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Introduction: General problem of design 

General problem of intelligent PID-controllers are considered in [1–5]. In this article we are considered 
the case of optimal robust PID controller with constants parameters that is very important for engineering 
applications.  

On Fig. 1, the general structure of control system with quantum PID controller in the presence of exter-
nal stochastic noise, sensor’s time delay and noise in sensor system is shown.  

Consider main ideas of Quantum Inference based on two PID gains [1–5]. We have the following com-
puting steps. 

First of all, for two teaching conditions we will design two K-gains , 1K  and 2K , by using genetic algo-

rithm (GA) (a so called PID tuning based on GA): 1 1 1 2 2 2
1 2 and P D I P D IK k k k K k k k        . 

 By using artificial stochastic noise disturb obtained K-gains as follows:  
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and , ,P D IG G G  are increasing/decreasing coefficients that can be chosen manually.  

 

Figure 1. General structure of QPID based on two K-gains of classical PID and quantum inference 

In two teaching conditions, simulate control object motion with new disturbed K-gains and design two 

probability distributions of K- signals for design of states 0  and  1  in quantum inference. 

Realize quantum inference process with the following steps [3–5]. 

Step 1: Coding. 

Preparation of all normalized states 0  and 1 for current values of disturbed control signals 1K  and 

2K   including: 

(a) calculation of probability amplitudes 0 1,   of states 0  and 1  from histograms;   

(b) by using 1  calculation of normalized value of state 1 . 

Step 2: Choose quantum correlation type for preparation of entangled state. 

Consider the following quantum correlation (spatial):  

1,2 1,2
1 2

1,2 1,2
1 2

1,2 1,2
1 2

;

;

;

new
P D P P

new
D I D D

new
I P I I

e e k k k gain

e e k k k gain

Ie Ie k k k gain

 

 

 

 

where , ,e e Ie  – are control error, derivative and integral of control error and ( , )P D Igain  – are QI scaling fac-

tors that can be obtained by GA. So, a quantum state  1 1 2 2
1 2 3 4 5 6 1 2 ( ) ( ) ( ) ( )P D P Da a a a a a e e k t k t k t k t  is consid-

ered as entangled state. 

Step 3: Superposition and Entanglement. 

According to the chosen quantum correlation type construct superposition of entangled states.  

Step 4: Interference and measurement. 
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Choose a quantum state 1 1 2 2
1 2 3 4 5 6 1 2( ) ( ) ( ) ( ) ( ) ( )P D P Da a a a a a e t e t k t k t k t k t  with maximum amplitude of 

probability 1 1 2 2
1 2 P D P D

e e k k k k
A P P P P P P      . Choose subvector 1 1 2 2( ) ( ) ( ) ( )P D P Dk t k t k t k t . 

Step 5: Decoding. 

Calculate normalized output as a norm of subvector of the chosen quantum state as follows: 

2
3 32 2

3

1 1
( ) ... ... ( )

2 2

n
new
P n n in n

i

k t a a a a a
 



   . 

Step 6: Denormalization. 

Calculate final (denormalized) output result as follows: 

( ) , ( ) , ( ) .output new output new output new
P P p D D D I I Ik k t gain k k t gain k k t gain       

Step 6a: find robust QI scaling gains { , , }P D Igain gain gain  based on GA and a chosen fitness function. 

Let us choose one benchmark of control object and investigate robustness and self-organization proper-
ties of proposed QPID controller based on developed QI algorithm. In simulation results demonstrated below 
we describe first, preliminary, simulations. More deep study of proposed QPID model is the aim of further 
future investigations. 

Quantum PID based smart control design: example of benchmark simulation 
results 

The geometrical model of control object as «cart-pole system» is shown in Fig. 2. 

 

Figure 2. Geometrical model of cart-pole system 

The inverted pendulum (called also a pole) problem control is described by second-order differential 
equations for calculating the force to be used for moving the cart: 
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where z and   are generalized coordinate; g is the acceleration due to gravity (usually 29.8 / secm ), cm is 
the mass of the cart, m is the mass of inverted pendulum (called also as a pole), l is the half-length of the 
pendulum, k and 1a  are friction coefficients in  z and   correspondingly, 2a  is a spring force in cart , ( )t  is 
external stochastic noise and u is the applied control force in Newton’s. 

PID controller is connected with a cart. In this case for the pole stabilization ( 0  ) we introduce a new 
reference signal for z as follows: refz (a reference signal for z) is a projection on axis z of the center of gravi-

ty of the pole. It must be 0 for stabilization the pole motion.  

We can represent refz  as follows: sin ,where  is some scaling parameter.refz w l w     If 

0; 0.refz    We also introduce limitations on the center of gravity projection: 1refz   and on applied 

control force: 5 ( )u N   . 

Teaching conditions for PID tuning 

In Table 1 model parameters for the chosen control object are described. 

Table 1. Cart-Pole System: Model Parameters 

mc [kg] m [kg] l [m] Damping in q, k Damping in z, a2 Spring force coefficient in dz,a1 

1.0 0.1 0.5 0.4 0.1 5.0 

We also take the following Cart-Pole initial conditions: 

The pole angle   = [10 ; 0.1] in degrees; cart position z =[0; 0] in m.  

Constraints: Cart position: -1.0 < z < 1.0 [m]; Control Force: -5.0 < u < 5.0 [N] . 

Sensor’s delay time = 0.001 sec. 

We will use two stochastic external noises (shown on Fig. 3) for two teaching conditions with different 
probability distribution density functions: Gaussian noise (symmetric probability distribution density func-
tion) and Rayleign noise (with nonsymmetrical probability distribution density function). 

  

Figure 3. External stochastic noises in teaching control situations 

According to description of QI algorithm above at first stage let us find for two teaching conditions two 
K-gains 1K  and 2K  by using GA. 

PID tuning based on GA 

Search space for PID gains K = [100 100 100] is defined from preliminary simulations with PID control. 
We will use the following Fitness Function (y) for GA tuning: 
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2 2

t t

y      . 

In Matlab, fitness function is represented as follows:  

(simoutX(:,1).^ 2) / Norm (simoutX(:,2).^ 2) / Normy sum sum     

where simoutX(:,1) is a vector of angle values; simoutX(:,2) is a vector of angular velocity values and Norm 
is a length of these vectors. 

Teaching conditions 1 with Gaussian noise (named as TS1). As result of GA tuning we obtained the fol-
lowing 1K   = [82.7  13.6   9.4]. We will call PID with 1K  as PID1. 

Teaching conditions 2 with Rayleigh noise (named as TS2). As result of GA tuning we obtained 

2K  = [92.2   14.9   7.84]. We will call PID with 2K  as PID2. 

Now consider the motion of our control object under disturbed K-gains as shown below: 

1. TS1 control situation 

1

( ) 82.7 20 ( )

( ) ( ) 13.6 10 ( ) ,where ( ) aussian noise with amplitude 1.

9.4 5 ( )]( )]

p p

d d
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   

         
        

 

 

Figure 4. Teaching conditions 1: Pole motion with constant and disturbed K-gains of PID1 

Simulation results show that the pole motion is stable in both cases. 

On Fig. 5 the disturbed K-gains of PID1 (called as control laws) are shown. 
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Figure 5. Teaching conditions 1: Control laws 

Remark. On Fig. 6 and all others below we will denote pole angle   as x. 

2. TS2 control situation 

2
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Figure 6. Teaching conditions 2: Pole motion with constant and disturbed K-gains of PID2 

 

In this case also simulation results show that the pole motion is stable in both cases. 
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Figure 7. Teaching conditions 2: Control laws 

Conclusion: simulation results show that the pole motion is stable in both cases. It means that we can 
use disturbed K-values for further calculations. 

QPID controller based on new type of computing 

As we have said above, we developed special tools for Quantum Fuzzy and Quantum PID inference 
based on QC optimizer. 

QC optimizer tools allow to control as physical system and mathematical model of control object as 
shown on Fig. 8. 

 

Figure 8. QPID controller connected with control object 

We will work with mathematical model of control object represented in Matlab/Simulink version 6.5. 
Control loop with QPID is shown on Fig. 9. 



Электронный журнал «Системный анализ в науке и образовании»                        Выпуск №3, 2014 год 

8 

 

Figure 9. Matlab/Simulink model of control object with control loop based on QPID 

Calculations corresponding to Quantum Inference based (QI) on two K-gains are realized in the block 
QPID by QC Optimizer tools. 

QPID in terms of QC optimizer tool 

On Figs 10a and 10b, internal structure of QPID in terms of our tools is shown.  

 

Figure 10a. QPID structure in terms of QC Optimizer tools 
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Figure 10b. QPID structure. Internal layer 

On Fig. 10b internal structure of QPID block is shown. In this block the following items are described: 

- names of input variables 1,2
( , )P D Ik , where indexes 1, 2 denotes PID1 and PID2 (or 1K  and 2K ; names of 

output variables ( , )P D Ik ; 

- histograms for each input variable representing probability distribution of the given input; 

- QI scaling coefficients for calculation output values (that is founded by GA for teaching conditions 
and then used for all control situations); 

- knob «correlation parameters» is used for chosen type of quantum correlation description.  For exam-
ple, as follows spatial quantum correlations:  

1,2 1,2
1 2

1,2 1,2
1 2

1,2 1,2
1 2

;

;

.

new
P D P

new
D I D

new
I P I

e e k k k

e e k k k

Ie Ie k k k







 

By using GA and chosen quantum correlation we obtained the following QI scaling coefficients: 
Q_A_params =    2.4200    0.3320    0.1000. 

Now investigate robustness properties of designed QPID based on QI with spatial correlations in dif-
ferent control situations. 

Investigation of self-organization capability of Quantum PID Control based on 
two PID controllers (or two K-gains) 

We will consider the following controllers: 

- PID1 controller with constant gains 1K   = [82.7  13.6    9.4]; 

- PID2 controller with constant gains 2K  = [92.2   14.9   7.84]; 

- QPID controller based on quantum inference with 1K  and 2K . 

Consider now behavior of our control object in teaching and modeled unpredicted control situations and 
investigate robustness property of designed controllers. 
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Investigation of different types of quantum correlations: Spatial correlations. 

TS1: Comparison of QPID, PID1 and PID2 control performances. 

 

Figure 11. Pole motion (left) and cart motion (right) comparison 

 

Figure 12. Integral control error 

 

Figure 13. Control force and control laws 
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Conclusion: all controllers are successful to balance the Pole in TS1 situation. 

TS2: Comparison of QPID, PID1 and PID2 control performances. 

 

Figure 14. Pole motion (left) and cart motion (right) comparison in TS2 situation 

 

Figure 15. Integral control error 

On Figs 14 – 16, behavior of Cart-Pole system in teaching conditions TS2 is shown. 

 

Figure 16. Control force and control laws in TS2 situation 
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Conclusion: all controllers are successful to balance the Pole in TS2 situation. 

Investigation of self-organization capability of chosen QI 

In Table 2 modeled unpredicted control situations (Class 1) are shown.  

Table 2. Class 1 of modeled unpredicted control situations 

New 1 control situation 
(in legend S1) 
External noise: Rayleigh (TS2 
teaching noise); 
New sensor’s time delay  = 0.005 

sec;  
Internal sensor noise: Gaussian 
noise with amplitude = 0.015; 
TS model parameters 

New 2 control situation  
(in legend S1a) 
External noise: Rayleigh (TS2 
teaching noise); 
New sensor’s time delay  = 0.005 

sec;  
Internal sensor noise: Gaussian 
noise with amplitude = 0.015; 
New model parameter a2 = 8 

New 3 control situation  
(in legend S1b) 
External noise: Rayleigh (TS2 
teaching noise); 
Sensor’s time delay  = 0.001 

sec;  
Internal sensor noise: Gaussian 
noise with amplitude = 0.01; 
New model parameter a2 = 6 

Let us investigate robustness of proposed QPID model in new control environment (Table 2). 

New 1 control situation 

 

Figure 17. Pole motion (left) and cart motion (right) comparison in New 1 situation 

 

Figure 18. Integral control error in New 1 situation 
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Figure 19. Control force and control laws in New 1 situation 

Analysis of control laws and control force in point where Pole falls down. 

 

Figure 19a. Control force and control laws in New 1 situation 

Conclusion: QPID and PID1 controllers are successful to balance the Pole in New 1 situation. PID2 
controller is unsuccessful to balance the Pole in New 1 situation 

New 2 control situation 

 

Figure 20. Pole motion (left) and cart motion (right) comparison in New 2 situation 
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Figure 21. Integral control error in New 2 situation 

 

Figure 22. Control force and control laws in New 2 situation 

Analysis of control laws and control force in point where Pole falls down. 

 

Figure 22a. Control force and control laws in New 2 situation 

Conclusion: QPID controller is successful to balance the Pole in New 2 situation. PID1 and PID2 con-
trollers are unsuccessful to balance the Pole in New 2 situation. 

New 3 control situation 
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Figure 23. Pole motion (left) and cart motion (right) comparison in New 3 situation 

 

Figure 24. Integral control error in New 3 situation 

 

Figure 25. Control force and control laws in New 3 situation 

Analysis of control laws and control force in point where Pole falls down. 
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Figure 25a. Control force and control laws in New 3 situation 

Conclusion: QPID controller is successful to balance the Pole in New 3 situation. PID1 and PID2 con-
trollers are unsuccessful to balance the Pole in New 3 situation. 

Final conclusions: 

- QPID controller is robust in all situations of class1; 

- PID1 controller is robust in New 1 situation only; 

- PID2 controller is not robust in class 1 situations; 

- QPID based on new type of calculations increases robustness of designed PID controllers. 

Investigation of different types of quantum correlations: Temporal correlations 

Investigate now robustness of temporal QI correlations and compare with spatial type of QI for the giv-
en control object. For QI we consider the following temporal quantum correlations: 

1,2 1,2
1 2

1,2 1,2
1 2

1,2 1,2
1 2

( ) ;

( ) ;

( ) .

new
P P P P

new
D D D D

new
I I I I

e e k k t t k gain

e e k k t t k gain

Ie Ie k k t t k gain

   

   

   

 

On Fig. 26, cart-pole dynamic motion in TS1 situation is shown for different values of time correlation 
parameter t = 0.25 sec and 0.05 sec. 
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Figure 26. Pole motion (left) and cart motion (right) comparison in TS1 situation – Temporal quantum cor-
relations 

Check now robustness of temporal correlations. 

On Fig. 28, cart-pole dynamic motion in New 1 control situation (in legend S1) is shown for different 
values of time correlation parameter t = 0.25 sec and 0.05 sec. 

 

Figure 27. Pole motion (left) and cart motion (right) comparison in New 1 situation: Temporal quantum cor-
relations 

 

Figure 28. Control force and control laws: Temporal quantum correlations 
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Figure 29. Control force and control laws in points where Pole falls down: Temporal quantum correlations 

Comparison QPID control performance under spatial and temporal correla-
tions 

Consider dynamic motion and control laws comparison (around the point, where the Pole falls down). 

 

Figure 30. Pole motion (left) and cart motion (right) comparison 

 

Figure 31. Control force and control laws – QPID with spatial and temporal correlations comparison 
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Conclusion: QPID with temporal correlations is not robust in New 1 situation. So, choose spatial QI as 
best for robust QPID control realization. 

Consider now a new class of modeled unpredicted control situations (Class 2) shown in Table 3. For the 
new control situations (New 6 and New 7) the external uniform noise is used (Fig. 32). 

 

Figure 32. External Uniform noise applied in New 6 and New 7 control situations 

Table 3. Class 2 of modeled unpredicted control situations 

New 4 control situation 
(in legend S2) 
External noise: Gaussian (TS1 teaching noise); 
 New sensor’s time delay  = 0.004 sec;  
Internal sensor noise: Gaussian noise with 
amplitude = 0.015; 
TS model parameters 

New 5 control situation 
(in legend S2a) 
External noise: Gaussian (TS1 teaching noise); 
 New sensor’s time delay  = 0.004 sec;  
Internal sensor noise: Gaussian noise with 
amplitude = 0.015; 
New model parameter a2 = 8 

New 6 control situation 
(in legend S3) 
New external noise: Uniform (Fig.13.32); 
 New sensor’s time delay  = 0.005 sec;  
Internal sensor noise: Gaussian noise with 
amplitude = 0.015; 
TS model parameters 

New 7 control situation 
(in legend S3b) 
New external noise: Uniform (Fig.13.32); 
 New sensor’s time delay  = 0.005 sec;  
Internal sensor noise: Gaussian noise with 
amplitude = 0.015; 
New model parameter a2 = 8 

New 4 control situation 

 

Figure 33. Pole motion (left) and cart motion (right) comparison in New 4 situation 
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Figure 34. Integral control error in New 4 situation 

 

Figure 35. Control force and control laws in New 4 situation 

Conclusion: All controllers are successful to balance the Pole in New 4 situation.  

 

New 5 control situation 

 

Figure 36. Pole motion (left) and cart motion (right) comparison in New 5 situation 
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Figure 37. Integral control error in New 5 situation 

 

Figure 38. Control force and control laws in New 5 situation 

Conclusion: QPID controller and PID2 controllers are successful to balance the Pole in New 5 situation. 
PID1 controller is unsuccessful to balance the Pole in New 5 situation. 

Analysis of control laws and control force in point where Pole falls down. 

 

Figure 39. Control force and control laws in New 2 situation 
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New 6 control situation 

- New external noise: Uniform (Fig.13.32); 

- New sensor’s time delay  = 0.005 sec;  

- Internal sensor noise: Gaussian noise with amplitude = 0.015; 

- TS model parameters. 

 

Figure 40. Pole motion (left) and cart motion (right) comparison in New 6 situation 

 

Figure 41. Integral control error in New 6 situation 

 

Figure 42. Control force and control laws in New 6 situation 
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Conclusion: All controllers are successful to balance the Pole in New 6 situation.  

New 7 control situation 

- New external noise: Uniform (Fig.13.32); 

 - New sensor’s time delay  = 0.005 sec;  

- Internal sensor noise: Gaussian noise with amplitude = 0.015; 

- New model parameter a2 = 8. 

 

Figure 43. Pole motion (left) and cart motion (right) comparison in New 7 situation 

 

Figure 44. Integral control error in New 7 situation 
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Figure 45. Control force and control laws in New 7 situation 

Analysis of control laws and control force in point where Pole falls down. 

 

Figure 46. Control force and control laws in New 7 situation 

Conclusion: QPID and PID1 controllers are successful to balance the Pole in New 7 situation. PID2 
controller is unsuccessful to balance the Pole in New 7 situation. 
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Some important remarks. As shown on Fig. 47 and Fig. 48 below, control laws of QPID in teaching 
conditions and in new control situations are the same.  

 

Figure 47. Control laws and control forces in teaching conditions (TS1 and TS2) and in New 1 situation 

 

 

Figure 48. Control laws and control forces in New 2, New 5, New 7 situations 

Thus we have used constant values 1K  and 2K  of classical PID in order to obtain variable K-gains of 

QPID. Constant 1K  and 2K  of classical PID are not changed when control situation is changed, variable 
QPID K-gains also is not changed when control situation is changed. If so, let us take average values from 
obtained QPID K-gains. By this way we can receive new PID that we will call as PID-average.  

If we take max QPID
t

K K  , then we obtain new controller named as PID-max. 

Let us check robustness of new obtained controllers in chosen control situation (New 2 or in legend 
S1a). 
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Figure 49. Pole motion under three types of control 

On Fig.13.49 comparison of cart-pole motion under three types of control: 

- QPID with variable (time dependent) K-gains obtained by on-line QI process; 

- PID-average with constant gains K= [108.8507   15.3634    4.5209]; 

- PID-max with constant gains K= [119.2325   16.3510    5.1046].  

Simulation results show that PID-average and PID-max controllers with constant gains are incapable to 
balance a Pole in the chosen control situation. 

We have seen that constant K-gains obtained from quantum inference cannot control pendulum motion 
in the new situation. But variable K-gains can do it!  

Thus we have principally new calculation process. 

Conclusions 

- For practical applications, when we have deal only with PID controllers, we may increase robustness 
of control system by using quantum inference block. 

- In this case only two sets of PID constant K-gains are needed. 

- Simulation results show good robustness properties of QPID based on quantum inference block. 

- Further investigations of different QPID models are considered as useful and important. 
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