necessary level of robustness and the flexibility 
(adaptability) of the reproducible structure. It is noted that the property of robustness (by its physical nature) 
acts as an integral part of self-organization, and the required level of robustness of ICS is achieved by fulfilling 
the principle of minimum production of generalized entropy, which was noted above. 
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The principle of minimum entropy production in control object and control system [14] serves as the 
physical principle of optimal functioning with a minimum consumption of useful work and underlies the 
development of robust ICS. This statement based on the fact that, for the general case of controlling dynamic 
objects, the optimal solution to the finite variation problem of determining the maximum of the useful work W 
is equivalent, according to [15], to the solution of the finite variation problem of finding the minimum of the 
entropy production S. Therefore, the developed QA model used principle of minimum informational entropy 
guarantees the necessary condition for self-organization – the minimum of the required initial information in 
the teaching signals; the thermodynamic criterion of the minimum of a new measure of generalized entropy 
production provides a sufficient condition for self-organization – the robustness of control processes with a 
minimum consumption of useful resource. 

More significant is the fact that the average amount of work done by dissipation force 
〈𝑊𝑑𝑖𝑠𝑠〉

𝑘𝑇
=

𝑆𝐾𝐿(𝑃𝐹||𝑃𝐵), i.e., the work of dissipation forces is determined by the Kullback-Leibler divergence for 
probability distributions 𝑃𝐹 , 𝑃𝐵. Note that the left side of this relation represents physically thermal energy, 
and the right side defines purely information about the system. A similar relationship exists between the work 
produced by the forces of dissipation and the difference between generalized Renyi divergences [16]. 

Figure 3 illustrates the QA structure of self-organization (QASO) in design process of robust intelligent 
PID-controller with application of quantum fuzzy inference with quantum genetic algorithm for choice the 
optimal quantum correlation type between PID-controller coefficient gains in temporal schedule.  

 

Figure 3. Quantum algorithm of self–organization based on quantum fuzzy inference and quantum genetic 
algorithm 

Thus, substituting the relations between the information and the extracted free energy and work in (4) and 
(5), we obtain the conclusion (noted above) that the robustness of the intelligent control system can increased 
by producing the entropy of the cognitive controller. The optimal cognitive controller reduces the loss of useful 
resource of the control object, and negentropy of the cognitive regulator reduces the requirements for minimum 
initial information to achieve robustness. Therefore, the extracted information, based on knowledge (in the 
knowledge base of the cognitive controller), allows to get an additional resource for useful work, which is 
equivalent to the appearance of a targeted action on the control object to guarantee the achievement of the 
control goal in unpredicted situations. 

Let us consider briefly Brain Emotional Learning Based Intelligent Controller (BELBIC) structure [17] 
as the consequence of the intelligent cognitive control system on Fig. 3.  
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Example. In a biological system, emotional responses of human being operator are utilized for fast 
decision‐making in complex environments or emergencies. It is thought that the amygdala and the orbitofrontal 
cortex are the most important parts of the brain involved in emotional responses and learning. The amygdala 
is a small structure in the medial temporal lobe of the brain that is thought to be responsible for the emotional 
evaluation of stimuli (see, Appendices 1 and 2). This evaluation is in turn used as a quantum basis for emotional 
states and responses and is used for attention signals and laying down long‐term memories. The amygdala and 
the orbitofrontal cortex compute their outputs based on the emotional signal (the reinforcing signal) received 
from the environment. The final output (the emotional responses) calculated by subtracting the amygdala’s 

output from the orbitofrontal cortex’s (OFC) output (see Fig. 4). 

 

Figure 4. a) Sectional view of the human brain for emotion processing. b) Graphical depiction of the devel-
oped computational model of brain [18] 

It should observe that it essentially converts two sets of inputs (sensory inputs and emotional cues or 
reinforcing signals) into the decision signal (the emotional responses) as its output. Closed loop configurations 
using this block (BELBIC) in the feed‐forward‐loop of the total system in an appropriate manner have 
implemented so that the input signals have the proper interpretations. The block implicitly implemented the 
critic, the learning algorithm and the action selection mechanism used in the functional implementations of 
emotionally‐based (or, generally, reinforcement learning‐based) controllers, all at the same time. 

The policies design for PID‐based controller and the BELBIC controller are the same due to the equal 
number of states, which needed for the feedback. The structure of the control circuit using the direct‐adaptive 
control strategy illustrated in Fig. 5.  

 

Figure 5. System configuration using brain emotional controller 
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The PID controller contains a constant steady‐state position error, yet in the BELBIC the steady‐state 
position error eventually decreases. Unlike the PID controller, learning the dynamics through on line 
implementation causes the BELBIC to track the reference signal inaccurately at the beginning of the 
experiment (shown in [17]). Despite the fact that the initial weights are all set to zero, the BELBIC rapidly 
learns the dynamics of the plant without any off‐line training. During transient states, a slight overshoot 
observed in the control signal of the BELBIC since the servo‐valve draws more current; however, in the PID‐
based controller no such change realized. As the BELBIC passes on to a steady state, the control signal 
becomes uniform and smooth, which is an important advantage in practical use, especially in high power 
systems such as EHS systems. The energy consumption of the BELBIC is about the same as the PID controller, 
whilst the BELBIC has less tracking error. The BELBIC tracks the reference signal with very low error in 
comparison with the PID controller. The BELBIC displays good robustness to a change in the dynamics of the 
system, an acceptable overshoot and a good tracking ability (compared to the PID [18]). A main advantage in 
the performance of the controlled EHS system is in the high degree of the adaptability of the control system 
and the robustness of the performance with respect to the initial error in relation to modeling and identification 
(even with a total lack of knowledge about the system model) [17, 18]. 

1.5. Problems in intelligent control systems design 

Modern control objects are complex dynamic systems that characterized by information uncertainty of 
model structures and control goals, a high degree of freedom and essential nonlinearities, instability, distributed 
sensors and actuators, high level of noise, abrupt jump changes in structure and dynamics, and so on. It is the 
typical information resources of unpredicted control situations. The structure design of robust advanced control 
systems for unpredicted control situations is the corner stone of modern control theory and systems. The degree 
to which a control system deals successfully with above difficulties depends on the intelligent level of 
advanced control system. 

In Step I of developed design technology, we focus the main attention on the description of particular 
results of KB design and simulating intelligent control systems with essentially nonlinear CO with a randomly 
time-dependent structure and control goals. In this case, the aim of this step is to determine the robustness 
levels of control processes that ensure the required reliability and accuracy indices under the conditions of 
uncertainty of the information employed in decision-making (learning situations). 

For Step 2, the description of the strategy of robust structure’s design of an intelligent control system 

based on the technologies of quantum and soft computing given. The developed strategy allows one to improve 
the robustness level of fuzzy controllers under the specified unpredicted or weakly formalized factors for the 
sake of forming and using new types of self-organization processes in the robust KB with the help of the 
quantum computing methodology. A particular solution of a given problem obtained by introducing a 
generalization of decision-making strategies in models of fuzzy inference in the form of a new quantum fuzzy 
inference (QFI) on a finite set of fuzzy controllers designed in advance [19]. 

The basis for the development of control systems is the proportional-integral-differentiating (PID) 
controller, which used in 70% of industrial automation, but often does not cope with the control task and works 
very poorly in unforeseen situations. Fuzzy controllers allow to partially expanding the scope of PID 
controllers by adding production logic rules and partially adapt the system. The combined use of genetic 
algorithms (GA) and a fuzzy neural network made it possible fully adapt the system, but it takes time to train 
such a system, which is critical in emergency and unforeseen situations. Modeling the optimal training signal 
makes it possible to create partial self-organization in the system due to the formation of optimal trajectories 
of the gain of the PID controller. The application of quantum computing and, as a particular example, quantum 
fuzzy inference (QFI) allows increasing robustness without spending a temporary resource in on line. 
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Figure 6. Intelligent control system including quantum fuzzy inference 

The Fig. 6 shows ICS structure with the combination of several fuzzy regulators and the quantum fuzzy 
controller. The main problem in the development and design of this structure that it is very difficult to design 
a globally good and robust control structure for all possible cases, especially when the system works in poorly 
predictable situations. One of the best solutions is the formation of a finite number of knowledge bases of a 
fuzzy controller for a variety of fixed control situations. The goal of a quantum regulator is to combine the 
knowledge bases obtained with the help of the soft computing optimizer knowledge base into self-organizing 
quantum fuzzy regulators. The QFI model uses private individual knowledge bases of the fuzzy controller, 
each of which designed using SCOptKB™ and QCOptKB™ toolkits. 

Box “Kansei / Kawaii / Affective engineering” (Fig. 1) forming the knowledge about fillings of human 
being operator and concentrate the attention on control goal. KBs of fuzzy controllers and cognitive controllers 
designed with SCOptKBTM toolkit using objective information of control object response from measurement 
system in feedback loop and affective response and will of human being operator described with new type of 
computational intelligence technology. The main performance of Part I to show the description of emotion 
estimation in Box “Kansei / Kawaii / Affective engineering” and the introduction of physical interpretation of 
quantum interference in cognition as quantum models of patterns. 

Example. In order to clarify the difference in the definition of emotions / feelings used in [20], Figure 7 
illustrates concrete examples. In the Figure 7, there is stimulus A and a bodily state that evoke the “Flight” 

action, whereas a stimulus B and a bodily state activate the “Flight” action. In this case, the emotional state 

that stimulus A and the bodily sate cause is labeled as “anger,” and the emotional state caused by the stimulus 

B and the bodily sate is labeled as “Fear.” This definition directly connects emotions to the somatic marker 

hypothesis, which means that the emotion should generated by considering internal appraisal, external 
appraisal, and decision-making mechanisms. 

 



Сетевое научное издание «Системный анализ в науке и образовании»          Выпуск № 4, 2019 год 
 

97 
 

 

Figure 7. Illustration of “anger” and “fear”, which highlights the difference: (a) emotional feeling of anger, 

and (b) emotional feeling of fear 

However, the ICS structures do not have a specialized software module to describe and implement the 
processes of adaptation and learning of the control system to the qualitative characteristics of human being 
operator behavioral responses. Proven in a wide class of areas of soft computing (genetic algorithms, fuzzy 
logic and fuzzy neural networks) and computational technology in the form of intelligent tools (Computational 
Intelligence Toolkit), allows to design an intelligent cognitive control system that has the required qualities. 

The cognitive processes of non-verbal communication in the human brain (see Fig. 8) modeling on such 
a level: they explain the correlation between what the human perceives from the clinician's communication, 
and what the human in turn communicates. The underlying condition of an observed human can then inferred 
from the recorded interaction with the clinician. 

Figure 8 describes general structure of intelligent cognitive robotic control with “brain-computer-robot-
device” neurointerface and affect decoding controller based on Kansei / Affective Engineering and its 

cognitive computing technology. 

Kansei / Affective Engineering technology and its cognitive computing toolkit include qualitative 
description of human being emotion, instinct and intuition that used effectively in design processes of smart / 
wise robotics and intelligent mechatronics as example robot for service use [11, 21] and robotic unicycle (see, 
for example below).  

 

Figure 8. General structure of intelligent cognitive human-robotic interaction control 
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Remark. According to general definition Kansei Engineering (Japanese: 感性工学 kansei kougaku, 
emotional / affective engineering) aims at the development or improvement of products and services by 
translating the customer's psychological feelings and needs into the domain of product design (i.e. parameters). 
Mitsuo Nagamachi, Ph.D, Professor Emeritus of Hiroshima University founded it. Kansei Engineering 
parametrically links the customer's emotional responses (i.e. physical and psychological) to the properties and 
characteristics of a product or service. In consequence, products can design to bring forward the intended 
feeling. The main part the mammalian brain is responsible for emotional processes and called the limbic 
system. The computational models of the amygdala and orbitofrontal cortex are the main parts of the limbic 
system recently introduced for the first time. Therefore, Kansei result is a synthesis of sensory brain cognitive 
qualities. For example, it has argued that emotion, pain and cognitive control functionally segregated in distinct 
subdivisions of the cingulate cortex of brain (see, Appendix 1). 

The processes depicted in Fig. 8 represent incredibly complex, non-smooth, and non-linear mappings and 
representations, which indicates that it will be suitable to use a deep neural network [4] approach. In this paper 
we concentrate our attention on description on the box “Objective estimation of emotion state” of Fig. 8 for 
design of knowledge base of robot for service use [11, 21]. Robots for service use can practically implemented 
into current education and therapy interventions for children ASD.  

1.6. Social human-robot emotion interaction and application 

The Center for Disease Control (CDC), has recently announced that the incidence of autism is 1 in every 
59 children. There has been a growth rate of 250% during the last 15 years. Autism is now emerging as a public 
health priority. ASD occurs in all racial, ethnic, and socio-economic groups. However, the incidence is five 
times more common among boys than among girls [22, 23]. In particular, according to the Centers for Disease 
Control and Prevention, one in every 68 children (1:42 boys, 1:189 girls) ASD [24]. Individuals with ASD 
exhibit impairments in three key areas: (a) communication, (b) social interaction, and (c) restricted interests 
and repetitive behaviors. The American Psychiatric Association recently redefined qualifiers for ASD, citing 
levels of severity, the impact deficits key areas have on the quality of life and the amount of support needed, 
beginning with Level I (less support, formerly included diagnosis of Asperger Syndrome, Pervasive 
Developmental Delay-Not Otherwise Specified), Level II (moderate support), and Level III (most support).  

The schema at the Fig. 9 shows how the child-robot interaction loop and the software modules are used 
by the robot to interact with the child: The Robot Intelligent Module (RIM) and the Behavior Manager (BM). 

 

Figure 9. Artificial Intelligence System for Robot-Assisted Treatment of Autism 

The RIM is composed of four components: head pose, body posture, eye contact, and facial expression. 
The BM consist of two components: the treatment protocol and the NAOqi API [25]. 

Although robot therapists are better than human therapists in these three areas, they are not yet perfect. 
The robots for the therapies come at a high cost. Robokind, the company that makes Milo, reports that its robot 
has an initial cost of $5,000 plus an additional cost of $4,500 every year after. This is lower than the $29,000 
cost of human therapy, but Robokind’s cost estimates are still too optimistic. A 2015 study found that parents 
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have a preference that there is a human complementing the robot in autism therapy. If humans have to 
complement robots in robot-assisted therapy, the cost might even be higher than the human-led therapy cost 
of $29,000 per year. 

As you can see at the Figs 10 and 11, robots used in autism therapy.  
 

 

Figure 10. ROBOJJANG developed by Robocare Co., Ltd. 

Interacting with robots can be particularly empowering for children with ASD, because it may overcome 
various barriers experienced in face-to-face interaction with humans. Moreover, robot assisted interventions 
can be tailored to the needs of the specific child and can be used in an identical manner as often as needed. 

 

Figure 11. Robots used in autism therapy 

Figure 11 shows the robots used in autism therapy all around the world: 

− Kaspar (courtesy of the Adaptive Systems Research Group, University of Hertfordshire, UK),  
− Tito (courtesy of F. Michaud), 
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− Roball (courtesy of F. Michaud), 

− Muu (courtesy of M. Okada, Toyohashi University of Technology, Japan),  

− Pleo (courtesy of Innvo Labs Corporation),  

− Bubble blower (courtesy of D. Feil-Seifer),  

− Nao (courtesy of Aldebaran),  

− Robota (courtesy of A. Billard), (I) Infanoid (courtesy of H. Kozima),  

− Bandit (courtesy of M. Mataric, USC, USA), and (K) Robojjang (courtesy of Robocare Co., Ltd.). 

1.7. Therapy of the autism using the intelligent cognitive system 

It is believed that effective therapy for autism is extremely expensive. It is not because it is complicated, 
but because the small number of the specialists who own behavioral techniques. There is a situation when the 
majority of families do not have access to the necessary treatment [26].  

Remark. This work is a continuation of the development of a cognitive-intelligent system for the 
diagnosis, adaptation and training of autistic children (CISDAEAC). A more detailed description of the 
CISDAEAC may be found in [27-29].  

The main part of this cognitive-intelligent system is the data processing module (see Fig. 12). It represents 
the structure of a child’s interaction and training program through the application of fuzzy logic. 

The data processing module is designed to extract the EEG based on a cognitive helmet, process and filter 
the received signal, create a cognitive process training program on the platform, diagnose problems with the 
child’s work with the system and evaluate the operator’s response to the tasks generated by the training module. 

CISDAEAC designed to extract process and formulate a learning program based on cognitive processes, 
in particular, EEG signals, adaptation of autistic children to society and training in basic household skills. One 
of the tasks of this work is the processing of the EEG signal, based on the recognition of emotions, and forming 
an encephalographic portrait of the child on the next step. 

Before working with the system, a detailed assessment of the current level of social interaction of the 
child, revealing the difference between the difficulties in acquiring. Next creating a minimum training package 
to determine the starting point consisting of basic logical tasks. To receive feedback, the Emotiv EPOC+ 
cognitive helmet used, which allows recording the brain activity signal and transferring it to the data processing 
module. 

 

Figure 12. CISDAEAC Data processing module 
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Next, by the EEG signal, evaluating the child's reaction to the interaction with environment, and 
monitoring parameters for solving the tasks. Then forming the strategy of learning using the technology of soft 
computing. The signal from the EPOC signal recognition unit, the decision time, the correctness of the solution 
and the task identification number are using as the input data. After this, the system sets the appropriate 
coefficients for adjusting the training program. 

 EEG signal processing 

2.1. Features of experimental EEG registration and informative parameters of the 
patient's condition 

The electroencephalogram (EEG) of the human operator can be used as a biometric parameter, since the 
brain activity is individual. It is made unique by synchronized activity of groups of neurons that process the 
same signals to form metastable group. Signals corresponding to one external stimulus or cognitive event 
trigger synchronized activity of neurons grouped together. A certain level of synchronization is maintained at 
rest state. Synchronized neuronal activity is observed on the EEG. 

Recording EEG signal is a contact and long-term procedure, since the electrical activity of the brain is a 
value extended in time, and the data cannot be recorded for a long time because of the nonlinear distortions of 
the EEG signal appear at large intervals. The nonlinearity of the signal can be solved by a series of short 
measurements, during which the signal can be considered linear. Emotiv EPOC+ cognitive helmet was used 
for recording the brain activity (see Fig. 13). 

 

Figure 13. Emotiv EPOC+ cognitive helmet 

EPOC has 14 electrodes, which are passive sensors that allow register electromagnetic signals. Sensors 
are attached to the surface of the skin (non-submersible, non-invasive interface). Figure 8 presents the structure 
of Emotiv EPOC+, consisting of channels AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4 and 
two reference sensors CMS/DRL, which purpose is to receive and filter bioelectric signals of muscle activity 
from the EEG signal. 

Figure 14 study selection and multivariate modeling. 
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Figure 14. Hierarchical structure of studies and tasks 

Remark. On Fig. 14 a, Hierarchical structure of studies and tasks. Dendrograms convey theoretical 
groupings of fMRI activity at levels of study (level 1: studies S1–S18), subdomain (level 2: thermal, visceral, 
mechanical, working memory (WM), response selection (RS), response conflict (RC), visual, social, and 
auditory), and domain (level 3: pain, cognitive control, and negative emotion). Colored regions illustrate model 
based partitioning of neural similarity into components that generalize across subjects (unique to a study, top 
18 squares), studies (unique to a subdomain, middle nine squares), and subdomains (unique to a domain, 
bottom three regions). b, Decomposing multivariate pattern similarity into study-, subdomain-, and domain-
specific components.  

The matrix in the left panel shows the dissimilarity of fMRI patterns across all subjects (n = 270) in the 
entire medial frontal cortex. Each row represents one individual participant and each element the dissimilarity 
(1–Pearson′ s correlation coefficient) in brain activity patterns for two individuals. Colored bars to the left 

indicate corresponding levels in the functional hierarchy. The right panel shows how the observed neural 
dissimilarity across pairs of images from the 18 studies is modeled as a weighted summation of theoretical 
dissimilarity matrices constructed according to study (18 parameters), subdomain (9 parameters), and domain 
(3 parameters) membership, in addition to a constant term (not shown).  

The supplied software allows in on line to receive, recognize and register the EEG signal from the helmet 
[31]. As part of the solution of the problem it is necessary to obtain the most informative fragments of the 
signal. Frequency rhythms of EEG are distinguished for the analysis. The concept of frequency rhythm 
determines the type of electrical activity corresponding to a certain state of the brain which boundaries of the 
frequency range are determined (see Fig. 15). 
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Figure 15. EEG frequency rhythms 

This involves the decomposition of the EEG signal into frequency components, which is achieved by fast 
Fourier transforms (FFT), which returns for each frequency buffer a complex number containing the amplitude 
and phase. 
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where N is the number of time samples, k = 0, N is 1 is the current frequency, n = 0..., N-1 is the current 
sample, xn-input samples in the time domain, xk-output samples in the frequency domain. 

2.2. Definition of emotional arousal 

A well-known marker of cognitive processes is the restructuring of brain rhythms which occurs in the 
superficially recorded human EEG. Strong emotional experience, as a form of cognitive activity, can lead to 
inhibition of other mental processes, realization of behavioral appropriate reactions, violation of conscious 
control over actions, as a result of which uncontrolled actions can be committed [32]. States arise against the 
will, conscious control over their actions is not possible. The occurrence of such situations can lead to a critical 
error in the control loop [33]. 

Therefore, the first task was to determine the level of emotional arousal of the human being operator. 

Figure 16 identifying latent brain representations that predict the occurrence of distinct functional domains 
in each region of interest.  
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Figure 16. Representational mapping of pain, cognitive control, and negative emotion in MFC 

On Fig. 16a, Searchlight maps display where local patterns of brain activity are consistent with domain-
specific representation of pain (red), cognitive control (green), and negative emotion (blue; n = 270 
participants). b, Additive conjunction of searchlight maps, with each domain mapped onto orthogonal 
dimensions in the red–green–blue (RGB) color space. Overlap between pain and cognitive control is depicted 
in yellow; overlap between pain and negative emotion is colored magenta. Maps are thresholded at P < 0.05, 
two-tailed, uncorrected cutoff to highlight any possible overlap (n!= !270 participants). c, Brain maps of Bayes 
factors indicating relative evidence against overlap among the three domains at each voxel. Smaller values 
indicate evidence against overlap; values less than 0.1 are considered strong evidence (n = 270 participants). 
d, River plots depict the similarity between searchlight maps and anatomical parcellation of MFC (left) and 
functional parcellation of cortical regions from resting-state data48 (right). Line thickness indicates the degree 
of correspondence between sets. v, Attention, ventral attention; d Attention, dorsal attention. Images are 
displayed using radiological convention. 

2.3. Experimental results 

During the study, the operator's EEG signal was recorded while in a calm state and in a state of stress. 
The source signal of each sensor, with a sampling frequency of 128Hz, is decomposed into frequency rhythms 
using a discrete Fourier transform. 

For visual assessment of differences in emotional states, graphs of the spectral power of signals from AF3, 
AF4, F7, F3, F4, F8, FC5, FC6, T7, T8, O1, O2 sensors were constructed in the range of significant frequencies 
from 1 to 50 Hz. (see Fig. 17). 
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Figure 17. A graph of the spectral power density of the EEG signal obtained by discrete Fourier transform 
for the state and stress of rest 

A comparative analysis of the spectral power of various emotional states for the frontal, temporal, and 
occipital-parietal lobes of the cerebral cortex has been carried out (see Figs 18, 19 and 20). 

 

 

Figure 18. The level of spectral power of the EEG signal for sensors AF3, AF4, A3, A4 for each of the fre-
quencies for two emotional states: calm and fright 
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Figure 19. The level of spectral power of the EEG signal for sensors P7, P8, O1, O2 for each of the frequen-
cies for two emotional states: calm and fright 

 

Figure 20. The level of spectral power of the EEG signal for sensors F7, F8, Т7, Т8 for each of the frequen-
cies for two emotional states: calm and fright 

Based on the assessment of the total tonic activity, as well as the values of the total spectral power of the 
frequency ranges, it was concluded that it is possible to estimate the emotional background of a human being 
operator. 

Figure 21 is demonstrated graphs of signal activation integral accumulation for various emotional states.  
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Figure 21. The accumulation of signal activation when setting a threshold value of 1000 and 4000 µV 

At calm state, the signal integral does not exceed 200 µV, while in a state of emotional arousal a threshold 

value of 1000 µV achieved by one iteration, and for 4000 µV in 38 iterations. 

The EEG signal registered by the software product using the knowledge base returns the coefficient 
determining the level of emotional arousal. Based on this coefficient a warning about the level of emotional 
arousal is displayed on the screen through expert judgment (see Fig. 22). 

 

Figure 22. UI of the warning about the level of emotional arousal 

 Detecting the mental state of a human operator 

First of all, we investigate fear emotion – the marker of valence measurement of emotional states. Fear is 
realized more clearly, unlike other emotions, and finding its causes is much easier. In the case of autistic 
children, the emotion of fear is most critical to recognition. 

Figure 23 shows a graph of the EEG signal taken by the sensors F3, F4, FC5, FC6 in two emotional states: 
on the left is fear, on the right is a neutral state. 
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Figure 23. The value of the EEG signal of different emotional states 

On the example of the data of the EEG signal values, the implementation of the visual display of the signal 
is considered, and also these data were used to form the knowledge base. This requires a transition from the 
representation of the EEG signal as a function of time, to the representation of the signal in the spatial frequency 
domain. This transition is carried out by decomposing the signal into harmonic components using the Fourier 
transform. Figure 24 shows a graph of the spectral power density of the EEG signal taken by the AF3 sensor 
in two emotional states: on the left is fear, on the right is a neutral state. 

 

 

Figure 24. The value of the total spectral power density of the EEG signal for various emotional states 

This approach reduces the amount of processed data for visual assessment, makes it possible to quickly 
classify electroencephalograms. Regardless of emotions sign, it can be generated in both hemispheres of the 
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brain, but a number of studies focuses the attention of the anterior sections of the brain in the generation of 
emotions (see Fig. 23). 

 

Figure 25. The location of the electrodes used in the experiment 

The combination of simultaneously present rhythms forms a specific spatial-frequency EEG pattern. 
Patterns are typical for different types of cognitive activity and are highly individually specific. The ability of 
an individual to establish rhythmic EEG patterns when performing certain cognitive tasks called 
“encephalographic” portrait of personality [29]. 

During the experiment an EEG signal was recorded with a sampling frequency of 128 Hz for various 
emotional states: calm (neutral), positive emotions and negative emotions. There was no state of strong 
emotional arousal. The source signal of each sensor is decomposed into frequency rhythms using a discrete 
Fourier transform. Figure 26 shows a graph of the average spectral power of the frequency bands in 6 secs for 
the AF3 sensor in various emotional states. 

 

Figure 26. Average power spectra of AF3 sensor 

Determining the sign of an emotion is a classic classification task. To solve it, it is necessary to determine 
the sign of the emotion at a specific point in time by analyzing the EEG signal. If we consider the state of rest 
as 0, positive emotion as +1, negative as –1, the definition of the sign of the emotion can be considered as a 
deviation from the neutral state. 

A number of studies shows [34] that in determining the sign of an emotional reaction, it is necessary to 
rely on changes in the power of the alpha rhythm and beta rhythm in the frontal and temporal lobes. With 
positive emotions, there is a strong depression of the alpha rhythm in comparison with the neutral condition, 
as well as an increase in the power of the beta rhythm (see tab. 1). 
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Table 1. Frequency rhythms with different emotional signs 

Frequency 

rhythm 
Positive emotions Negative emotions 

Alpha rhythm 

More pronounced depression of the alpha 

rhythm in comparison with the neutral 

condition in the frontal and temporal 

lobes. 

The power of the alpha rhythm is greater 

than or equal to the power of the alpha 

rhythm with a neutral condition in the 

frontal and temporal lobes. 

Beta rhythm 

Increase of beta rhythm power compared 

to neutral condition in frontal and tem-

poral leads. 

Decrease in amplitude in comparison 

with a neutral condition in frontal assign-

ments. 

Theta rhythm 

The change in the power of theta rhythm 

in the frontal and temporal leads in com-

parison with the neutral condition de-

pending on the gender. 

The change in the power of the theta 

rhythm in the frontal and temporal leads 

in comparison with the neutral condition 

depending on the gender. 

The coefficients are placed in accordance with the significance of the spectral power, they also reflecting 
the weight of the frequency rhythm to determine the sign of emotional activity. 

 Description of the software platform 

As a software platform for processing the EEG signal, the Python programming language version 3.7 was 
chosen. The NumPy package was chosen as a library for mathematical operations. NumPy is a fundamental 
package for scientific computing in Python, providing: 

− powerful N-dimensional array object; 
− complex (broadcast) functions; 
− tools for integrating C / C ++ and Fortran code; 
− algorithms linear algebra, Fourier transform and extended possibilities of random numbers. 

In addition to obvious scientific applications, NumPy can also be used as an effective multidimensional 
container of common data. The ability to define arbitrary data types allows you to easily and quickly integrate 
with a wide range of databases. 

4.1. Using the deep machine learning in the task of classifying an emotional sign 

TensorFlow was used as a library for machine learning. It is a neural network that learns how to solve 
problems by positive amplification and processes data at various levels (nodes), which helps to find the desired 
correct result with a given level of the training signal approximation error. This kind of machine learning is 
very well adapted for research purposes. The library was developed by the Google Brain team for a variety of 
tasks, including searching for images and improving speech recognition algorithms. As a starting point for the 
use of machine learning technologies (and later - soft computing), for recognizing emotions through the EEG 
signal, the TensorFlow library makes it easy to integrate into the applications self-learning elements and 
functions of artificial intelligence designed for speech recognition, computer vision or natural language 
processing. 

The principle of working with TensorFlow involves the compilation of a graph of operations, data transfer 
and the work of calculations. The graphs allow define the calculation process, where the vertices perform 
operations, and the edges describe the connection between them. Thus, when adding two numbers, it is 
necessary to define a vertex with two inputs (numbers for addition), some calculations (addition function of 
two numbers) and an output (result). 

Deep learning is a subset of machine learning. Usually, when people use the term deep learning, they are 
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referring to deep artificial neural networks, and somewhat less frequently to deep reinforcement learning. Deep 
artificial neural networks are a set of algorithms that have set new records in accuracy for many important 
problems, such as image recognition, sound recognition, recommender systems, natural language processing 
etc. We are using it to identify the sign of emotion. 

It was decided to implement a classifier based on a convolutional neural network in order to be able to 
assign features in the original data set. This feature is especially useful in the problem under study, since it is 
practically impossible to select significant features in the initial data set in manual mode in accordance with 
desired output. This significantly limits the possibility of using other types of classifiers. The training of the 
classification algorithm for EEG signals was based on data from four channels AF3, T7, F71 and F8. As an 
activation function, a rectified linear unit, specified by the expression, was used: 

𝑓(𝑥) = max(0, 𝑥), 
(7) 

where x is the input to a neuron. 

In order for TensorFlow to train the model, it is necessary to set the loss function. As the loss function 
cross entropy was used. Cross entropy is extremely important for modern systems, because it makes it possible 
to create highly accurate forecasts, even for alternative indicators. Into the learning algorithm, the power values 
of the spectra are fed to the input for each of the frequencies (alpha, beta, gamma, theta, delta). The task of 
recognizing an emotion is the task of classification, so the loss function will return: 

− Neutral state – 0;  
− Negative state – - 1;  
− Positive state – +1. 

Figures 27 and 28 show the visualization of data to the input of the neural network.  

 

Figure 27. AF3 and T7 sensor power spectra for positive, negative emotions and a calm state 
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Figure 28. Power ratings of the F7 and F8 sensor spectra for positive, negative emotions and a calm state 

Figure 27 reflects the total tonic activity of the spectra of emotions of a different sign for sensors located 
in the same hemisphere of the brain, and Figure 28 show sensors symmetrically located on opposite points of 
the two hemispheres of the brain. 

4.2. Soft Computing Optimizer 

Figure 27 shows the result of the neural network: the coefficient of deviation from the neutral state, 
obtained after processing the EEG signal, decomposed into frequency bands. 

 

Figure 29. The coefficients of deviation from the neutral state of emotions of a different sign 

As a part of the task, machine learning is used to determine the sign of the emotion at a particular point 
in time. For a correct description of the general psychophysical state of the operator, it is necessary to use the 
soft computing optimizer. Since emotions are characterized by clearly pronounced intensity, limited duration, 
awareness of the reasons for its appearance; connection with a specific object, circumstance; polarity, an 
approximation of the coefficient of deviation from the neutral state is necessary. 

Remark. SCOptimizer software is used to create sophisticated knowledge bases. Soft Computing 
Optimizer of knowledge base (SCOptKB™) is a software toolkit for creating automatic fuzzy models and 

solves the universal approximator design problem of ill-defined control objects. The SCO uses sets of values 
of the input-output vector to create and optimize a fuzzy model. To perform various optimization algorithms, 
a learning signal is needed, which represents samples of input values and corresponding output values. Training 
signal files can be created using the SCO or taken from other sources. Text files are processed based on regional 
settings that define characters for the decimal point, the thousands separator, and so on. The default values for 
these parameters are set in Windows. If the settings do not match the signal format, they can be changed at any 
time. After the change, the parameters are saved in the model and will be used for further data processing. 
Regional settings affect the reading and writing of text data and model files. 
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The first step of model optimization is the definition of shape of membership functions of fuzzy sets of 
input and (if used by the model) of output variables. SCOptimizer supports two modes of MF’s shape 

definition: using uniform distribution method or with GA1 optimization algorithm. 

Uniform distribution method distributes fuzzy sets on signal change interval according to signal 
probability distribution and user selected shape of membership functions. 

GA1 algorithm tries to find best possible combination of number of fuzzy sets per variable, membership 
function shape and overlap coefficient between neighbor fuzzy sets. For each combination it performs uniform 
distribution algorithm and tries to maximize the mutual possibility of the fuzzy sets of each variable. 

The main part of the model is a rule database. It stores data, which shows which output should be activated 
for given input. SCOptimizer supports two types of rule database: complete database and LBRW database. 

Rules of complete database present all possible combinations of fuzzy sets of input variables. Number of 
rules in complete database equals to product of numbers of fuzzy sets of input variables. This will result in 
extremely large database and very slow optimization speed if you will try to use it with more than one-two 
variables. LBRW database store not all the rules, but only a number of rules selected with “Let the Best Rule 

Win” algorithm. LBRW algorithm selects those rules, which contribute the most noticeable part of the output. 
Reducing number of rules with LBRW algorithm provides faster optimization speed without loss of model 
precision. 

After the database was created it should be filled with actual rule data. This is accomplished on the final 
step of model creation – rule database optimization. SCOptimizer uses genetic optimization algorithm (GA2) 
to tune database parameters. 

Quality of the model created during previous steps may still be inadequate. In order to improve model 
quality GA3 algorithm is used. It alters shapes of membership functions and optimizes model output with fixed 
number of membership functions and database structure. Error back propagation algorithm can be used to 
improve model output but fine-tuning database parameters using classical gradient optimization method. 

SCOptKB™ supports model export in a C program. The code in these files is written with minimal use 

of functions from the standard C language library and can be compiled by any C compiler, including those 
oriented to embedded systems and microcontrollers [8]. To approximate the training signal, the knowledge 
optimizer is used with the selected model of fuzzy inference (Sugeno 0 order). The coefficient of deviation 
from the neutral state and the identification value of the corresponding emotion are used. At the next stage of 
designing a knowledge base for fuzzy inference, a full knowledge base is automatically generated, and the 
right parts of the rules are further optimized (see Fig. 30). 

The first layer is a layer of input variables: the spectral density of the signal power and expert evaluation. 
The second layer is fuzzy term-sets of input variables. The third layer corresponds to the rules of the knowledge 
base with the corresponding rule number in the rule base. The last layer is the output layer, which displays the 
numeric parameters of the rule. 

The optimizer of knowledge bases on soft computing automatically forms the optimal structure of the 
neural network, allows from the point of view of computational mathematics to approximate the training signal 
with the required (given) approximation error, and from the point of view of the theory of artificial intelligence 
implements a deep machine learning algorithm. 

 

Figure 30. The rule base is in the form of a network with four layers 
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In Figure 31, the first graph shows the training signal and the model of the output variable. 

,  

Figure 31. The result of the model is the output variable 

The green line displays the training signal and the blue line shows the model output. On the second and 
third graphs presented the maximum level of activations of the rules and the number of activated rules. 

 Examples of solutions  

In 1995 the robotic unicycle [35-37] and in 1994 robot for service use [11] was developed with the 
biomechanical mechanism description of emotion, instinct and intuition as corresponding look-up tables based 
on expert estimation of finite number of production rules and linguistic variables with fuzzy logic inference. 
In addition to design of look-up table in [35] in the structure of intelligent control system (for the feeling 
support of comfort car passenger) “friendly ship” bio-inspired frequency filter was introduced; robust control 
of passenger comfort feelings based on quantum soft computing technology is achieved [36]. In this article 
applied SCOptKB™ toolkit [37] extract information from EEG signal, design optimal structure of fuzzy neural 
network and create the universal approximator of deep machine learning processes with optimal finite number 
of production rules, choice optimal type and parameters of linguistic variables for fixed model of fuzzy logic 
inference. The learning architecture and the associated unsupervised learning algorithm of recurrent quantum 
neural network [38] have been modified to take into account the complex nature of EEG signal. The basic 
approach is to ensure that the statistical behavior of input signal is properly transferred to the wave packet 
associated with the response of quantum dynamics of the network. EEG signals can be considered a realization 
of a random or stochastic process. When an accurate description of the system is unavailable, a stochastic filter 
[39] can be designed on the basis of probabilistic measures cooperated with fuzzy modeling. This approach 
for Social Robotics design with successful emotion state recognition of ASD children and for detecting early 
signs of dementia [40] based on quantum deep machine learning with smart quantum computational 
intelligence toolkit [42] can be applied. 

5.1. Cognitive intelligent control in navigation of autonomous robot 

Usually, a regulator is installed at the facility as a control system, which, depending on the mental 
commands of the operator, generates a control action for the actuators. Such a controller can be a simple relay 
controller, where the same control actions are generated for a finite set of output commands (forward, 
backward, left, right). In this work, we tested a proportional controller, a proportional-integral (PI) controller 
with a fuzzy output unit, and a proportional-integral dirivative (PID) controller with various gain factors. 

For the experiment was been select the object of control — mobile robot in the form of three-wheel vehicle 
with Bluetooth-control showed on Figure 32. The control device as a control processor used the Arduino Uno. 
Together with the engine driver- Pololu Dual MC33926. 2 (micromotor) Motor- DC 9V Motor Bluetooth 
module- HC-05. Power supply serves 3 3.7V Li-On battery. 
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Figure 32. Control Unit 

The first and easiest implementation regulator for vehicle is a proportional controller. Such a regulator 
sends a proportional value of motors cars depending on which team has the greatest affinity to recorded in 
advance mental command (see Figs 33 and 34).  

 

Figure 33. Activating the commands in the proportional controller 

 

Figure 34. Control impact produced p-controller while moving back and forth 

For example, activation command associated in pairs of movement forward and backward was made 
according to the difference of activation levels for these commands. 

power source 

Motors 

BlueTooth 
receiver 

Microcontroller  
 Arduino 
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Next, let us look at the process of design PI regulator using SCO. To do this, in the first phase the expert 
generates a training signal, driving based on proportional regulator machine. During system operation, 
recording the signals received from the block recognizer. Coming from this signal by adding formed integral 
component (see Fig. 35). Then the expert put the respective control impact based on previous experience with 
the system. 

To approximate the teaching signal (see Fig. 36) applied the developed SCO with selected the model of 
fuzzy inference (Sugeno type models). As teaching signal used the signal from the block signal recognition 
EPOC, as well as the integral value of the signal. 

 

Figure 35. The training signal 

 

Figure 36. Neural network fuzzy inference  

At the next stage of design for fuzzy knowledge base withdrawal is carried out in automatic mode 
formation full knowledge base and further optimization of right-hand sides (see Fig.37). 
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Figure 37. Block diagram the formation rules in the knowledge base 

In other words, at the entrance to the neural net receives commands from the software module signal 
recognition (forward, backward, left and right) the output value is the commands then receives vehicle.  

The knowledge base is applied in conjunction with PI controller. Using soft computing need to build more 
"soft" structure to control. For this purpose, created linguistic variables (LV) for each of the commands 
recorded in the system, was formed a complete knowledge base (see Fig. 38). The right side of the regulator 
contains appropriate values for control action using PI controller. Thus, the activation level of rules in base 
corresponds to the activation level of the control action. 

 

Figure 38. An example of the linguistic variable for the team forward 

Figure 39 shows the result of cognitive motion control of mobile robot in maze based on the PI-regulator. 
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Figure 39. Controlling the trajectory of mobile robot based on the PI-regulator 

The following verified regulator to control machines was PID controller with constant coefficients. The 
coefficients of the regulators were PID 1 [1 0.1 1] and for PID 2 [3 0.1 10]. 

In Figs 40 and 41 shown the commands of control systems to manage control object. The first chart, green 
introduced the target signal, which corresponds to a movement back and forth, and the rest of the colors 
allocated to the activation levels and PI controller with knowledge base. 

 

Figure 40. Controlling actions produced by standard signal and PI regulator. Forward and backward 

As can be seen from the graphs in Fig. 40, when the task motion vehicle is back, and concentration occurs 
thinking process on that team, recognition block is not always correctly identifying and control the machine. 
Vehicle work in spurts or even goes to the other side (false positives), PI control compensates this, and 
additional add-in as an integral component in the knowledge base, allows a smooth sequence of commands 
and reduce errors in reaching the goal. Moreover, the system becomes adaptive and learnable, because The 
basis of the base is the software tool SCO.  

On Fig. 41, move to right corresponds to 1, and the movement to the left corresponds to -1. 
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Figure 41. Control actions produced by relay and PI adjuster when moving left and right 

Additionally, there was decry the problem of the motion using control system with PID regulator. 

 

Figure 42. Detour obstacles control system with PID regulator 

Figure 42 presents the results of an experiment using PID controllers with different coefficients of gain 
control action. The odds were set in manual mode. Differential component in PID controller associated with 
the speed of the operator activates the mental command. 

 

Figure 43. Control actions produced PID regulators when driving forward 

The choice of gain factors influence naturally on the computation the action of controller and the operation 
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of the system as a whole. However, establishing the optimal values of coefficients for each point in time is 
relevant and very interesting task. When incorrect (false) installation values the same way there has been an 
incorrect actuation, control object moves in spurts.  

To compare the results obtained in the experiments used value is the mean deviation from the desired 
result. As can be seen from table 2 and Fig. 44, using a more complex controller, the deviation has reduced. 
However, the wrong setting of the gain increases the deviation of the system from the intended target. 

Table 2. Compare mean deviation of different controllers 

/ P PI PID1 PID2 

Mean deviation 
0,84

6 

0,85

3 
0,860 0,505 

 

Figure 44. Cumulative score deviation module 

Analysis of results of experiments showed that quality control is greatly improved when more complex 
control schemes. 

5.2. Robotic unicycle 

We attempted in the present work the emulation of human riding a unicycle by a robot. It is well known 
that the unicycle system is an inherently unstable system and both longitudinal and lateral stability control are 
simultaneously needed to maintain the unicycle's postural stability. It is an unstable problem in three 
dimensions (3D). However, a rider can achieve postural stability on a unicycle, keep the wheel speed constant 
and change the unicycle's posture in the yaw direction at will by using his flexible body, good sensory systems, 
skill and intelligent computational abilities.  

Investigating this phenomenon and emulating the system by a robot, we aim to construct a biomechanical 
model of human motion dynamics, and also evaluate the new methods for the stability control and analysis of 
an unstable system. We developed a new biomechanical model with two closed link mechanism and one 
turntable to emulate a human riding a unicycle by a robot. This study of rider’s postural stability control on a 

unicycle began from the observation of a human riding on a unicycle with vestibular model as intelligent 
biomechanical model including instinct and intuition mechanisms.  

We consider the dynamic behavior of the biomechanical model from the standpoint of mechanics, 
decision-making process, action logic, and information processing with distributed knowledge base levels. The 
physical and mathematical background for the description of the biomechanical model is introduced. In this 
paper a thermodynamic approach is used for the investigation of an optimal control process and for the 
estimation of an artificial life of mobile robots [36, 37].  

A new physical measure (the minimum entropy production) for the description of the intelligent dynamic 
behavior and thermodynamic stability condition of a biomechanical model with an AI control system for the 
robot unicycle is introduced. This measure is used as a fitness function in a GA for the computer simulation of 
the intuition mechanism as a global searching measure for the decision-making process to ensure optimal 
control of the global stability on the robot unicycle throughout the full space of possible solutions. The 
simulation of an instinct mechanism based on FNN is considered as a local active adaptation process with the 
minimum entropy production in the learning process of the vestibular system by teaching the control signal 
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accordingly to the model representation results of [35]. Computer simulations in this study are carried out by 
the usage of thermodynamic equations for the motion of the robot unicycle. Entropy production and entropy 
measures for the robot unicycle motion and the control system are calculated directly from the proposed 
thermodynamic equations of motion.  

Figs 45 and 46 are demonstrated the unicycle model and results of simulations. 

 

Figure 45. Robotic unicycle model 

In particular, Fig. 45 shows the main idea of robotic unicycle design using Kansei and System of System 
Engineering approaches. With genetic algorithm the intuition of solution search is developed based on bio-
inspired model of unicycle rider behavior. Instinct and emotion are introduced based on fuzzy neural network 
and corresponding look-up tables.  

 From the results obtained in this study, showed at Figure 46, by the fuzzy simulation and soft computing, 
based on GA and FNN, it is obvious that the intelligent behavior controllability and postural stability of the 
robot are largely improved by two fuzzy gain schedule PD-controllers in comparison to those controlled only 
by a conventional PD and a fuzzy gain schedule PD-controller As a result of this investigation the look-up 
tables for fuzzy robust controllers of the robotic unicycle are formed with minimum production entropy in 
intelligent controllers and the robotic unicycle model uses this approach. The FNN controller offers a more 
flexible structure of controllers with a smaller torque, and the learning process produces less entropy. FNN 
controller gives a more flexible structure to controllers with smaller torque and the learning process produces 
less entropy than GA.  

Thus, an instinct mechanism produces less entropy than an intuition mechanism. However, the necessary 
time for achieving an optimal control with the learning process on FNN (instinct) is larger than that with the 
global search on GA (intuition). The general approach for forming a lookup-table with GA and the fuzzy 
classifier system based on FNN. Intuition and instinct mechanisms are considered as global and local search 
mechanisms of the optimal solution domains for an intelligent behavior and can be realized by GA and FNN 
accordingly. For the fitness function of the GA, a new physical measure as the minimum entropy production 
for a description of the intelligent behavior in a biological model is introduced. 
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Figure 46. Simulation and experimental results 

 

Figure 47. System simulation results of mechanics and thermodynamic behavior 
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Figure 48. System simulation of robotic unicycle model 

Thus, the posture stability and driving control of a human riding-type unicycle have been realized. The 
robot unicycle is considered as a biomechanical system using an internal world representation with a 
description of emotion, instinct and intuition mechanisms. We introduced intelligent control methods based on 
soft computing and confirmed that such an intelligent control and biological instinct as well as intuition 
together with a fuzzy inference is very important for emulating human behaviors or actions.  

Intuition and instinct mechanisms are considered as global and local search mechanisms of the optimal 
solution domains for an intelligent behavior and can be realized by genetic algorithms (GA) and fuzzy neural 
networks (FNN) accordingly. For the fitness function of the GA, a new physical measure as the minimum 
entropy production for a description of the intelligent behavior in a biological model is introduced. The 
calculation of robustness and controllability of the robot unicycle is presented. This report provides a general 
measure to estimate the mechanical controllability qualitatively and quantitatively, even if any control scheme 
is applied.  

The measure can be computed using a Lyapunov function coupled with the thermodynamic entropy 
change. Described above interrelation between Lyapunov function (stability condition) and entropy production 
of motion (controllability condition) in an internal biomechanical model is a mathematical background for the 
design of soft computing algorithms for the intelligent control of the robotic unicycle.  

Fuzzy simulation and experimental results of a robust intelligent control motion for the robot unicycle are 
discussed. Robotic unicycle is a new Benchmark [25] of non-linear mechatronics and intelligent smart control. 
It is confirmed that the proposed fuzzy gain schedule PD-controller is very effective for the handling of the 
system's nonlinearity dealing with the robot's posture stability controls. Furthermore, an important result is that 
the minimum entropy production gives a quantitative measure concerning the controllability and also 
qualitative explanations.  

Thus, we provide a new benchmark of Kansei engineering for the controllability of unstable nonlinear 
nonholonomic dynamic systems by means of intelligent tools based on a new physical concept of robust 
control: the minimum entropy production in control systems and in control object motion in general. 
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  Quantum computing approach – quantum deep learning and quantum 
neural network 

The work carried out showed that it is possible (in principle) to classify the mental states of a human being 
operator, demonstrates the optimal deep machine learning ability of the system, the ability to create knowledge 
bases based on the recorded EEG signal and use the results to recognize emotions. 

Since emotions are characterized by clearly pronounced intensity, limited duration, awareness of the 
reasons for its appearance; connection with a specific object, circumstance; polarity, the use of machine 
learning and intelligent superstructure in the form of SCO, based on fuzzy controllers, is the best tool for 
correctly describing the general psychophysical state of the human being operator in Affective / Kansei 
Engineering approach [41, 42].  

The ICS robustness, obtained on the basis of such an approach, requires a minimum of initial information, 
both on the behavior of the control object, and on external disturbances. 

An assessment of the accumulation of integral error (without using intellectual tools) can only evaluate 
the tonic activity of the brain, which shows a strong surge in the emotional background. Fuzzy controls allow 
you to slightly expand the ability to recognize the emotional background by adding production logic rules. 

The combined use of an artificial neural network and soft computing optimizer on fuzzy controller allows 
to fully adapt the system, but it takes a long time to learn. This is critical in emergency and unforeseen situations 
for a system of intelligent robust control. The percentage of successful classification of the emotional sign in 
a human operator when working with quantum neural networks is much higher than that of classical neural 
networks. This leads to an increase in the reliability of the system as a whole, and allows the formation of more 
robust knowledge bases. 

 

Figure 49. Intelligent control system with the integration of several fuzzy regulators 

The Figure 49 shows the system with the integration of several fuzzy regulators and quantum fuzzy 
inference, contributing to the creation of a new quality of management: self-organization of knowledge bases 
online apply quantum neural network. 

6.1. Quantum neural network application  

Classic neural networks have some attractive features: parallel processing, error tolerance, the ability to 
learn and generalize the knowledge gained. The generalization property is understood as the ability of the 
neutral network to generate the correct outputs for input signals that were not taken into account during the 
learning. However, artificial neutral networks also face many difficulties: lack of rules for deterministic 
optimal architectures, limited memory capacity, time-consuming learning, etc. But there are quantum neural 
networks that solve these problems. 
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Remark. The idea of a quantum neural network was first described in [43]. It is a combination of the 
concept of a conventional neural network and the paradigm of quantum computing. In 1997, A. Vlasov 
proposed a hypothetical model of a quantum neural network using optical interference [42]. The first 
systematic review of artificial quantum neural networks is given in the dissertation of T. Menner [44]. The 
main advantage of quantum computing over classical is quantum parallelism, which allows to work with all 
valid states at the same time. 

There are various prototypes of quantum neural networks. Some of them are very similar to their classical 
counterparts, while others use quantum operators that do not have classical equivalents, for example, phase 
shifts. Distinguish a wide range of different structures of the quantum neural networks. It is important to note 
that the efficiency of using neural networks is associated with massive parallel distributed processing of 
information and the nonlinearity of the transformation of input vectors by neurons. In addition, quantum 
systems have a much more powerful quantum parallelism, expressed by the principle of superposition. 

The idea of creating an artificial quantum neural network consists in replacing the classical signals 
arriving at the input of a neuron with quantum states with amplitude and phase. At the same time, a quantum 
state, depending on the linear superposition of the incoming states, should also be formed at the output of the 
neuron. The weights in the case of a quantum neural network (QNN) are complex numbers (which change 
during the training of the network (see, Fig. 50)), so that each input quantum state is not only weighted in 
amplitude, but also shifted in phase.  

 

Figure 50. The mathematical model of a quantum neuron 

Consider the parameterized quantum channel depicted in Fig. 51a, which describes a general feed-forward 
artificial QNN. The device maps inputs - a tuple of quantum and classical data - to outputs that may also 

contain quantum and classical parts, i.e., ( ) ( ), ,x x y y . Supervised training of the QNN uses input-

output pairs as training data (e.g., the x and ( )y f x=  values from a nonlinear function) or quantum channel 

(e.g., a unitary quantum circuit or dissipative evolution), and attempts to optimize the QNN's parameters to 
make the QNN's outputs for each input match the training set. In addition to depending on the QNN architecture 
(the layout of the QNN and its trainable parameters), C and W also depend on the execution and training 
protocols (which include, e.g., the input data encoding and learning method). Applies universally, regardless 
of whether the learning machine and / or training involves quantum, classical, or hybrid operations, whether 
the trained parameters are classical or quantum, how many uses of the QNN (or repeats of the input data) occur 
per input, or how the data is encoded.  
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Figure 51. Schema of a general feed-forward QNN 

Fig. 51a shows schema of a general feed-forward QNN, a parameterized quantum channel (which could 
include unitary and/or dissipative quantum evolutions, classical data processing, ancillary parameter states, 

etc.) which is trained in a supervised fashion to optimize the classical and quantum parameters   and / or   

so that the QNN best approximates the transformation implied by the training data. (b) Schematic of a feed-
forward quantum reservoir computer based on a Gaussian Boson Sampler. For classical tasks considered here, 

0x =  and data is then encoded through the squeezing parameters, and for all tasks we take Win to be the 

identify matrix [44]. 

Quantum tasks, such as preparing states or learning a quantum circuit, are unitary approximation tasks. 

6.2. EEG Data processing based on QNN 

EEG signals can be considered a realization of a random or stochastic process [8]. When an accurate 
description of the system is unavailable, a stochastic filter can be designed on the basis of probabilistic 
measures. Every solution to a stochastic filtering problem involves the computation of a time-varying 
probability density function (pdf) on the state–space of the observed system. The architecture of recurrent 
quantum neural network RQNN model is based on the principles of QM with the Schrodinger wave equation 
(SWE) playing a major part. This approach enables the online estimation of a time-varying pdf that allows 
estimating and removing the noise from the raw EEG signal.  

Fig. 52a shows a basic architecture of RQNN model in which each neuron mediates a spatio-temporal 
field with a unified quantum activation function in the form of Gaussian that aggregates pdf information from 
the observed noisy input signal. Thus, the solution of SWE (which is complex valued and whose modulus 
square is the pdf that localizes the position of quantum object in the vector space) gives the activation function. 
From a mathematical point of view, the time-dependent single-dimension nonlinear SWE is a partial 
differential equation describing the dynamics of wave packet (modulus-square of this wave is the pdf) in the 
presence of a potential field (or function) (which is the force field in which the particles defined by the wave 
function are forced to move). Thus, the RQNN model is based on novel concept that a quantum object mediates 
the collective response of a neural lattice (a spatial structure of an array of neurons where each neuron is a 
simple computational unit as shown in Fig. 52a. 
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Figure 52. Conceptual framework of RQNN model (a) Signal estimation using RQNN model (b) RQNN 
model framework for EEG signal enhancement (c) 

Such RQNN filter used for stochastic filtering is able to reduce noise, because of its stability being highly 
sensitive to model parameters, in case of imperfect tuning, the system may fail to track the signal and its output 
may saturate to absurd values. In the architecture used in Fig. 52b), the spatial neurons are excited by the input 
signal y(t). The difference between the output of spatial neuronal network and the pdf feedback |ψ(x, t)|2 is 
weighted by a weight vector W(x) to get the potential energy V(x). The model can thus be seen as a Gaussian 
mixture model estimator of potential energy with fixed centers and variances, and only the weights are variable. 
These weights can be trained using any learning rule. 

In the RQNN architecture (see Fig. 52b) makes the assumption that the average behavior of neural lattice 
that estimates the signal is a time-varying pdf which is mediated by a quantum object placed in the potential 
field V(x) and modulated by the input signal so as to transfer he information about pdf. SWE to recurrently 
track this pdf because it is a well-known fact that the square of the modulus of ψ function, the solution of the 
wave equation, is also a pdf.  

The potential energy is calculated as ( ) ( ) ( ), ,V x W x t x t = , where 
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and ( )y t  is the input signal and the synapses are represented by the time-varying synaptic weights W(x, t). 

The variable ζ represents the scaling factor to actuate the spatial potential energy V (x, t), and σ is the width 

of the neurons in the lattice (taken here as unity). This potential energy modulates the nonlinear SWE described 
by: 
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where ψ(x, t) represents the quantum state, ∇ is the Laplacian operator and V (x, t) is the potential energy. 

The neuronal lattice sets up the spatial potential energy V(x). A quantum process described by the 

quantum state ψ which mediates the collective response of neuronal lattice, evolves in this spatial potential V 

(x) according to (2). As V (x) sets up the evolution path of the wave function, any desired response can be 

obtained by properly modulating the potential energy. Such RQNN filter used for stochastic filtering. Although 
this filter is able to reduce noise, because of its stability being highly sensitive to model parameters, in case of 
imperfect tuning, the system may fail to track the signal and its output may saturate to absurd values. 

In the architecture used in this paper (Fig. 52b), the spatial neurons are excited by the input signal y(t). 

The difference between the output of spatial neuronal network and the pdf. The filtered estimate is calculated 

using MLE as ( ) ( ) ( )
2 2

ˆ , ,y t E x t x x t dx  = =
   , where x  represents the different possible values 
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which may be taken up by the random process y. The variable x can be interpreted as the discrete version of 

quantum space with the resolution within this discrete space being referred to as δx (taken as 0.1). Thus, all 

the possible values of x will construct the number of spatial neurons N for RQNN model.  

On the basis of MLE, the weights are updated and a new potential V (x, t) is established for the next time 
evolution. It is expected that the synaptic weights W(x, t) evolve in such a manner so as to drive the ψ function 

to carry the exact information of pdf of the filtered signal ( )ŷ t . To achieve this goal, the weights are updated 

using the following learning rule: 

( )
( ) ( ) ( )( )2,

, , 1d

W x t
W x t x t t

t
  


= − + +

 , 

(9) 

where β is the learning rate, and βd is the delearning rate. Delearning is used to forget the previous 
information, as the input signal is not stationary, rather quasistationary in nature. 

The second right-hand side term in the above equation maybe purely positive and so in the absence of 
delearning term, the value of synaptic weights W may keep growing indefinitely. Delearning thus prevents 
unbounded increase in the values of the synaptic weights W and does not let the system become unstable. The 
variable v(t) in the second term is the difference between the noisy input signal and the estimated filtered 

signal, thereby representing the embedded noise as ( ) ( ) ( )ˆt y t y t = − . If the statistical mean of the noise is 

zero, then this error correcting signal v(t) has less impact on weights, and it is the actual signal content in input 
y(t) that influences the movement of wave packet along the desired direction which results in helping the goal 
of achieving signal filtering. 

Figure 52c shows the position of RQNN model within the BCI system. The raw EEG signal is fed one 
sample at a time and an enhanced signal is obtained as a result of filtering process. The raw EEG is first scaled 
in the range 0–2 before it is fed to the RQNN model. During the off-line classifier training process, all the 
trials from a particular channel of EEG are available. Therefore, the complete EEG is scaled using the 
maximum of amplitude value from that specific channel. During the online process, the EEG signal is 
approximately scaled in the range 0–2 using the maximum of amplitude value obtained from the off-line 
training data of that specific channel. The net effect is that the input signal during the online process is also 
maintained approximately in the region 0–2, and this enables the tracking of sample using a reduced range of 
the movement of wave packet. In addition, the number of spatial neurons has also been reduced along the x-
axis from an earlier value of 401 to 612 in the present case. The primary assumption in doing this is that the 
unknown nonstationary and evolving EEG signal during the evaluation stage will stay within the bound of the 
range of 61 spatial neurons which can cover the input signal range up to three. If the scaling of the input signal 
is not implemented, then the number of neurons required to cover the input signal range will be larger thereby 
leading to an increased computational expense [45, 46]. 

Conclusion 

One of the important tasks is the intelligent robust control systems is a control in unforeseen / unsharp 
situations. Modern solutions to this problem already make it possible to achieve good results, but such systems 
cannot be trained in on line, so the set of reaction methods to events is extremely limited. With the quantum 
computing and, in particular, the quantum fuzzy algorithm, it is possible to solve such problems by increasing 
the speed of deep machine learning. The use of quantum fuzzy inference can increase robustness without the 
expense of a time. One of the most optimal solutions in the design of intelligent robust control systems is the 
formation of knowledge bases for a variety of fixed control situations. The goal of a quantum regulator is to 
combine the knowledge bases obtained using the SCO into self-organizing quantum fuzzy regulators. Quantum 
deep machine learning on quantum artificial network and optimization on quantum genetic algorithm and 
applied examples in cognitive intelligent robotics in Part II considered. 
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