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Описываются различные процессы самоорганизации с физической, информационной и алгорит-

мической (квантового программирования) точек зрения. Рассматривается роль типов квантовой 
корреляции и информационного обмена в самоорганизации при проектировании структуры кванто-
вой самоорганизации. Приводится общий квантовый алгоритм проектирования самоорганизации, а 
также частный случай  данного подхода. Типы квантовых операторов таких, как суперпозиция, за-
путанные состояния, интерференция в различных моделях самоорганизации, рассматриваются с 
точки зрения квантового программирования. Физическая интерпретация процесса самоорганизации 
на квантовом уровне описывается на основе информационной модели извлечения и обмена квантовой 
скрытой информации в классических состояниях. Даны новые типы квантовой корреляции и инфор-
мационного обмена. 

Ключевые слова: самоорганизация, квантовый алгоритм управления, информационно-
термодинамическое распределение, устойчивость, робастность, управляемость. 
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Introduction: Self-organization phenomena 

In recent years, the concept of self-organization has been used to understand collective behavior of hu-
man being society, animals, ant’s, bird’s, bacteria’s colonies, quantum dots etc. The central tenet of self-
organization is that simple repeated interactions between individuals can produce complex adaptive patterns 
at the level of the group. Inspiration comes from patterns seen in physical systems, such as spiraling chemi-
cal waves, which arise without complexity at the level of the individual units of which the system is com-
posed.  

Figure 1 is demonstrated the self-organization in different systems. In all these examples, the individual 
is submerged as the group takes on a life of its own. The individual units do not have a complete picture of 
their position in the overall structure and the structure they create has a form that extends well beyond that of 
the individual units. The suggestion is that biological structures such as termite mounds, ant trail networks 
and even human crowds can be explained in terms of repeated interactions between the animals and their 
environment, without invoking individual complexity. As examples, a flock of birds twisting in the evening 
light; a fish school wincing at the thought of a predator; the cram to leave an underground station; ants 
marching in an endless line; the stop and start traffic jams; the quiet hum of a honey bee hive; the pulsating 
roar of a football crowd; a swarm of locusts flying across the desert; or even the bureaucracy of the European 
Union, USA, Japan, China, and Russia.  

Q: Beyond the fact that individuals produce collective patterns, is there anything more specific we can 
say about these phenomena we have labeled self-organized?  

Fig. 2 is illustrated this question. It was on the basis that «experimental evidence, as well as daily obser-
vation, show that systems involving a large number of interacting subunits can present, under certain condi-
tions, a marked coherent behavior extending well beyond the scale of the individual subunit» that Nicolis & 
Prigogine (1977) wrote «Self-organization in Nonequilibrium Systems». Their desire was to go beyond sim-
ple analogies and pin down a rigorous theory of these «self-organized» systems. Such a theory should ex-
plain how complex structures arise from repeated interactions between the individual units. It should show 
why certain structures are created and persist and explain the similarities between systems at very different 
scales and levels of biological organization. For example, could the flow of traffic be described by the math-
ematics of fluid flow? And if this was the case could we make general statements about the flow of any type 
of matter, be it swarms of locusts, crowds leaving football grounds or water running down the drain. The 
answer to this question lies in the relationship between similarities in the rules governing and the patterns 
generated by very different systems.  

A general characteristic of self-organizing systems is as following: they are robust or resilient. This 
means that they are relatively insensitive to perturbations or errors, and have a strong capacity to restore 
themselves, unlike most human designed systems. One reason for this fault-tolerance is the redundant, dis-
tributed organization: the non-damaged regions can usually make up for the damaged ones. Another reason 
for this intrinsic robustness is that self-organization thrives on randomness, fluctuations or «noise». A certain 
amount of random perturbations will facilitate rather than hinder self-organization. A third reason for resili-
ence is the stabilizing effect of feedback loops.  

The present section reviews and analyzed its most important engineering concepts and principles of 
self-organization that can be used in design of robust intelligent control systems [1]. 

Fig. 3 is demonstrated the main problem of self-organization control. 

We choice for analysis of common futures as Benchmarks the following examples [2 – 19]: 

(1) Pedestrian behavior and self-organization; 

(2) «Phantom panics» and self-organization; 

(3) Self-organization of traffic flow models; 

(4) Swarm self-organization and swarm intelligence (SI):  

4.1. Applications of SI and ant colony self-organization;  

4.2. Agent-Based Models (ABM); 
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4.3. Quantum cooperation of two insects; 

4.4. Engineered self-organization of a bacteria colony; 

(5)  Self-organization in nano-scale structures: Quantum corrals. 

Briefly physical principles of these self-organization models are described in this paper. 

 

Figure 1. Examples of collective animal behavior: 

(a) Fish milling (reproduced with permission from Philip Colla, oceanlight.com). (b) The entrance crater to 
a nest of the ant Messor barbarus (from Theraulaz et al. 2003). (c) Traffic flow in Paris (reproduced with 

permission from Anthony Atkielski). (d ) A bifurcation in a Pharaoh’s ant trail (reproduced with permission 

from Duncan Jackson). (e) A Mexican wave at an American football game (taken from Farkas 2002). (f) A 
band of marching locusts (reproduced with permission from Iain Couzin) 
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Figure 2. How these systems are similar? 

 

(a) 
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(b) 

Figure 3. Main problem of self-organization control 

In these examples self-organizational processes begin with the amplification (through positive feedback) 
of initial random fluctuations. This breaks the symmetry of the initial state, but often in unpredictable (but 
operationally equivalent) ways. That is, the job gets done, but hostile forces will have difficulty predicting 
precisely how it gets done. For example, a key issue in nanotechnology is the development of conceptually 
simple construction techniques for the mass fabrication of nano-scale structures reaching down to the atomic 
scale. At this level the conventional top-down fabrication paradigm becomes excessively energy-intensive, 
wasteful, expensive and complicated. The natural alternative is self-organized growth, where nano-scale ar-
rangements are built from their atomic and molecular constituents by processes intrinsically providing struc-
tural organization. Fig. 4 is illustrated the self-organization processes on nano-scale levels.  

 

Figure 4. Role of quantum control algorithm in self-organization on nano range 
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This approach is based on a detailed understanding of the microscopic pathways of diffusion, nucleation 
and aggregation. The hierarchy in the migration barriers as well as the non-uniform strain fields induced by 
mismatched lattice parameters can be translated into geometric order and well defined shapes and length 
scales of the resulting aggregates. In self-organizing systems the relation between cause and effect is much 
less straightforward: small causes can have large effects, and large causes can have small effects. 

This non-linearity can be understood from the relation of feedback that holds between the system’s 

components. Each component (e.g. a spin) affects the other components, but these components in turn affect 
the first component. Thus the cause-and-effect relation is circular: any change in the first component is feed-
back via its effects on the other components to the first component itself.  

Remark. The above mentioned feedback is one of important component in advanced control theory and 
can have two basic values: positive or negative. Feedback is said to be positive if the recurrent influence rein-
forces or amplifies the initial change. In other words, if a change takes place in a particular direction, the re-
action being feedback takes place in that same direction. Feedback is negative if the reaction is opposite to 
the initial action, that is, if change is suppressed or counteracted, rather than reinforced. Negative feedback 
stabilizes the system, by bringing deviations back to their original state. Positive feedback, on the other hand, 
makes deviations grow in a runaway, explosive manner. It leads to accelerated development, resulting in a 
radically different configuration.  

Thus, physically, a process of self-organization typically starts with a positive feedback phase, where an 
initial fluctuation is amplified, spreading ever more quickly, until it affects the complete system. Once all 
components have «aligned» themselves with the configuration created by the initial fluctuation, the configu-
ration stops growing: it has «exhausted» the available resources. Now the system has reached equilibrium (or 
at least a stationary state). Since further growth is no longer possible, the only possible changes are those that 
reduce the dominant configuration. However, as soon as some components deviate from this configuration, 
the same forces that reinforced that configuration will suppress the deviation, bringing the system back to its 
stable configuration. This is the phase of negative feedback.  

In more complex self-organizing systems, there will be several interlocking positive and negative feed-
back loops, so that changes in some directions are amplified while changes in other directions are sup-
pressed. This can lead to very complicated, difficult to predict behavior. These self-organized systems have 
different physical nature but can be described in general form based on developed quantum control algorithm 
of self-organization [11]. 

Analysis of self-organization models gives us the following results. 

Models of self-organization are included natural quantum effects and based on the following infor-
mation-thermodynamic concepts: (i) macro- and micro-level interactions with information exchange (in 
ABM micro-level is the communication space where the inter-agent messages are exchange and is explained 
by increased entropy on a micro-level); (ii) communication and information transport on micro-level (“quan-
tum mirage” in quantum corrals); (iii) different types of quantum spin correlation that design different struc-
ture in self-organization (quantum dot); (iv) coordination control (swam-bot and snake-bot). 

Natural evolution processes are based on the following steps [2–7]: (i) templating; (iii) self-assembling; 
and (iii) self-organization.  

According quantum computing theory in general form every quantum algorithm (QA) includes the fol-
lowing unitary quantum operators: (i) superposition; (ii) entanglement (quantum oracle); (iii) interference. 
Measurement is the fourth classical operator. [It is irreversible operator and is used for measurement of com-
putation results].  

Quantum control algorithm of self-organization that developed below [11] is based on quantum fuzzy 
inference (QFI) models. QFI includes these concepts of self-organization and has realized by corresponding 
quantum operators.   

QFI is one of possible realization of quantum control algorithm of self-organization that includes all of 
these features: (i) superposition; (ii) selection of quantum correlation types; (iii) information transport and 
quantum oracle; and (iv) interference. With superposition is realized templating operation, and based on 
macro- and micro-level interactions with information exchange of active agents. Selection of quantum corre-
lation type organize self-assembling using power source of communication and information transport on mi-
cro-level. In this case the type of correlation defines the level of robustness in designed KB of FC. Quantum 
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oracle calculates intelligent quantum state that includes the most important (value) information transport for 
coordination control. Interference is used for extraction the results of coordination control and design in on-
line robust KB.  

The developed QA of self-organization is applied to design of robust KB of FC in unpredicted control 
situations. Main operations of developed QA and concrete examples of QFI applications are described. 

Principles and Physical Model Examples of Self-Organization 

The theory of self-organization, learning and adaptation has grown out of a variety of disciplines, in-
cluding quantum mechanics, thermodynamics, cybernetics, control theory and computer modeling. The pre-
sent section reviews its most important definitions, principles, model descriptions and engineering concepts 
that can be used in design of robust intelligent control systems.  

Definitions and main properties of self-organization 

Self-organization is defined in general form as following [2, 3, 5, 6]: The spontaneous emergence of 
large-scale spatial, temporal, or spatiotemporal order in a system of locally interacting, relatively simple 
components. 

Self-organization is a bottom-up process where complex organization emerges at multiple levels from 
the interaction of lower-level entities. The final product is the result of nonlinear interactions rather than 
planning and design, and is not known a priori. Contrast this with the standard, top-down engineering design 
paradigm where planning precedes implementation, and the desired final system is known by design. 

Self-organization can be defined as the spontaneous creation of a globally coherent pattern out of local 
interactions. Because of its distributed character, this organization tends to be robust, resisting perturbations. 
The dynamics of a self-organizing system is typically nonlinear, because of circular or feedback relations 
between the components. Positive feedback leads to an explosive growth, which ends when all components 
have been absorbed into the new configuration, leaving the system in a stable, negative feedback state.  

Nonlinear systems have in general several stable states, and this number tends to increase (bifurcate) as 
an increasing input of energy pushes the system farther from its thermodynamic equilibrium.  

Fig. 5 demonstrates this bifurcation situation. 

 

Figure 5. Bifurcation process of non-linear system 
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To adapt to a changing environment, the system needs a variety of stable states that is large enough to 
react to all perturbations but not so large as to make its evolution uncontrollably chaotic. The most adequate 
states are selected according to their fitness, either directly by the environment, or by subsystems that have 
adapted to the environment at an earlier stage.  

Formally, the basic mechanism underlying self-organization is the (often noise-driven) variation which 
explores different regions in the system’s state space until it enters an attractor. This precludes further varia-
tion outside the attractor, and thus restricts the freedom of the system’s components to behave independently. 

This is equivalent to the increase of coherence, or decrease of statistical entropy, that defines self-
organization.  

The most obvious change that has taken place in systems is the emergence of global organization. Ini-
tially the elements of the system (spins or molecules) were only interacting locally. This locality of interac-
tions follows from the basic continuity of all physical processes: for any influence to pass from one region to 
another it must first pass through all intermediate regions. In the self-organized state, on the other hand, all 
segments of the system are strongly correlated. This is most clear in the example of the magnet: in the mag-
netized state, all spins, however far apart, point in the same direction. Correlation is a useful measure to 
study the transition from the disordered to the ordered state. Locality implies that neighboring configurations 
are strongly correlated, but that this correlation diminishes as the distance between configurations increases. 
The correlation length can be defined as the maximum distance over which there is a significant correlation.  

When we consider a highly organized system, we are usually imagined some external or internal agent 
(controller) that is responsible for guiding, directing or controlling that organization. The controller is a 
physically distinct subsystem that exerts its influence over the rest of the system. In this case, we may say 
that control is centralized. In self-organizing systems, on the other hand, «control» of the organization is typ-
ically distributed over the whole of the system. All parts contribute evenly to the resulting arrangement.  

Remark. Although centralized control does have some advantages over distributed control (e.g. it allows 
more autonomy and stronger specialization for the controller), at some level it must itself be based on dis-
tributed control. For example, the behavior of human being body can be best explained by studying what 
happens in his brain, since the brain, through the nervous system, controls the movement of muscles. How-
ever, to explain the functioning of brain, we can no longer rely on some «mind within the mind» that tells the 
different brain neurons what to do. This is the traditional philosophical problem of the homunculus, the hy-
pothetical «little man» that had to be postulated as the one that makes all the decisions within mental system. 
Any explanation for organization that relies on some separate control, plan or blueprint must also explain 
where that control comes from otherwise it is not really an explanation. The only way to avoid falling into 
the trap of an infinite regress (the mind within the mind within the mind within...) is to uncover a mechanism 
of self-organization at some level. The brain illustrates this principle nicely. Its organization is distributed 
over a network of interacting neurons. Although different brain regions are specialized for different tasks, no 
neuron or group of neurons has overall control.  

This is shown by the fact that minor brain lesions because of accidents, surgery or tumors normally do 
not disturb overall functioning, whatever the region that is destroyed. 

As mentioned in Introduction a general characteristic of self-organizing systems is as following: they 
are robust or resilient. This means that they are relatively insensitive to perturbations or errors, and have a 
strong capacity to restore themselves, unlike most human designed systems. One reason for this fault-
tolerance is the redundant, distributed organization: the non-damaged regions can usually make up for the 
damaged ones. Another reason for this intrinsic robustness is that self-organization thrives on randomness, 
fluctuations or «noise». A certain amount of random perturbations will facilitate rather than hinder self-
organization. A third reason for resilience is the stabilizing effect of feedback loops. Many self-
organizational processes begin with the amplification (through positive feedback) of initial random fluctua-
tions. This breaks the symmetry of the initial state, but often in unpredictable but operationally equivalent 
ways. That is, the job gets done, but hostile forces will have difficulty predicting precisely how it gets done.  

Stigmergy is an important principle of self-organization, seen for example in wasp nest building and 
spider web construction. It refers to a way of coordinating a collective construction process so that the pro-
ject itself contains the information necessary to guide the actions of the workers. Scientific research has 
shown the pervasiveness of self-organization in the natural world, from nonliving systems, through microor-
ganisms, to species of all degrees of complexity, including human beings. This research has demonstrated 
how comparatively simple interactions, often among organisms with limited cognitive capacities, can solve 
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complex command, control, and coordination problems in order to promote their survival and to accomplish 
their ends.  

The behavior of these species is more robust, flexible, and adaptive than they would be if they were not 
based on self-organization.  Self-organization is especially attractive as an approach to the robust, flexible, 
and adaptive implementation of command, control, and communication systems of enormous potential value 
to military operations, homeland security, and public safety. With this increased knowledge of natural self-
organization, has come improved understanding of various general principles that can be applied to artificial 
intelligent systems to achieve the same benefits. In past research, a variety of simulation studies have shown 
that these principles of self-organization can be applied in artificial systems, which may be quite different 
from the natural systems in which the principles were originally observed.  

Principles and Models of Self-Organization 

Self-organization has long been a matter of immense interest and research in sociology, anthropology, 
physics and many other fields. Though the principles of self-organization can be inducted from almost all 
walks of human, plant and animal lives [2 – 7], and in computer science [8] can be used. It is most evident in 
ant and termites colonies [9] or self-engineering capabilities of bacteria [10]. Self-organization has been used 
to explain the formation of cities, software, brain cells and many natural phenomena in human societies. 
Though the principle is used to explain other phenomena, the concept itself is continuously evolving. Self-
organization phenomena are correlated with information transport and thermodynamics processes [5 – 7, 
15 – 17].  

The term self-organizing systems refers to a class of systems that are able to change their internal struc-
ture and their function in response to external circumstances. By self-organization it is understood that ele-
ments of a system are able to manipulate or organize other elements of the same system in a way that stabi-
lizes either structure or function of the whole against external fluctuations. Traditionally three qualitative 
forms of self-organization are analyzed as following:  

(i) stigmergy; (ii) reinforcement mechanisms; and (iii) cooperation. 

The amplification phenomena founded in stigmergic process or in reinforcement process are different 
forms of positive feedbacks that play a major role in building group activity or social organization. Coopera-
tion is a functional form for self-organization because of its ability to guide local behaviors in order to obtain 
a relevant collective one.  

Self-organization mechanisms guide the behavior of the local entities of a collective.  

Consequently these approaches allow a drastic reduction of the solution search space compared to glob-
al search algorithms. Working on self-organization implies the creation of disorders inside a collective in 
order to obtain later a more relevant response of the system faced with unexpected events. From an engineer-
ing point of view it could be interesting to propose global systems gauges able to link disorder and relevance 
behavior at the system macro-level. 

Self-organization essentially refers to a spontaneous, dynamically produced (re-)organization. Several 
definitions corresponding to the different self-organization behaviors: (1) Swarm intelligence (SI); 
(2) Decrease of entropy; (3) Autopoiesis; (4) Artificial systems; (5) Emergence.  

Remark. Many natural systems show self-organization property (e.g. galaxies, planets, chemical com-
pounds, cells, organisms and societies). Traditional scientific fields attempt to explain these features by ref-
erencing the micro properties or laws applicable to their component parts, for example gravitation or chemi-
cal bonds. Furthermore, self-organization implies organization, which in turn implies some ordered structure 
and component behavior. In this respect, the process of self-organization changes the respective structure and 
behavior, and a new distinct organization is self-produced. Emergence is the fact that a structure, not explic-
itly represented at a lower level, appears at a higher level. In the case of dynamic self-organizing systems, 
with decentralized control and local interactions, intimately linked with self-organization is the notion of 
emergent properties. The ants actually establish the shortest path between the nest and the source of food. 
However in the general case, self-organization can be witnessed without emergence and vice-versa. 

A. Principles of self-organization. Over the last half a century, much research in different areas has em-
ployed self-organizing systems to solve complex control problems. However, there is as yet no general 
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framework for constructing self-organizing systems. Different vocabularies are used in different areas, and 
with different goals. (Detail description of self-organization principles and different natural/man-manned 
models of self-organization structures are presented in [3, 5 – 7, 11]). The essence of self-organization is that 
system structure often appears without explicit pressure or involvement from outside the system. In other 
words, the constraints on form (i.e. organization) of interest to us are internal to the system, resulting from 
the interactions among the components and usually independent of the physical nature of those components. 
The organization can evolve in either time or space, maintain a stable form or show transient phenomena. 
General resource flows within self-organized systems are expected (dissipation), although not critical to the 
concept itself.  

Remark: Related works. The term self-organization has been used in different areas with different mean-
ings, as is cybernetics, social-economic systems, thermodynamics, biology, mathematics, computing, infor-
mation theory, synergetic, and others (for a general overview, see [11], and References there). However, the 
use of the term is subtle, since any dynamical system can be said to be self-organizing or not, depending 
partly on the observer: If we decide to call a «preferred» state or set of states (i.e. attractor) of a system «or-
ganized», then the dynamics will lead to a self-organization of the system. A practical notion will suffice: A 
system described as self-organizing is one in which elements interact in order to achieve dynamically a 
global function or behavior [20]. This function or behavior is not imposed by one single or a few elements, 
nor determined hierarchically. It is achieved autonomously as the elements interact with one another. These 
interactions produce feedbacks that regulate the system. Many non-living physical and chemical systems 
have the capacity to generate order from chaos. This capacity is known as self-organization. Self-organized 
systems can evolve by small parameter shifts that produce large changes in outcome. A common misconcep-
tion about self-organization in biological systems is that it represents an alternative to natural selection. 

Self-organization usually relies on four basic ingredients: (i) Positive feedback; (ii) Negative feedback; 
(iii) Balance of exploitation and exploration; and (iv) Multiple interactions. All the previously mentioned 
examples of complex systems fulfill the definition of self-organization.  

Fig. 6 shows these principles of self-organization in ant colony. When two food sources of equal quality 
are offered to an ant society, only one becomes selected through the concurrent influence of positive (in 
green) and negative (in red) feedback loops. Examples of such feedbacks are given in the Fig. 1. Depending 
on these feedbacks, the trail amount and hence the probability for newly coming ants to choose one path (ei-
ther P1 or P2) at the bifurcation point will change over time and will ultimately lead to the collective choice 
of one food source. More precisely, the question can be formulated as follows.  

Q: When is it useful to describe a system as self-organizing? 

This will be when the system or environment is very dynamic and/or unpredictable. 

If we want the system to solve a problem, it is useful to describe a complex system as self-organizing 
when the «solution» is not known beforehand and/or is changing constantly. Then, the solution is dynamical-
ly strived for by the elements of the system. In this way, systems can adapt quickly to unforeseen changes as 
elements interact locally. In theory, a centralized approach could also solve the problem, but in practice such 
an approach would require too much time to compute the solution and would not be able to keep the pace 
with the changes in the system and its environment. In engineering, a self-organizing system would be one in 
which elements are designed in order to solve dynamically a problem or perform a function at the system 
level.  

Thus, the elements need to divide, but also integrate, the problem. For example, a swarm of robots will 
be conveniently described as self-organizing, since each element of the swarm can change its behavior de-
pending on the current situation. It should be noted that all engineered self-organizing systems are to a cer-
tain degree autonomous, since part of their actual behavior will not be determined by a designer. In order to 
understand self-organizing systems, two or more levels of abstraction should be considered: elements (lower 
level) organize in a system (higher level), which can in turn organize with other systems to form a larger sys-
tem (even higher level).  

The understanding of the system’s behavior will come from the relations observed between the descrip-
tions at different levels. Note that the levels, and therefore also the terminology, can change according to the 
interests of the observer. For example, in some circumstances, it might be useful to refer to cells as elements 
(e.g. bacterial colonies); in others, as systems (e.g. genetic regulation); and in others still, as systems coordi-
nating with other systems (e.g. morphogenesis).  

http://en.wikipedia.org/wiki/Positive_feedback
http://en.wikipedia.org/wiki/Negative_feedback
http://en.wikipedia.org/wiki/Interaction
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Figure 6. Feedbacks loops and collective choice of one food source (bifurcation) [9] 

A system can cope with an unpredictable environment autonomously using different but closely related 
approaches: 

- Adaptation (learning, evolution). The system changes its behavior to cope with the change. 

- Anticipation (cognition). The system predicts a change to cope with, and adjusts its behavior according-
ly. This is a special case of adaptation, where the system does not require experiencing a situation before 
responding to it. 

- Robustness. A system is robust if it continues to function in the face of perturbations. This can be 
achieved with modularity, degeneracy, distributed robustness, or redundancy. 

Successful self-organizing systems will use combinations of these approaches to maintain their integrity 
in a changing and unexpected environment. Adaptation will enable the system to modify itself to “fit” better 

within the environment. Robustness will allow the system to withstand changes without losing its function or 
purpose, and thus allowing it to adapt. Anticipation will prepare the system for changes before these occur, 
adapting the system without it being perturbed.  

B. Elements of self-organization. We can see that all of them should be taken into account while engi-
neering self-organizing intelligent systems. 

1. Interacting components. The components provide the substrate for organization of higher-level struc-
tures. Interaction/communication is necessary for creating linkages to assemble larger structures. Exam-
ple components are molecules, cells, agents, etc. Example interactions are excitation, inhibition, sens-
ing, attraction, repulsion, etc. 

2. Constructive processes. Needed to build larger structures from the components, e.g., reproduction, ag-
gregation, crystallization, copying, growth, recombination, ramification, etc. 

3. Destructive processes. Needed to tear down existing (possibly suboptimal or unwanted) structures to 
make room for new ones, e.g., death, fragmentation, dissolution, division, mixing, turbulence, noise, etc. 

4. Autocatalysis/positive feedback. Needed to reinforce and drive the construction of useful structures, e.g., 
splits encouraging more splitting to create a complex branching structure. 

5. Homeostasis/negative feedback. Needed to prevent runaway structure formation (e.g., structures beyond 
a certain size becoming non-receptive to further addition or even unstable). 

6. Nonlinearity. Needed to magnify some effects and squelch others in order to produce complex structure. 
Examples include thresholds, unimodal and multimodal dependencies, saturation, and amplification un-
derlying the constructive, destructive and feedback processes. 
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What is Emergence? 

The appearance of large-scale collective order that cannot be described completely in terms of the indi-
vidual system components, e.g., meaning from a collection of words, a society from a collection of individu-
als, a wave from a collection of particles, a picture from a collection of pixels. Emergence seeks to move be-
yond pure reductionism without resorting to metaphysical explanations, e.g., in explaining phenomena such 
as intelligence and life. Complex adaptive systems exhibit spontaneous emergence at many levels of descrip-
tion. 

C. Elements of engineering self-organization design and its role in design of robust intelligent control. 
Let us consider main approach in engineering philosophy of control design. 

Traditional top-down approach:  

(1) Consider all possibilities; (2) Develop a very careful design; (3) Thoroughly test the design to verify 
performance; (4) Implement and test a prototype; (5) Carefully replicate the verified design to ensure relia-
bility. This approach relies on anticipation of all eventualities, meticulous design, thorough testing, and exact 
replication to obtain the desired level of performance. It works best in well-understood, predictable and rela-
tively simple environments. 

Self-organized bottom-up approach:  

(1) Provide the basic elements/components needed; (2) Let the components interact among themselves 
and with the environment to organize through an iterative process of creative exploration and selective de-
struction. This approach produces good designs by multi-scale, parallel, intelligent random search through 
the space of possibilities. It is appropriate (necessary) for large-scale complex systems operating in complex, 
dynamic, unpredictable environments, e.g., the real world.  

Key Difference 

Top-Down: Every aspect of the system at all levels is carefully designed and evaluated  

(a) Non-scalable in cost, time, effort, reliability; (b) Critically dependent on component reliability; 
(c) Inflexible in response to novel conditions. 

Bottom-Up: Only the basic «simple and cheap» components are designed; the rest of the system organ-
izes itself: (a) Inherently scalable; (b) Flexible, robust, versatile, expandable, evolvable. 

What do complex adaptive systems buy us? 

1. Scalability: The system can grow much larger because no one needs to keep track of everything; 

2. Flexibility: The system can change as needed simply by individual agents changing their behavior; 

3. Versatility: The system can be used in many different situations without redesign; 

4. Expandability: More agents can be added to the system without redesign; 

5. Robustness: The system can withstand changes and even loss of individual agents 

This is a new kind of engineering:  

(1) We’re no longer designing the system;  

(2) We’re engineering the possibility for the system to arise;  

(3) This will work for some applications and not for others.   

Why do we need to build complex adaptive systems? 

- To obtain systems with attributes such as intelligence, adaptively, robustness, scalability, and flexibility 
for operation in complex, dynamic and uncertain environments e.g., battlefields, disaster areas, hazard-
ous regions, ocean floors, outer space, etc. 

- To create very large-scale or fine-grained systems where standard design, control, and analysis methods 
break down for capacity reasons, e.g., sensor networks with millions of nodes, swarms of micro-
satellites, etc. 

- To control other complex adaptive systems, e.g., traffic networks, communication networks, biological 
systems, etc. 
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Self-organization may seem to contradict the second law of thermodynamics that captures the tendency 
of systems to disorder. The «paradox» has been explained in terms of multiple coupled levels of dynamic 
activity [the Kugler-Turvey model (Kugler & Turvey, 1987)] self-organization and the loss of entropy occurs 
at the macro-level, while the system dynamics on the micro-level generates increasing disorder [11, 12, 13, 
16, 17].  

We are considered five examples of self-organization processes in dynamic systems with different scale 
dimensions. These examples help to understand main ideas of self-organization and find mutual components 
of quantum control algorithm of self-organization design.  

In next sections the structure of this quantum design algorithm and its application to design of robust 
knowledge base in intelligent FCs are considered.  

Simulation results are considered on examples of essentially non-linear dynamic system control objects.  

Model’s analysis of self-organization processes 

Analysis of self-organization models in this section gives us the following results.  

1. Natural evolution processes are based on the following steps [2–7]:  

(i) templating; (iii) self-assembling; and (iii) self-organization. 

2. Models of self-organization are included natural quantum effects and based on the following infor-
mation-thermodynamic concepts:  

(i) macro- and micro-level interactions with information exchange (in ABM micro-level is the commu-
nication space where the inter-agent messages are exchanged and is explained by decreased entropy on a 
macro-level and increased entropy on a micro-level);  

(ii) communication and information transport on macro- and micro-levels (“quantum mirage” in quan-
tum corrals);  

(iii) different types of quantum spin correlation that design different structure in self-organization (as 
example, quantum dot);  

(iv) coordination control (swam-bot and snake-bot). 

3. Quantum control algorithm of self-organization that developed below [11] is based on quantum fuzzy 
inference (QFI) models. QFI includes these concepts of self-organization and has realized by corresponding 
quantum operators.   

Let us consider the common parts of models of self-organization processes of natural evolution process-
es according to abovementioned Items 1 and 2 of our results. 

Main common parts in evolution self-organization processes of Nature. Main steps of generalized (bio-
inspired) self-organization processes are as following: 

-  First step is a templating that is organization of component by a template;  

-  The second step is a self-assembly with control via conformation;  

- The third step is a self-organization as collective behavior of interactive (possible self- assembly) 
components. 

From the description of qualitative properties of these models we can extract common parts. Main 
common parts of self-organization processes (described in details in [11]) are as following: (1) Presence of 
different type correlations (spatial, temporal, or spatiotemporal types); (2) Random search in design process 
of a new structure in accordance with initial state and fixed correlation type; (3) Robustness of final new 
structure; (4) Flexibility of self-organized structure.  

These common parts are used in bio-inspired and man-made self-organization process (see, Fig. 7).  

Fig. 7 shows also the structure and the main steps (right column) of bio-inspired self-organization pro-
cesses in things natural and things man-made. 

Let us consider one of simple examples of natural self-organization with natural operators.  
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Figure 7. Structure of self-organization processes in things natural and things manmade and self-
organization evolution 

Example: Crowd behaves as excitable media during Mexican wave. Mexican wave, or La Ola, first 
widely broadcasted during the 1986 World Cup held in Mexico, is a human wave moving along the stands of 
stadiums as one section of spectators stands up, arms lifting, then sits down as the next section does the same 
(see, Figs 8 and 9a).  

Remark. Here we are used variants of models originally developed by I. Farkas, D. Helbing and 
T. Vicsek (1994) for the description of excitable media to demonstrate that this collective human behavior 
can be quantitatively interpreted by methods of statistical physics. Adequate modelling of reactions to trig-
gering attempts provides a deeper insight into the mechanisms by which a crowd can be stimulated to exe-
cute a particular pattern of behavior and represents a possible tool of control during events involving excited 
groups of people. Using video recordings it was analyzed 14 waves in stadiums with above 50.000 people: 
the wave has a typical velocity in the range of 12m/s (20 seats/s), a width of about 6-12m (~15 seats) and 
more frequently rolls in the clockwise direction. It is generated by the simultaneous standing up of not more 
than a few dozens of people and subsequently expands over the entire tribune acquiring its stable, close to 
linear shape (see http://angel.elte.hu/wave dedicated to the present work, offering further data and interactive 
simulations). 

The relative simplicity of the Mexican wave allows us to develop a quantitative treatment of this kind of 
collective behavior by building and simulating models accurately reproducing and predicting the details of 
the associated human wave. We show here that the well-established approaches to the theoretical interpreta-
tion of excitable media – originally created for describing such processes as forest fires or wave propagation 
in heart tissue – can readily be generalized to include human social behavior. 
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Figure 8. A human wave moving along the stands of stadiums 

It was developed two mathematical simulation models, a minimal and a more detailed one to demon-
strate the robustness of self-organization approach.  

Model: If the weighted concentration of active people within a radius of R around a person is above the 
threshold of the person ci (randomly chosen from [c-Dc, c+Dc]) then the person is activated. Weights de-
crease exponentially with distance and changed linearly with the cosine of the direction so that people on the 
left of a person have an influence w0 times as strong as those on the right. The direction of the wave’s mo-
tion is determined by this anisotropy due to spontaneous symmetry breaking at the early stages resulting 
from anticipation and the anisotropy in perception since the majority of people are right handed. Group try-
ing to induce a wave and the average threshold c. Parameters are as above, and each point represents the av-
erage of 128 simulations. 

In analogy with models of excitable media, in both versions people are regarded as excitable units: they 
can be activated by an external stimulus (a distance and direction-wise weighted concentration of nearby ac-
tive people exceeding a threshold value c). Once activated, each unit follows the same set of internal rules to 
pass through the active (standing and waving) and refractory (passive) phases before returning to its original, 
resting (excitable) state. While the simpler version distinguishes three states only (excitable/active/passive) 
and accounts for variations in the individual behavior by means of transition probabilities between the states, 
the elaborate version takes into account an actual, deterministic activity pattern in more detail. 

The two versions of the model we considered differ in the way stochasticity, i.e., differences and fluctu-
ations regarding the above behavioral patterns are represented (for details see http://angel.elte.hu/wave). 

Next, we employed these models to get an insight into the conditions for triggering a wave. Figure 9b 
shows the evolution of a wave provoked by the simultaneous excitation (standing up) of a small group of 
units (people). Using parameters deduced from video recordings for the sizes and characteristic times of the 
phenomenon (interaction radius, reaction/activation times and probabilities) we have been able to reproduce 
the above described observations concerning the size/form/velocity and stability of the wave.  
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Figure 9. Photo and simulations of the Mexican wave 

(a) Photo of a Mexican wave; (b) Snapshots of the n state model, where, after activation, a person determin-
istically goes through na active states (stages of standing up) and nr refractory states. The wave is shown at 
0.5s, 2s, and 15s after the triggering event on a tribune with 80 rows of seats. Brighter shades correspond to 
higher level of activity. Parameters are na = nr = 5, c = 0.25, Dc = 0.05, R = 3 and w0 = 0.5; (c)  P(N, c), 
the ratio of successful triggering events, as a function of the number of people N in the group trying to in-

duce a wave and the average threshold c.  

Fig. 9c displays the probability of generating a wave when a small group of varying size tries to trigger 
it under different excitation threshold values. 

The results clearly demonstrate that the self-organization dependence of the eventual occurrence of a 
wave on the number of initiators is a rather sharply changing function, i.e., triggering a Mexican wave re-
quires a critical mass. The present approach is expected to have implications for the treatment of situations 
where influencing the behavior of a crowd is desirable. In particular, in the context of violent street incidents 
associated with demonstrations or sport events, it is essential to know under what conditions groups can gain 
control over the crowd and how fast and in which form this perturbation/transition can spread. 

Example: The collective behavior of humans within crowds. In our earlier discussion of humans we con-
sidered the case where people interact through environmental modification (trail formation), and largely ig-
nored the influence of direct interactions among pedestrians. However, within urban setting individuals can 
seldom influence their surroundings in this way. Furthermore, when walking down a busy street, or corridor, 
one balances global goal-oriented behavior (desire to reach a certain point) with local conditions created by 
the motion and positions of other nearby pedestrians. Each member in such a crowd is likely to have a lim-
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ited perceptive radius in which information to determine future movement must be gathered. Consequently, 
larger scale patterns in crowds are seldom evident from an individual pedestrian’s viewpoint. 

However, if viewed from above crowds often do display obvious and consistent patterns. One of the 
most common of these can be seen when there is bi-directional traffic, as for example when people are trying 
to move both ways along a walkway, or crossing the road at a crosswalk. Under such circumstances ‘bands’ 

of pedestrians form: each band composed of a number of pedestrians with a common directional preference 
(Milgram and Toch, 1969).  

Fig. 10a demonstrates this situation. 

Remark. The flow of pedestrians under conditions of crowding was likened by Henderson (1971) to the 
motion of fluids or gases. He used a well-known technique for the mathematical analysis of such materials, 
the Navier-Stokes equation for fluid dynamics, to simulate a crowd. Although providing an insight into how 
individual-level (microscopic) properties lead to large-scale (macroscopic) properties, such an approach is 
difficult to implement since the conservation of energy and momentum assumptions for a physical system do 
not apply to a biological system in which the individual components are «self-driven». Despite this, Helbing 
(1992) was able to modify such equations with respect to some of these properties, but analytic solutions 
proved hard to find. The most promising approach to studying crowd behaviors comes from individual-based 
modeling. 

 

Figure 10. Simulation of pedestrian dynamics showing lane formation (from Couzin, 1999). 

The successive positions (trajectories) of individuals with a desire to move to the left are shown in gray.  

The positions of those individuals intending to move to the right are shown in black 

Influence of repulsion (collision avoidance). Helbing and Molnár (1995) developed a simple individual-
based model of pedestrian motion in which they consider people moving in opposite directions along a corri-
dor. This simple geometric representation of space allows the assumption that all individuals have a desire to 
move only in one direction or another along the walkway. However, pedestrians will also tend to avoid colli-
sions by decelerating and turning away if they come into close contact with one another. When no other in-
dividuals are within a specified local range, individuals will tend to accelerate to a desired speed, and orient 
towards their destination. This simple behavioral response alone can account for the formation of bands 
when there is bi-directional traffic. Individuals meeting others head on will have «strong» interactions in 
which they are likely to slow down and move aside to avoid collisions. Initially this occurs frequently. How-
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ever, individuals that find themselves behind others moving in the same direction are less likely to have to 
perform such extreme avoidance maneuver, and in turn they «protect» others behind them, from head on 
avoidance moves. Given a sufficiently long corridor (and a sufficiently high traffic flow for interactions 
among pedestrians to be an important factor) the system will self-organize into lanes. Individuals entering 
the corridor (at random positions) move around in the direction perpendicular to their desired direction of 
travel when they interact with oncoming pedestrians. However, if by chance they fall in behind another indi-
vidual moving in the same direction this is a more «stable» state. 

Thus the system naturally self-organizes into a situation where pedestrians are in the «slipstream» of 
others moving in the same direction as themselves, thus creating bands, and reducing movement in the direc-
tion perpendicular to desired motion (see, Fig. 10b). Helbing and Molnár (1995) also demonstrated in their 
model that the number of bands that tend to form scales linearly with the width of the walkway.  

This demonstrates that there is a characteristic length-scale to the pattern-forming process: that is, from 
any point in the system statistically similar motions is occurred one wavelength away. 

Influence of attraction to other pedestrians. Clearly one does not need to invoke complex individual be-
havior to explain the banding patterns found in human crowds. The above model shows how individuals 
would «naturally» occupy space (in the dimension perpendicular to desired direction of travel) in which oth-
ers ahead and behind them tend to have a similar direction of motion. It is possible in real crowds, however, 
that individuals actively (as well as passively) seek such positions. That is, instead of finding such positions 
by chance, as in the previous model, they will tend to deliberately walk behind individuals moving in the 
same direction as them selves. For example, Couzin (1999) simulated the motion of pedestrians crossing a 
road at a crosswalk. Given the type of rules described above the system requires some time to «find» the col-
lision-minimization state. Consequently, in the crosswalk situation, although some banding does occur, con-
gestion is still relatively high (Fig. 11a). However, if one adds a supplementary rule such that an individual 
will exhibit a propensity to follow other individuals moving in their desired direction, then bands tend to 
form much more readily, thus reducing head-on collisions and increasing the rate of flow (Fig. 11b). On a 
crosswalk, such bands begin to form even before the pedestrians moving in different directions meet. Thus 
the groups act as «wedges» when they come into contact with one another allowing the bands to interlace 
more readily when they reach the central area of the walkway. Thus, although attraction is not a necessary 
condition for bands to form in crowds, it decreases the time taken for bands to develop, and increases the 
flow rate more rapidly than does avoidance alone. 

 

Figure 11. Simulation of pedestrians attempting to move across a crosswalk 

 (a) where individuals just exhibit repulsion from others flow is less smooth than when, (b) they exhibit re-
pulsion but also attraction towards others that have a similar desired direction [Gray – individuals intending 

to move left. Black – individuals attempting to move right] 

The influence of the geometry of the environment. In these pedestrian models, the geometry of the envi-
ronment is very simple. However, what happens when one introduces an obstacle within the environment? 
Helbing and Molnár (1995) investigated how their model behaved when they placed a doorway in the corri-
dor. What they found was that, given a sufficient density of pedestrians, oscillations in alternating flows of 
passing direction at the doorway occur. This occurs because the “pressure” of pedestrians at one side of the 

door eventually results in an individual being able to make it through the door. This makes it easier for indi-
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viduals with the same desired direction to follow, resulting in a unidirectional flow of individuals through the 
doorway, as shown in Fig. 12.  

 

Figure 12. Simulation of pedestrians at a doorway exhibiting oscillations of flow 

 Remark. In Fig. 12 individuals moving to the left have temporarily monopolized the doorway. The de-
crease in «pressure» to the right of the door, caused by this exodus, will shortly allow those standing to the 
left of the doorway to block, and then to temporarily monopolize the doorway, and so on. Image modified 
from the simulation results that available from at http://www.helbing.org/Pedestrians/Door.html. 

This reduces the «pressure» of pushing pedestrians at that side of the door, which will then result in a 
situation where the flow is stopped, and then individuals moving in the other direction are able to pass 
through (since the «pressure» on their side is now greater), and so on. If the doorway is widened, changes in 
direction of flow become more rapid. It was also found that, given the same total width of doorway, two 
half-sized doors near the walls of the corridor increase the rate of flow of pedestrians relative to a single 
door. This is because, due to the mechanism of band-formation described above, each door becomes used by 
pedestrians flowing in a common direction for relatively long periods of time. Individuals leaving their re-
spective doorway in one direction «clear» the space ahead of the door for their successors. 

Crowd behavior and emergency situations. Under certain extreme conditions, such as when people are 
evacuating from a crowded building, panic can result in pedestrians being injured or killed through crushing 
or trampling. In some cases crushing can occur in the absence of any external factor (e.g. fire) resulting in-
stead from the impatience of queuing individuals, who having predominantly only local information, push 
forward. The physical interactions among members of a crowd can add up to because dangerous pressures up 
to approximately 4,450 Nm -1, which can cause brick walls to collapse, bend steel barriers, and result in a 
large number of fatalities (Elliott and Smith, 1993). In an attempt to understand better such collective situa-
tions, Helbing et al. [4]  extended their models of pedestrian behavior to include a «body force», which coun-
teracts the compression of bodies, and a «sliding friction force» which impedes relative tangential motion 
within crowds. Furthermore, they assume that, within such crowd situations, people exhibit a greater degree 
of stochasticity (fluctuations) in their movement, and a higher desired velocity, due to the psychological ef-
fects of panic (Kelly et al., 1965). The model showed that increasing the value of either, or both, of these pa-
rameters caused an increase in evacuation time from a building by increasing the degree of interpersonal fric-
tion. This resulted in blockages which occurred especially in the vicinity of bottlenecks. Thus, people fleeing 
from a building can decrease their chances of survival by attempting to move as fast as possible, or by per-
forming uncoordinated movement through nervousness or panic. 

Within conditions where individuals have very restricted information about their local surroundings, 
such as in a smoke-filled room, Helbing et al. [4]  investigated the possibility that people may respond not 
only individualistically, but also in response to the motion of individuals near them, which they term a «herd-
ing effect». Under such conditions neither pure individualism nor herding behavior performs well. Following 
just the individualistic rule, the discovery of an exit becomes a largely random process for each individual. 
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Although herding can result in groups of individuals escaping if an exit is found, it is more likely that the 
crowd will move in the same, blocked, direction. 

However, if people are assumed to use an intermediate strategy combining both individualism and herd-
ing, then the rate of escape is maximized, given the assumptions of the model. These models of human 
crowds are based on a simplified set of plausible interactions, and as such provide useful insights into the 
general behavior of such groups under a variety of conditions. There is, however, a need for further empirical 
studies, which are lacking despite the economic and/or social benefits of such research (e.g. in designing fa-
cilities so to reduce risk during evacuation). We encourage initial studies to be made of crowds within rela-
tively simple environments, such as on walkways, where an individual’s desired direction of travel can be 

better judged than for example in a crowded street, where motivations may change dynamically and be influ-
enced by many more factors.  

Modelling a crowd composed of discrete individuals rather than a continuous fluid clearly brings added 
complications. Helbing et al. model «non-fluid» crowd properties, such as the «faster-is-slower» phenome-
non in which people in a rush end up going slower. They also investigate the best evacuation strategy for 
people in a smoke-filled room (see, Fig. 13). 

 

Figure 13. How crowd behavior affects escape from a smoke-filled room 

Previous simulations of pedestrian behavior in crowds have used a model based on fluid flow through 
pipes, but these ignored the actions of individuals. According to the individual-centered model of Helbing et 
al. [4], the evacuation of pedestrians from a smoke-filled room with two exits can lead to herding behavior 
and clogging at one of the exits. By contrast, a traditional fluid-flow model would predict the efficient use of 
both exits. A more individual-centered approach is required to reproduce the behavior of real crowds. Such 
information can then be used to work out low-risk designs for the width of corridors, the number and posi-
tion of doors, and the size of areas where people may gather. But these types of study can also provide us 
with a wider range of possible solutions to crowd problems. The crowd composed of individual people can 
respond to information directed towards them, to help them choose the most appropriate direction to take or 
the most appropriate exit to use. 

Gathering data during genuine evacuation procedures will always be problematic (practically, and in 
some cases ethically), but data gathered from practice evacuations may be very useful in testing, and further 
improving, current models. The importance of such safety issues has been further emphasized by the events 
of September 11th 2001 where large, highly populated buildings («The World Trade Center» in New York 
and «The Pentagon» in Washington D.C.), and the streets around these buildings, had to be evacuated. 

Remark. The model presented by Helbing et al. is just one of many possible models. To decide whether 
a particular model is an accurate description of real life, or to determine which model is the «best» for the 
situation under consideration, requires real data to compare with each model’s predictions. But such data are 

scarce or non-existent and may be extremely difficult to collect. With any type of mathematical modeling we 
always have to be careful to distinguish between «real life» and our attempt to model it. Failing to recognize 
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this difference can have serious consequences. But provided we are aware of when it is appropriate to use a 
particular model, it can provide valuable information to guide the planning process, for construction and for 
dealing with emergencies. Perhaps perfect safety is unattainable, but improved models of crowd dynamics 
can help to increase our safety in crowded situations. 

Example. One of the most unexpected phenomena predicted by Helbing et al. is the symmetry breaking 
in the escape from a room with two identical exits. Here we describe experiments on ants that corroborate 
this behavior and show that the escape dynamics of ants under controlled panic can serve as a model to study 
humans in analogous situations. In a first type of experiments (Experiment I), it was introduced a group of 
approximately 80 individuals of the ant species Atta insularis collected from natural nests, into a circular cell 
covered by a glass plate with two exits symmetrically situated at left and right (see, Fig. 14a), which were 
initially blocked.  

 

Figure 14. Escape of ants from a cell with two symmetrically located exits 

Experiment detail description (E. Altshuler, O. Ramos, Y. Nuñez & J. Fernández, Panic-induced sym-
metry breaking in escaping ants, 2005). The cell consists in an acrylic drum of 80 mm diameter and 5 mm 
height, with two exits 10 mm wide symmetrically situated at left and right positions. The drum rests on an 
circular piece of filtering paper laying on an horizontal surface, and is covered by a flat glass plate of 3 mm 
thickness with a hole of 2 mm diameter situated at the center of the drum. Approximately 80 ants from the 
species Atta insularis are added with both exits blocked by acrylic bars. (a); ant distribution several seconds 
after opening the exits at t = 0. (b); number of ants abandoning the cell as time goes by. (c); ant distribution 
several seconds after adding 50 ml of an insect repellent fluid (Citronela, Labiofam, Cuba) though the cen-
tral hole, and then opening the exits at t = 0 (note a circular spot of repellent fluid of approximately 20 mm 
diameter at the centre of the cell) (d). Clogging of ants at the right exit is clearly visible (d), number of ants 
abandoning the cell as time goes by, quantitatively demonstrating the symmetry breaking when repellent is 
added. Small deviations from the ideal circular shape of the repellent spot or from its location at the center of 
the setup did not produce important effects in the experimental output. Then, we opened the exits synchro-
nously, and counted the number of ants abandoning the cell through each exit until it was empty.  

Fig. 14b shows a graph describing quantitatively the result of a sample run of Experiment I. Although 
the difference in the use of the two doors eventually reaches a value of 15 ants at a certain stage of the run 
(roughly corresponding to 20% of the total of escaping ants), it becomes clear that both doors have been used 
almost symmetrically at the end. 
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A very different output, however, results from a second kind of experiments (Experiment II). In this 
case everything takes place as in Experiment I, with the important difference that, a few seconds before 
opening the doors, a dose of 25 or 50 ml of an insect repelling liquid is rapidly injected in the cell through a 
hole in the covering glass, producing a disk-shaped spot of the substance at the center of the filtering paper 
on which the whole setup rests (Fig. 14c). A sample output of Experiment II is shown in Fig. 14d. Different-
ly from Experiment I, one of the doors is always much more used to escape than the other one, which can be 
described as a symmetry breaking induced by «panic» associated to the repelling agent. In the specific run 
depicted in Figs 14c,d the difference in the use of the two doors reached nearly 50 ants at the end of the ex-
periment (around 60% of the total number of escaping ants). Besides symmetry breaking, a second difference 
between Experiment I and II clearly seen in Fig. 14b, d is that, in the latter, the total time of escape is much 
smaller, probably because the «desired velocity» of the ants increases due to the effect of the repelling agent. 
Similar results were observed in several runs of Experiment I and II: statistics showed that the difference in 
use between the two exits at the end of the experiment were, in average, 12%  for Experiment I and 51%  for 
Experiment II. The «preferred exit» in Experiment II was either the left or the right one, with no connection 
to any source of asymmetry in the experimental set-up or to the spatial distribution of ants inside the cell be-
fore opening the doors.  

The experimental results were also quite similar when using ants collected from the same nest, or from 
different nests no more than 20 meters apart from each other. They were also similar when repeated on the 
same group of ants. 

These results are coherent with the theoretical predictions reported by Helbing et al. They defined a 
«panic parameter» which induces individualistic behavior (each pedestrian tends to find an exit by 
him/herself) when low, and herding behavior (pedestrians tend to follow the crowd) when high. In their two-
exit room simulations, the authors find that a high value of the panic parameter produces jamming at one of 
the doors, thus provoking inefficient escape.  

This tendency shows that their panic parameter is related to the effect of the repelling substance used in 
experiments. In spite of the huge behavioral differences between humans and ants in normal conditions10, 
experiments suggest that some features of the collective behavior of both species can be strikingly similar 
when escaping under panic. 

Applications of swarm intelligence (SI) and ant colony self-organization. Wasps, bees, ants and termites 
all make effective use of their environment and resources by displaying collective SI. Termite colonies – for 
instance – build nests with a complexity far beyond the comprehension of the individual termite, while ant 
colonies dynamically allocate labor to various vital tasks such as foraging or defense without any central de-
cision-making ability. Recent research suggests that microbial life can be even richer: highly social, intricate-
ly networked, and teeming with interactions, as found in bacteria. What strikes from these observations is 
that both ant colonies and bacteria have similar natural mechanisms based on Stigmergy and Self-
Organization in order to emerge coherent and sophisticated patterns of global foraging behavior. Keeping in 
mind the above characteristics a Self-Regulated Swarm (SRS) algorithm was proposed which hybridizes the 
advantageous characteristics of SI as the emergence of a societal environmental memory or cognitive map 
via collective pheromone laying in the landscape (properly balancing the exploration/exploitation nature of 
our dynamic search strategy), with a simple Evolutionary mechanism that trough a direct reproduction pro-
cedure linked to local environmental features is able to self regulate the above exploratory swarm population, 
speeding it up globally. In order to test his adaptive response and robustness, it has recurred to different dy-
namic multimodal complex functions as well as to Dynamic Optimization Control problems, measuring reac-
tion speeds and performance. Final comparisons were made with standard Genetic Algorithms, Bacterial 
Foraging strategies, as well as with recent Co-Evolutionary approaches. SRS’s were able to demonstrate 

quick adaptive responses, while outperforming the results obtained by the other approaches. Additionally, 
some successful behaviors were found: SRS was able to maintain a number of different solutions, while 
adapting to unforeseen situations even when over the same cooperative foraging period, the community is 
requested to deal with two different and contradictory purposes; the possibility to spontaneously create and 
maintain different subpopulations on different peaks, emerging different exploratory corridors with intelli-
gent path planning capabilities; the ability to request for new agents (division of labor) over dramatic chang-
ing periods, and economizing those foraging resources over periods of intermediate stabilization. Finally, 
results illustrate that the present SRS collective swarm of bio-inspired ant-like agents is able to track about 
65% of moving peaks traveling up to ten times faster than the velocity of a single individual composing that 
precise swarm tracking system. This emerged behavior is probably one of the most interesting ones achieved. 
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    Example. Networks that control the flow of resources and information are ubiquitous in nature. 
Moreover, the efficiency of such networks may determine the fundamental scaling properties of certain or-
ganisms. The foraging networks of terrestrial animal societies, and especially those of certain ant species, 
provide unrivalled opportunities to quantify both the behavior of individual items of traffic and the larger-
scale patterns of traffic flow. For these reasons, they are ideal subjects with which to test mathematical mod-
els that link the behavior of small components (in this instance, individual ants) to the overall efficiency of 
the dynamic structures they generate. 

Many ant species create chemical (pheromone) trail networks, not only to transport resources and/or in-
formation swiftly and efficiently during foraging, but also for exploration, emigration and coordinating colo-
ny defense (Holldobler & Wilson, 1990). Just as the functioning and success of modern cities are dependent 
on an efficient transportation system, the effective management of traffic is also essential to insect societies. 
The flow of traffic along trails is likely to be particularly important in the New World army ant Eciton 
burchelli. Colonies of this species may have half a million or more workers, and the ants are strict carni-
vores. They stage huge swarm raids, in pursuit of arthropod prey, with up to 200 000 virtually blind foragers 
forming trail systems that are up to 20 m wide and 100 m or more long (Schneirla, 1971; Franks et al. 1991; 
Gotwald 1995; Sole´ et al. 2000). In a single such raid a colony may retrieve more than 30 000 prey items 
(Franks 1985). Moreover, these massive raids are severely time constrained. At most, they begin at dawn 
and end at dusk, when the colony emigrates, under the cover of darkness, to a new nest-site and foraging 
arena. 

For this reason, E. burchelli colonies need to operate at a very high tempo (see Franks et al. 1999; Bos-
well et al. 2001). These colonies form traffic lanes in their main foraging columns (Franks 1985). It was in-
vestigated how and why these traffic lanes form. It was shown how the movement rules of individual ants on 
trails can lead to a collective choice of direction and the formation of distinct traffic lanes that minimize con-
gestion. The results of a new model with a quantitative study of the behavior of the army ant Eciton burchelli 
was developed and evaluated. Colonies of this species have up to 200 000 foragers and transport more than 
3000 prey items per hour over raiding columns that exceed 100 m. It is an ideal species in which to test the 
predictions of the model because it forms pheromone trails that are densely populated with very swift ants. 
The model explores the influences of turning rates and local perception on traffic flow. The behavior of real 
army ants is such that they occupy the specific region of parameter space in which lanes form and traffic 
flow is maximized. 

Remark. Lane formation is also known to emerge spontaneously in human crowds under certain condi-
tions. Where there is bi-directional traffic (such as on a walkway or crosswalk) «bands» of pedestrians can 
form, each band composed of pedestrians with a common directional preference (Milgram & Toch 1969). 
These large-scale patterns are seldom evident to an individual pedestrian because they often have a limited 
perceptive radius in which information to determine future movement must be gathered. Like army ants, pe-
destrians in crowds balance goal oriented behavior (desire to reach a destination) with local conditions creat-
ed by the motion and positions of nearby pedestrians (avoidance of collisions). It is the balance of these «so-
cial forces» that results in lane formation. Individuals meeting others head-on will have «strong» interactions 
in which they are likely to slow down and turn away to avoid collisions. Individuals that find themselves be-
hind others moving in the same direction as themselves are less likely to perform such extreme avoidance 
maneuvers, and, in turn, they «protect» others behind them from head-on avoidance moves, increasing the 
flow rate. Thus, given a sufficient density of pedestrians, they will spontaneously form lanes (Helbing & 
Molna´r 1995). The number of lanes that form in human crowds scales linearly with the width of the walk-
way (Helbing & Molna´r 1995). Thus, there is a characteristic length-scale to this pattern-forming process: 
that is from any point in the system statistically similar motions occurred one wavelength (lane width) away 
(in the direction perpendicular to the desired motion). This is in contrast to the fixed three-lane system of 
army ants, which results from the asymmetry in interactions (absent in human crowds) combined with a ten-
dency for all ants to move towards the highest concentration of pheromone. A further difference between 
ants and humans is that pedestrians can typically be expected to behave selfishly. That is, they will tend to 
minimize their own travel time, but this may be at the cost of others. An army ant colony, however, is com-
posed of cooperative individuals. Thus, natural selection can build an adaptive pattern at the global level by 
selecting and modifying individual rules that encode collective patterns. The asymmetry in interactions we 
have revealed is therefore likely to have been selected for. However, there is another potential explanation 
that is not mutually exclusive: many ants returning to the nest are burdened with prey, and this may make 
them less maneuverable than unladed ants leaving the nest.  
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Why do army ants have a three-lane structure as opposed to one with just two lanes?  

Let us consider two models of ant’s motion behavior. 

(i) Collective selection of a direction. The collective properties of the model during the generation of 
spatial pattern over a short but representative section of trail (equivalent to 50 cm) are investigated. Army 
ants are not only good at following trails but also have a propensity to form circular mills when moderate 
numbers are separated from a colony and restricted to a confined area, either in the laboratory (see, Figure 
15a) or naturally in the field during exceptionally severe rainstorms (Schneirla 1971; Franks et al. 1991; 
Gotwald 1995).  

 

Figure 15. Circular milling 

 (a) Drawing of ants forming a circular mill in the laboratory (adapted from Schneirla 1971 by I.D.C.); 
(b) The flow of ants is dependent on their ability to detect others and the rate at which they turn during 

avoidance maneuvers (N = 50, p = 500°
1s ,  = 0.01, Q = 6 31.2 10  g cm  , maxC = 6 31.2 10  g cm  , 

 = 300 s. F was calculated at t = 5000, and the results shown are the means of 100 runs per parameter 
combination); (c) Ants begin the simulation at random positions and with orientations along the trail. Snap-

shot near the start of a simulation (t = 50) with  = 90° and a = 1000°
1s . Ants are depicted as arrows 

representing their instantaneous velocity (units: cm); (d) Simulated ants have selected a direction collective-
ly (t = 3000) 

After a period of disorder, the ants all begin moving in the same direction. This behavior is likely to re-
flect the ability of army ant colonies collectively to select a raid direction. Periodic boundary conditions are 
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used, which make the simulation very similar to the circular mill, and investigate how the model parameters 
influence the collective behavior of ants on the trail section.  

The flow of simulated ants, F, (measured as the normalized magnitude of the sum of the velocities of all 
individuals; values close to 0 represent little flow in a given direction, and those close to 1 represent high 
flow in one direction) is influenced strongly by the avoidance turning rate, a , and the internal angle of the 
perception zone ahead of an ant,   (see, Fig. 15b). High flow rates occur when the ants select a direction 
collectively (see, Figs 15c, d). When a a low, ant is require repeated collisions with others before their tra-
jectory is influenced strongly enough for them to turn around. This causes congestion because ants turn slow-
ly when they detect others, and, consequently, must slow down to avoid collisions. Conversely, when a  is 
very high, ants are change direction very quickly when others are detected, and their orientations do not be-
come correlated. Similarly, when  a low, ant is cannot detect others ahead of them adequately, and are thus 
relatively insensitive to the positions of others. If   is high, however, they spend much of their time avoid-
ing individuals that they would be unlikely to collide with. At intermediate values of these parameters ants 
are sufficiently sensitive, yet not overly sensitive, to the positions of others and, consequently, can select a 
direction collectively (hereafter   = 90°). In this region of parameter space stochastic fluctuations in the 
number of ants traveling in each direction leads to one direction being more common than the other. This 
change causes an autocatalytic behavioral response as ants opposing the main flow are forced to turn around 
through repeated head-on interactions. As more ants move in one direction, it becomes increasingly hard for 
individuals to move the opposite way, and this causes the ants collectively to select a (randomly determined) 
direction. 

(ii) Bi-directional traffic and lane formation. The results of the model suggest that army ants have 
evolved a behavioral response that results in a general tendency for them to all moves in the same direction 
along a trail. Under natural conditions, certain army ants exhibit a predominantly unidirectional flow of 
workers away from the nest in the first stage of a raid, but, as an increasing number of ants return to the nest 
carrying prey, the flow of ants in the raiding columns becomes bi-directional. In the sections of principal 
trails of the army ant E. burchelli that was filmed, the ants exhibited a distinct spatial structuring, with ants 
leaving the nest predominantly using both margins of the trail and ants returning to the nest using the centre. 

How do E. burchelli army ants form traffic lanes? Can this difference in turning rate account for the pat-
tern seen? (I. D. Couzin and N. R. Franks, «Self-organized lane formation and optimized traffic flow in army 
ants», Proc. R. Soc. Lond., B, 2002). 

It was assumed that the ants have a sense of direction (Gotwald, 1995). Hence, each simulated ant is 
now supplied with a supplementary internal directional vector that is parallel to the trail, pointing either to 
the left (returning towards a «nest») or to the right (outbound towards a «foraging area»). N/2 ants have a 
preference to move in each direction, weighted by a factor . Hence, the future direction chosen by an ant is 
a combination of the result of the social forces described previously and the propensity to move towards or 
away from the nest. If   = 0, ants have no directional preference; whereas, if   = 1, they balance direction-
al preference and local (pheromone or tactile) conditions equally. As   is increased above 1 the directional 
preference outweighs the local conditions. We also assume that outbound ants have a higher avoidance turn-
ing rate than those returning; the difference being a . To quantify the flow of ants on bi-directional trails, 
the flow parameter, F, was calculated independently for ants returning to and leaving the nest. It was found 
that the rate of flow of each group in their desired direction is strongly correlated, so here F is the numerical 
average of that calculated for each group. F is dependent on the strength of directional preference, , and the 
magnitude of the asymmetry of avoidance turning rate, a , between outbound and returning ants (see, Fig. 
16a).  

Regardless of a , F is maximized when   = 1 (i.e. ants equally balance local conditions with their di-
rectional preference). When   approaches 0, ants have only a small tendency to move in a given direction, 
and F is consequently low; whereas, when   is high, ants rarely engage in avoidance maneuvers, resulting 
in congestion as ants are forced to slow down through long-lasting collisions. At intermediate values, in-
creasing a causes an asymptotic increase in F. This increase corresponds to the emergence of a distinct 
spatial structuring of ants on the trail, with returning ants occupying the centre of the trail and outbound ants 
occupying the periphery (Fig. 16a, inset).  
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To compare the model with the experimental data, we recorded the distribution of simulated ants rela-
tive to the trail centre (Figs 16b–d) and also their angular deviation after interaction (Figs 16e–g) using the 
same criteria as for real ants. In the area of parameter space in which flow is maximized, the results of the 
model are very similar to those obtained experimentally.  

 

Figure 16. Simulation of ants on bi-directional trails 

(a) The rate of movement of ants along a trail, F, as a function of the directional preference,  , and asym-
metry of the avoidance turning rate, a . Inset, snapshot of the simulation in the area of parameter space 

where F is maximized, showing returning ants (red) tending to occupy the centre of the trail and outbound 
ants (black) are tending to occupy the periphery (units: cm); (b – d) Distribution of ants from the trail centre 

at a = 1400°
1s , 600°

1s  and 200°
1s , respectively. Results calculated at t = 5000, and the means of 100 

replicates shown; (e – g) Angular deviations of ants after avoidance maneuvers at a = 1400°
1s , 

600°
1s and 200°

1s , respectively. Results shown are from the first 5000 interactions when t > 5000 

The model reveals how individual ant follows chemical trails and that simple and local rules can ac-
count for the ability of army ants collectively to select a direction on a given section of trail. Furthermore, we 
show how an asymmetry in turning rate (during interactions with others) between outbound and returning 
army ants can generate a three-lane structure, in which returning ants occupy the central lane on bi-
directional trails. This acts to reduce the number of high-speed collisions between ants, moving in different 
directions, and, consequently, increases the flow of ants to and from the nest. 

The latter organization may further increase traffic flow by reducing the interface between ants moving 
in different directions along a trail and, hence, minimizing time-consuming head-on interactions. Such two-
lane traffic flow can be simulated by incorporating a bias in turning direction during interactions, such that 
all ants predominantly turn either clockwise or anticlockwise. However, a two-lane structure introduces an 
asymmetry into the trail system, and this ‘handedness’ in the extended phenotype (swarm) is likely to limit 

its overall efficiency (for example by biasing the ability of ants to raid to one side or another from a central 
trail). Another probable reason why two lanes would not be advantageous is that returning ants are thought to 
deposit more pheromone than outbound ants (Deneubourg et al. 1989). Thus, given that all ants exhibit a 
tendency to move towards the highest pheromone concentration, a two-lane system would not be spatially 
stable: outbound ants would have a tendency to drift to the side where ants return, forcing these ants further 
to that side, and so on. 
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   Thermodynamics and information-theoretic measures of Agent-Based 
Models (ABM) 

We will discuss these phenomena on agent-based modeling (ABM) examples. Modeling and simulation 
approaches used in ABM or computational modeling allow us to create new worlds from scratch, modifying 
various conditions and parameters as the need arises. ABM thus examines «emergent» behavior as a struc-
ture and pattern that develops from numerous micro-level interactions. Nonlinear dynamics, psychology, and 
life sciences are organized in a fashion that reflects the ability of agent-based modeling to bridge the so-
called «micro-macro» divide. 

In other words, ABM can be exploited to model processes at very fundamental, micro levels of analysis 
such as cooperation  among individuals to intermediate levels such as organizational behavior in firms or 
other entities, all the way to «macro» phenomena such as the behavior of states or global economic process-
es. Therefore, we can present in a sequence that moves from more micro-level applications of ABM to in-
creasingly macro-level applications. Two of the most micro-level analyses examine non-human systems, 
specifically the behavior of ant colonies and ovarian cycle variability in research rats. These examples help 
illustrate the highly impressive search of agent-based methodologies. 

 Agent-Based Models (ABM) 

Agent-based modeling is based on the assumption that some phenomena can and should be modeled di-
rectly in terms of computer programs (algorithms), rather than in terms of equations. Examples arise in phys-
ical, chemical, biological and social sciences; they can be as simple as propagation of fire and simple preda-
tor-prey models between handfuls of species and as complex as the evolution of artificial societies. The cen-
tral idea is to have agents that interact with one another according to prescribed rules. This type of modeling 
has started to compete and, in many cases, replace equation based approaches in disciplines such as ecology, 
traffic optimization, supply networks, and behavior-based economics. The origins of agent-based modeling 
can be traced to cellular automata — rows in a checkerboard that evolve into the next row based on simple 
rules. A physical example may be the propagation of fire in a forest. The trees may be represented as occupy-
ing a fraction of the squares in a checkerboard; the rule may be that fire propagates if two trees are adjacent 
via the face of a square. Thus, fire propagates though faces-up, left, and right, but not diagonally. More gen-
erally, the basic building blocks may be identical or may differ in important characteristics; moreover, these 
characteristics may change over time, as the agents adapt to their environment and learn from their experi-
ences resulting in feedback (see, for example, Epstein & Axtell, 1996). A very large number of didactic and 
exploratory ABM’s arising in various disciplines appear in Wilenesky, 1999).  

Consider, for example, a model of social segregation inspired by the work of Thomas Schelling (1978). 
The reader will note a similarity to the Ising model and spinodal decomposition. This model mimics the be-
havior of two types of individuals, reds and greens, in a city, which is represented as a checkerboard. The 
number of reds and greens are equal and empty spaces may be present. Reds and greens get along with each 
other. However, reds and greens want to live near at least some people of their own color. Initially, reds and 
greens are randomly distributed throughout the city. But many individuals are unhappy, since they do not 
have enough neighbors with the same color. Unhappy individuals move to new locations, tipping the balance 
of the local population, prompting others to leave. If red people move into an area then local green people 
might leave, and vice-versa. Over time, the number of unhappy individuals decreases. Simulations show how 
individual preferences propagate through the city, leading to large-scale patterns, with large clusters of red-
green. For example, in the case where each individual wants at least 30% of neighbors with the same color, 
we end up (on average) 70% same-color neighbors. Thus, relatively weak individual preferences can lead to 
significant overall segregation. «The interplay of individual choices…is a complex system with collective 

results that bear no close relation to the individual intent», – Schelling wrote. 

Some of the most challenging cases of agent-based models may be those involving economics (e.g., Ep-
stein & Axtell, 1996). These approaches differ significantly from classical modeling systems via mathemati-
cal analysis. Classical microeconomic analysis assumes that consumers are identical and that they never 
change their preferences or characteristics; also, the consumers either do not communicate at all or they in-
teract in some type of random fashion. Any inclusion of heterogeneity, organization, or adaptation would 
require the use of computer simulation or of numerical analysis. Applications of cellular automata to prob-
lems familiar to ChEs are those involving fluid flow and flow of granular matter (e.g., Peng & Herrmann, 
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1995, 1994; Désérable, 2002). These techniques should be considered complementary rather than competi-
tive to continuum-based and discrete-particle methods. The idea of cellular automatons can be traced to John 
von Neumann and Stanislaw Ulam, further developed and popularized in Conway’s Game of Life, and more 

recently Wolfram. It is interesting to note that Watson and Crick’s work unraveling the structure of DNA 
took place nearly concurrently with much of von Neumann’s study of machine reproduction. It is noteworthy 

that the logical basis of reproduction in living cells mimics von Neumann’s machine reproduction theory; in 

fact, biology’s terminology closely follows von Neumann theory. But the converse is also true. Biology has 

been instrumental in driving agent-based models.  

The most celebrated examples are based on the behavior of ants. In fact, ants have become the work-
horse of agent-based modeling (see, Fig. 17). 

 

Figure 17. Agent-based models 

Remark. Leftmost column in Fig. 17 shows the initial state; the two other columns show intermediates 
times, with time increasing left to right. Top row, termites build mounds with no central controlling authori-
ty. The algorithm is remarkably simple: each termite walks randomly. If it bumps into a wood chip, it picks 
the chip up, and continues to wander randomly. When it bumps into another wood chip, it finds a nearby 
empty space and puts its wood chip down. Bottom row, ants looking for food (a central nest and three 
sources of food). Ants move randomly and when they find food go back to the nest depositing a trail of pher-
omone. Ants tend to follow concentrated paths of pheromone, and as more ants carry food to the nest, they 
reinforce the chemical trail. In general the ant colony exploits the food sources in order, starting with the 
food closest to the nest. (Both systems can be viewed in ccl.northwestern.edu/netlogo). 

Remark. ABM study exploits the analysis of insect behavior as an instance of the important overarching 
principle of self-organization. While self-organization is critical to the phenomenon we refer to as complex 
adaptive systems, the theoretical foundation of self-organization requires further study. ABM demonstrates 
measures of order creation and constraint production, then uses these measures to evaluate several important 
questions involving the nature of complex systems, including the relationship of constraints to entropy-
producing processes, the role of positive feedback loops in structure formation and the extent to which con-
straint decay plays a role in self-organizing dynamics. The role of ABM in helping answer these questions 
yields some potentially crucial theoretical insights that may lead to important advances in the modeling of 
social behavior. 
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Ants have the ability to find the shortest path to food sources without using any visual cues. This much 
is known: Ants deposit pheromones while walking and ants prefer to follow directions rich in pheromone. 
Also, pheromone diffuses and evaporates, that is, trails do not last forever. These facts explain how ants can 
find the shortest path if a trail is broken and an obstacle disrupts the trail. The ants that pick the shorter path 
around the obstacle reconnect more quickly to the interrupted pheromone trail than those that choose the 
longer path. The pheromone scent is stronger in the shortest path; it gets picked, and over time reinforced. 
Thus, finding the shortest path around the obstacle emerges as a property of the interaction between the ob-
stacle shape and the ants’ distributed behavior. The same mechanisms help ants to pick the closest source of 
foods.  

Can ants be used in practical situations?  

The answer is yes.  

Consider the Traveling Salesman Problem (TSP). Say, for example, that salesmen have to visit ten cit-
ies, and that takes different times to travel between any two of them. What is the shortest path where each 
city is visited once? Consider now that an army of virtual salesmen (ants) are released to explore, randomly, 
all possible routes in the map. After an ant successfully completes the trip, it traces back the path to the orig-
inal city, depositing an amount of virtual pheromone along the path. After the first round of explorers, a new 
batch is released and instructed in some way to follow the most concentrated routes. Because of diffusion 
and evaporation, the concentration is lower on longer paths. With tens of thousands of ants exploring the 
map and seeking high concentration routes, short routes accumulate higher concentrations, while long and 
convoluted routes accumulate almost no pheromone at all. The process is autocatalytic. After several repeti-
tions, the shorter routes are reinforced reaching a near-optimal path. This is precisely the SI approach de-
vised by Marco Dorigo (see Bonabeau et al., 2000). The method leads to solutions that appear to be better 
than the Shortest Path routine used by the Internet to find paths between nodes of the network. 

A. Ants and Near-Optimal Paths applications. Thus ants have the ability to calculate the shortest path to 
different food sources using trails of pheromone. Replace sources of foods with cities and ants with sales-
men: this analogy leads to a new way to view the classical TSP. Ant-inspired simulations developed in the 
late 1990s have led to algorithms that find near-optimal routes in networks. France Telecom, MCI, and Brit-
ish Telecommunications have used antlike routing strategies to telephone and data networks (Bonabeu et al., 
2000). 

B. Emergent patterns in multi-agent communication space: information-theoretic measures on micro-
level. Self-organization may seem to contradict the second law of thermodynamics that captures the tendency 
of systems to disorder. The «paradox» has been explained in terms of multiple coupled levels of dynamic 
activity – the Kugler-Turvey model (Kugler and Turvey, 1987) – self-organization and the loss of entropy 
occurs at the macro-level, while the system dynamics on the micro-level generates increasing disorder. One 
convincing example is described by Parunak and Brueckner (2001) in the context of pheromone-based coor-
dination. Their work defines a way to measure entropy at the macro level (agents' behaviors lead to orderly 
spatiotemporal patterns) and micro level (chaotic diffusion of pheromone molecules). In other words, the 
micro level serves as an entropy «sink» – it permits the overall system entropy to increase, while allowing 
self-organization to emerge and manifest itself as coordinated multi-agent activity on the macro level. An-
other example relates a macro-level increase of coordination potential within a multi-agent team, indicated 
by a macro-level decrease in epistemic entropy of agents' joint beliefs, with a micro-level increase in the en-
tropy of the multi-agent communication space (Prokopenko and Wang, 2004).  

Similarly, it can be shown that the emergence of multi-agent networks, indicated by the minimal vari-
ance of their fragments (an approximation of the network heterogeneity), is explained by increased entropy 
on a micro-level. This micro-level is the communication space where the inter-agent messages are exchanged 
(Prokopenko et al., 2005). A characterization of the micro-level (the entropy «sink») can be obtained if one 
estimates the «regularity» of the communication space. The auto-correlation function is equivalent to the 
power spectrum in terms of identifying regular patterns – a near-zero auto-correlation across a range of de-
lays would indicate high irregularity, while auto-correlation with values close to one indicate very high regu-
larity. Another useful regularity statistics (based on the correlation dimension) is given by approximate en-
tropy (ApEn) that quantifies the unpredictability of fluctuations in a time series as the likelihood that «simi-
lar» patterns of observations will not be followed by additional «similar» observations (Pincus, 1991). In 
other words, a time series containing many repetitive patterns has a relatively small ApEn, while a more 
complex series has a higher ApEn. In summary, macro-level («global-view») metrics may capture the quality 
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of the emergent solutions in terms of observable coordination activities, while micro-level metrics may veri-
fy the solution in terms of the multi-agent communications. 

C. Self-organization in multi-agent systems and thermodynamic concepts. To be effective, multi-agent 
systems must yield coordinated behavior from individually autonomous actions. Concepts from thermody-
namics (in particular, the Second Law and entropy) have been invoked metaphorically to explain the condi-
tions under which coordination can emerge. Emergent self-organization in multi-agent systems appears to 
contradict the second law of thermodynamics. This paradox has been explained in terms of a coupling be-
tween the macro level that hosts self-organization (and an apparent reduction in entropy), and the micro level 
(where random processes greatly increase entropy). Metaphorically, the micro level serves as an entropy 
«sink», permitting overall system entropy to increase while sequestering this increase from the interactions 
where self-organization is desired. This metaphor make precise by constructing a simple example of phero-
mone-based coordination, defining a way to measure the Shannon entropy at the macro (agent) and micro 
(pheromone) levels, and exhibiting an entropy-based view of the coordination.  

Self-organization in natural systems (e.g., human culture, insect colonies) is an existence proof that in-
dividual autonomy is not incompatible with global order. However, widespread human experience warns us 
that building systems that exhibit both individual autonomy and global order is not trivial. The relation be-
tween self-organization in multi-agent systems and thermodynamic concepts such as the second law is not 
just a loose metaphor, but can provide quantitative, analytical guidelines for designing and operating agent 
systems. 

Remark. The experience is sometimes summarized informally as «Murphy’s Law», the observation that 
anything that can go wrong will go wrong and at the worst possible moment. At the root of the ubiquity of 
disorganizing tendencies is the Second Law of Thermodynamics that «energy spontaneously tends to flow».  
In the context of biomechanical systems, Kugler and Turvey (1987) suggest that self-organization can be 
reconciled with second-law tendencies if a system includes multiple coupled levels of dynamic activity. Pur-
poseful, self-organizing behavior occurs at the macro level. By itself, such behavior would be contrary to the 
second law. However, the system includes a micro level whose dynamics generate increasing disorder. Thus 
the system as a whole is increasingly disordered over time. Crucially, the behavior of elements at the macro 
level is coupled to the micro level dynamics. 

State, and thus entropy, can define in terms either of location or direction. Location-based state is based 
on a single snapshot of the system, while direction-based state is based on how the system has changed be-
tween successive snapshots. Each approach has an associated griddling technique. For location-based entro-
py, the field with a grid is divided.  

Fig. 18 shows a 2 2 grid with four cells, one spanning each quarter of the field (H.  Parunak, & S. 
Brueckner, «Entropy and self-organization in multi-agent systems», Proc. of the Fifth International Confer-
ence on Autonomous Agents, Montreal: ACM Press, 2001, pp. 124-130).  

The state of this system is a four-element vector reporting the number of molecules in each cell (in the 
example, reading row-wise from upper left, < 1, 1, 3, 2 >. The number of possible states in an n n grid with 

m particles is 2mn . The parameters in location-based gridding are the number of divisions in each direction, 
their orientation, and the origin of the grid.  

For direction-based entropy, we center a star on the previous location of each particle and record the 
sector of the star into which the particle is found at the current step.  

Fig. 19 shows a four-rayed star with a two particles. The state of the system is a vector with one element 
for each particle in some canonical order. Counting sectors clockwise from the upper left, the state of this 
example is < 2, 3 >. The number of possible states with an n pointed star and m particles is m n . The param-
eters in direction based gridding are the number of rays in the star and the rotation of the star about its center.  

In both techniques, the analysis depends critically on the resolution of the grid (the parameter n) and its 
origin and orientation (for location) or rotation (for direction). 
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Figure 18. Location-based gridding 

 

Figure 19. Direction-based gridding 

Fig. 20 shows location entropy in the micro system (the pheromone molecules), computed from 
a 5 5 grid.  

 

Figure 20. Micro entropy in time (5 5 grid) 

 

 

Figure 21. Unguided walker locational en-
tropy (15 15  grid) 

Entropy increases with time until it saturates at 1. The more molecules enter the system and the more 
they disperse throughout the field, the higher the entropy grows. Increasing the grid resolution has no effect 
on the shape of this increase, but reduces the time to saturation, because the molecules must spread out from 
a single location and the finer the grid, the sooner they can generate a large number of different states. Direc-
tional entropy also increases with time to saturation. This result (not plotted) can be derived analytically. The 
molecule population increases linearly with time until molecules start reaching the edge. Then the growth 
slows, and eventually reaches 0.  

Let M be the population of the field at equilibrium, and consider all M molecules being located at (50, 
50) through the entire run. Initially, all are stationary, and each time step one additional molecule is activat-
ed. Then the total number of possible system states for a 4-star is 4M, but the number actually sampled dur-
ing the period of linear population growth is 4t, since the stationary molecules do not generate any additional 
states.  

Thus the entropy during the linear phase is log (4t) / log (4M). As the growth becomes sub-linear, the 
entropy asymptotically approaches 1, as with locational entropy. With no coupling to the micro field, the 
walker is just a single molecule executing a random walk.  
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Fig. 21 shows that locational entropy for this walker increases over time, reflecting the increased num-
ber of cells accessible to the walker as its random walk takes it farther from its base.  The grid size (15 divi-
sions in each direction) is chosen on the basis of observations of the guided walker, discussed below. 

Now we provide the walker with a micro field by emitting pheromone molecules from the target. 

Because of their initial random walk around their origin, walkers in different runs will be at different lo-
cations when they start to move, and will follow slightly different paths to the target.  

The dots in Fig. 22 and Fig. 23 show the directional and locational entropies across this ensemble of 
guided walkers as a function of time.  

The solid line in each case plots the normalized median distance from the walkers to the target (actual 
maximum 28), while the dashed line plots the normalized median number of molecules visible to the walkers 
(actual maximum 151). The lines show how changes in entropy and reduction in distance to the target are 
correlated with the number of molecules that the walker senses at any given moment. At the beginning and 
end of the run, when the walkers are wandering without guidance, directional entropy is 1, corresponding to 
a random walk. During the middle portion of the run, when the walker is receiving useful guidance from the 
micro level, the entropy drops dramatically. As the temperature parameter T is increased in the range 50 to 
100, the bottom of the entropy well rises, but the overall shape remains the same (plot not shown).  

 

Figure 22. Guided walker 

 dots - directional entropy (4 star); solid line -
median distance to target (max 28); dashed line - 

median visible molecules (max 151) 

 

Figure 23. Guided walker  

dots - locational entropy (15 15  grid), solid line - 
median distance to target (max 28), dashed line - 

median visible molecules (max 151) 

The locational entropy presents a different story. The minimization method for avoiding discreteness ar-
tifacts has the effect of selecting at each time step the offset that best centers the cells on the walkers. At the 
beginning of the run and again at the end, most walkers are close together, and fall within the same cell (be-
cause we chose a cell size comparable to these clouds). Walkers leave the starting cloud at different times, 
since those closer to the target sense the pheromones sooner, and follow different paths, depending on where 
they were when the pheromone reached them. Thus they spread out during this movement phase, and cluster 
together again once they reach the target. The effect of raising T to 100 on locational entropy is that the right 
end of the curve rises until the curve assumes a similar shape (plot not shown) to Fig. 20.  

Comparison of Fig. 20 and Fig. 23 shows that though the directed portion of the walker’s movement has 

higher entropy than the undirected portions, coupling the walker to the micro level does reduce the walker’s 

overall entropy. Even at its maximum, the entropy of the guided walker is much lower than that of the ran-
dom one, demonstrating the basic dynamics of the Kugler-Turvey model. The different behavior of location-
al and directional entropy is instructive.   

Which is more orderly: a randomly moving walker or one guided by pheromones?  
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The expected location of a random walker is stationary (though with a non-zero variance), while that of 
a guided walker is non-stationary. In terms of location, the random walker is thus more regular, and the loca-
tion entropy reflects this. However, the movement of the guided walker is more orderly than that of the ran-
dom walker, and this difference is reflected in the directional entropy. This difference highlights the im-
portance of paying attention to dynamical aspects of agent behavior. The intuition that the guided walker is 
more orderly than the random one is really an intuition about the movement of this walker, not its location. 
Let us consider one of applied example in robotics. 

Swarm robotic system and snake-bot 

We are focuses on a particular swarm robotic system (referred to as «swarm-bot») which is composed 
of a number of individual robots (referred to as «s-bots») that are assembled to each other through physical 
links [14, 15], and on snake-bot model. A swarm-bot can efficiently move only if the chassis of the assem-
bled s-bots have the same orientation. A modular limbless, wheel less snake-like robot (Snakebot) without 
sensors is based on a novel information-theoretic measure of spatiotemporal coordination in a modular robot-
ic system, and uses it as a fitness function in evolving the system. This approach exemplifies a new method-
ology formalizing co-evolution in multi-agent adaptive systems: information-driven evolutionary design. 

A.  Swarm robotic system. As a consequence, the s-bots should be capable of negotiating a common di-
rection of movement and then compensating possible misalignments that originate during motion. At the be-
ginning of a trial, the s-bots start with their chassis oriented in a random direction. Their goal is to choose a 
common direction of motion on the basis of the only information provided by their traction sensor, and then 
to move as far as possible from the starting position. The group is not driven by a centralized controller (i.e., 
the control is distributed), nor can the s-bots directly communicate or coordinate on the basis of synchroniz-
ing signals. Moreover, s-bots cannot use any type of landmark in the environment, such as light sources, or 
exploit predefined hierarchies between them to coordinate (i.e., there are no «leader robots» that decide and 
communicate to the other robots the direction of motion of the whole group). Finally, the s-bots do not have 
a predefined trajectory to follow, nor they are aware of their relative positions or about the structure of the 
swarm-bot in which they are assembled. As a consequence, the common direction of motion of the group 
should emerge as the result of a self-organizing process based on local interactions, which are shaped as trac-
tion forces. The problem of designing a controller capable of producing such a self-organized coordination is 
tackled using neural networks synthesized by artificial evolution. 

Each s-bot is provided with different types of sensors, motors, and connecting apparatuses that allow 
groups of s-bots to self-assemble and disassemble. A swarm-bot consisting of several connected s-bots 
should move as a whole and reconfigure its shape when needed. For example, it might have to change its 
shape in order to go through a narrow passage or overcome an obstacle [15]. Thus, swarm-bots combine the 
power of swarm intelligence, as they are based on the emergent collective intelligence of groups of robots, 
and the flexibility of self-reconfiguration as they might dynamically change their structure to match envi-
ronmental variability [14]. 

We will focus on a particular problem for the swarm-bot: coordinated motion. The s-bots are physically 
connected in a swarm-bot and have to coordinate their individual actions in order to move coherently. Coor-
dinated motion is well studied in biology as it is present in many different animal species. Examples of this 
behavior can be seen in flocks of birds flying in a coordinated fashion, or in schools of fish swimming in per-
fect unison. These examples are not only fascinating for the charming patterns they create, but they also rep-
resent interesting instances of self-organizing behaviors. In [14, 15] shows how coordinated motion of real 
physically linked robots can be achieved on the basis of simple and robust controllers that have access only 
to local sensory information. In order to understand the functioning of the controller at the individual level, 
the activation of the motor units of an s-bot were measured in correspondence to a traction force whose angle 
and intensity were systematically varied.  

The results are reported in Fig. 24 and Fig. 25. They indicate that at the individual level, each s-bot ex-
hibits two tendencies: one consists in following the rest of the group (e.g., when the perceived traction comes 
from the left or right hand side) and the other consists in persevering in moving straight (e.g., when the per-
ceived traction comes from the rear or from the front, or has a low intensity). The effects of the individual 
behavior at the group level can be described as follows. At the beginning of each test, all s-bots perceive 
traction forces with low intensity, and so they move forward at maximum speed (according to point 1, 
Fig. 25). The different traction forces generated by these movements are physically summed up by the turret 
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of each robot. This causes a unique force to emerge at the group level, which has a direction that characteriz-
es the movement of the whole group. The s-bots that have small misalignments with respect to this average 
group’s motion direction perceive traction forces from the rear and so they tend to persevere in their motion 

(according to point 3). 

 
 

 

Figure 24. Motor commands issued by the left (a) 
and right (b) motor units 

[mapped onto a [-1, 1] interval (-1 and +1 respec-
tively correspond to maximum backward and forward 
speed), of one of the best evolved neural controllers 
in correspondence to traction forces having different 

directions and intensities] 

 

Figure 25. Motor commands issued by the left 
(a) and right (b) motor units 

[(0 corresponds to maximum backward speed 
and 1 to maximum forward speed), of the best 
evolved neural controller in correspondence to 
traction forces having different directions and 

intensities] 

In so doing – and this has a very important role for coordination – they continue to generate a traction 
signal in the same direction, which is perceived by the rest of the group. In contrast, the s-bots that have large 
misalignments with respect to the average group’s direction of motion perceive traction from the left or right 
hand side, and so they tend to turn so as to follow the rest of the group (according to point 2). Overall, these 
behaviors quickly lead the whole group of s-bots to converge toward the same direction of motion (see [15] 
for a more detailed quantitative analysis of the self-organizing principles at work in these processes).  

This simple behavioral strategy is robust. In some cases, however, the same strategy does not lead the s-
bots to converge toward a common direction of motion, but rather to a rotational dynamic equilibrium in 
which all s-bots move around the center of mass of the swarm-bot.  
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This rotational equilibrium is stable since, while turning in circle, the s-bots perceive a traction force 
toward the group’s center that keeps them moving by slightly turning toward it. This rotational equilibrium is 
never observed in the experimental conditions used to evolve the controller, involving four simulated s-bots 
forming a linear structure, but only in generalization tests performed with real robots in different situations. 
In other words, the ability for a group of s-bots to display coordinated motion is the result of two opposite 
tendencies at the individual level: one corresponds to follow the rest of the group (e.g., when the perceived 
traction is not aligned with the current direction of motion) and the other to persevere in moving straight 
(e.g., when the perceived traction is opposite with respect to the current direction of motion, or when it has a 
low intensity).  

Remark. Above was described the results in swarm robotics which also implements standard self-
reconfigurability with task-dependent cooperation. Small autonomous mobile robots (s-bots) aggregate into 
specific shapes enabling the collective structure (a swarm-bot) to perform functions beyond capabilities of a 
single module. The swarm-bot forms as a result of self-organization «rather than via a global template and is 
expected to move as a whole and reconfigure along the way when needed» [14].  

One of basic ability of s-bot is coordinated motion emerging when the constituent independently-
controlled modules coordinate their actions in choosing a common direction of motion. The focus in this re-
search is on how much locomotion can be «patterned» in an aggregated structure. 

B. Snakebot model. In this section we present also experimental results of Snakebot’s evolution based 

on estimates of the excess entropy and the relative excess entropy [16, 17]. The Genetic Programming (GP) 
techniques employed in the evolution are described elsewhere. In particular, the genotype is associated with 
two algebraic expressions, which represent the temporal patterns of desired turning angles of both the hori-
zontal and vertical actuators of each morphological segment. Because locomotion gaits, by definition, are 
periodical, we include the periodic functions sin and cos in the function set of GP in addition to the basic 
algebraic functions. The selection is based on a binary tournament with selection ratio of 0.1 and reproduc-
tion ratio of 0.9. The mutation operator is the random sub-tree mutation with ratio of 0.01. Snakebots evolve 
within a population of 200 individuals, and the best performers are selected according to the excess entropy 
values, over a number of generations. 

Figs 26 and 27 are contrast (for vertical actuators) actual angles used by the first offspring and the final 
generation. 

 

Figure 26. First offspring: actuator angles 

 

Figure 27. Evolved solution: actuator angles 
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Figure 28. First offspring (correlation  entropy) 

 

Figure 29. Evolved solution 

Similarly, Figs 28 and 29 are contrasting the spatiotemporal correlation entropies produced by the first 
offspring and the evolved solution [16].  

 It can be easily observed that more regular angle dynamics of the evolved solution manifests itself as 
more significant excess entropy.  

Figs 30 and 31 are show typical fitness growth towards higher excess entropies estimated and the rela-
tive excess entropies, for two different experiments [16].  

It should be noted that there are well-coordinated Snakebots which are moving not as quickly as the 
Snakebots evolved according to the direct velocity-based measure, i.e. the set of fast solutions is contained 
within the set of well-coordinated solutions. 

 

Figure 30. Snakebot fitness over time (using excess 
entropy) 

 

Figure 31. Snakebot fitness over time (using 
relative excess entropy) 

This means that the obtained approximation of the direct fitness function by the information-theoretic 
selection pressure towards regularity is sound but not complete. 

In certain circumstances, a fitness function rewarding coordination may be more suitable than a direct 
velocity-based measure: a Snakebot trapped by obstacles may need to employ a locomotion gait with highly 
coordinated actuators but near-zero absolute velocity. In fact, the obtained solutions exhibit reasonable ro-
bustness to challenging terrains, trading-off some velocity for resilience to obstacles. In particular, the 
evolved Snakebot is able to traverse ragged terrains with obstacles three times as high as the segment diame-
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ter, move through a narrow corridor (only twice as wide as the segment diameter), and overcome various 
extended barriers. In addition, the Snakebot is robust to failures of individual segments: e.g., it is able to 
move even when every third segment is completely incapacitated, albeit with only a half of the normal speed. 
Interestingly enough, the relative excess entropy is increased in partially damaged Snakebots, as the amount 
of transferred information in the coupled locomotion has to increase. 

Moreover, there appears to be a strong correlation between the number of damaged (evenly spread) 
segments and the resulting relative excess entropy, where the coefficient of the linear fit is approximately 
equal to the relative excess entropy of a non-damaged Snakebot.  

This observation opens a way for Snakebot’s self-diagnostics and adaptation: the run-time value of the 
relative excess entropies may identify the number of damaged segments, enabling a more appropriate re-
sponse. 

Entropy in the Overall System 

Central to the Kugler-Turvey model is the assertion that entropy increase at the micro level is sufficient 
to ensure entropy increase in the overall system even in the presence of self-organization and concomitant 
entropy reduction at the micro level. The experiment illustrates this dynamic. As illustrated in Fig. 22, by 
time 60, normalized entropy in the micro system has reached the maximum level of 1, indicating that each of 
the 30 replications of the experiment results in a distinct state. If each replication is already distinct on the 
basis of the locations of the pheromone molecules alone, adding additional state elements (such as the loca-
tion of the walker) cannot cause two replications to become the same. Thus by time 60 the normalized entro-
py of the entire system must also be at a maximum. In particular, decreases in macro entropy, such as the 
decrease in locational entropy from time 80 to 250 on seen in Fig. 23, do not reduce the entropy of the over-
all system. One may ask whether the reduction in macro (walker) entropy is causally related to the increase 
in micro entropy, or just coincidental. After all, a static gradient of pheromone molecules would guide the 
walker to the target just as effectively, but would be identical in every run, and so exhibit zero entropy. This 
argument neglects whatever process generates the static gradient in the first place. An intelligent observer 
could produce the gradient, but then the behavior of the system would hardly be «self-organizing». 

In this scenario, the gradient emerges as a natural consequence of a completely random process, the ran-
dom walk of the pheromone molecules emerging from the target. The gradient can then reduce the entropy of 
a walker at the macro level, but the price paid for this entropy reduction is the increase in entropy generated 
by the random process that produces and maintains the gradient. One may also ask whether our hypothesis 
requires a quantitative relation between entropy loss at the macro level and entropy gain at the micro level. A 
strict entropy balance is not required; the micro level might generate more entropy than the macro level los-
es. In operational terms, the system may have a greater capacity for coordination than a particular instantia-
tion exploits. What is required is that the entropy increase at the micro level be sufficient to cover the de-
crease at the macro level. 

Thus three claims of interest are: 

1. Constraints can be constructed from entropy-producing processes in the bootstrapping phase of self-
organizing systems; 

2.  Positive feedback loops are critical in the structure formation phase; 

3. Constraints tend to decay. The continued presence of far from-equilibrium boundary conditions are 
required to reinforce constraints in the maintenance phase. 

These three points relate to how systems may learn the structure of their environment. As will be 
demonstrated, learning can be measured as an increase of constraints that limit degrees of freedom of agents 
(Kugler, P. N. & Turvey, M. T., Information, natural law, and the self-assembly of rhythmic movement. 
Hillsdale, NJ: Lawrence Erlbaum, 1987). Specifically, learning in agent-based model (ABM) can occur 
through (a) changes in agent interaction patterns e.g. edge weighting in neural networks (Rumelhart & 
McClelland, 1986), (b) changes in agents’ internal rules, e.g. distributed classifier systems (Holland, 1995) 
or (c) changes to potential information stored in the environment, e.g. pheromone trail following in ant forag-
ing systems (Bonabeau, Dorigo & Theraulaz, 1999).  
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The discussed model uses this last, stigmergic form of learning. However, these principles should equal-
ly apply to the first two forms of learning. The following simulation of food gathering ants is presented for 
the purpose of calculating statistical and thermodynamic measures that help characterize phases of self-
organization. 

The ant system described here is discrete; the positions of all objects in the system are specified by a 2-
tuple of integers (x, y). The space of positions is a square grid. The three types of objects are nests, food, and 
ants. Ants and the environment are modeled as active agents in the simulation. Additionally, each position in 
the space can contain some amount of nest pheromone and food pheromone, which are deposited by the ants 
as they move.  

A basic simulation is set up as follows: A nest and some amount of food are placed in the space. A fixed 
number of ants is initially placed at the nest. All positions have zero levels of both food and nest phero-
mones. The system evolves as the ants move, drop pheromone, and transport food. The model is flexible to 
later allow experimentation of initially placing ants at any location in the space and to allow any type of ob-
ject (nests, food, ants) to be introduced at any time or position. 

Emergence of Thermodynamic Constraint in Self-organizing Systems 

Three claims from non-equilibrium thermodynamics were explored in the context of an ant foraging 
agent-based model: (1) Constraints can be constructed from entropy-producing processes, (2) Positive feed-
back loops are critical to structure formation, and (3) The continued presence of far-from-equilibrium bound-
ary conditions are required to reinforce internal constraints.  

Measures of constraint and order that illustrate these claims are developed. These initial findings can be 
considered first steps in establishing mappings from non-equilibrium thermodynamics to ABM. To consider 
non-physical representations of work, one can enumerate the degrees of freedom that characterize an agent’s 

behavioral repertoire. In the ant model, an ant can potentially move to 8 neighboring spaces. Degrees of 
freedom are removed as an ant is informed by a pheromone gradient. As the ant movement is constrained by 
the pheromone field, we propose the idea that work is being done on the ant by the ant-pheromone field in-
teraction. 

Fig. 32 depicts four phases of the typical evolution of the ant foraging model.  

It is an extension of the work of Guerin and Kunkle (S. Guerin and D. Kunkle, «Emergence of Con-
straint in Self-organizing Systems», Nonlinear Dynamics, Psychology, and Life Sciences, 2004, Vol. 8, No. 
2, pp. 131 – 146) in which a simple agent-based model was constructed and the processes leading to struc-
ture formation, structure maintenance, and structure decay were studied. It was found that these three fea-
tures – commonly observed in complex system agent-based models – could be explained in terms of ideas 
from equilibrium and non-equilibrium thermodynamics. For example, when a system forms an organization, 
it appears to move from a state of high disorder, or, in thermodynamic terms, high entropy, to a state of low 
entropy.  

The second law of thermodynamics contradicts such a change in an isolated system, and, in the simple 
ant system, it was observed that an initial increase in entropy might account for the eventual drop in entropy. 
Such increases in entropy, which enable the formation of organization, are the mainstay of non-equilibrium 
thermodynamics (Atkins, 1984; Prigogine, 1962, 1984; Haken, 2000; and Schneider and Kay, 1995; Swenson 
and Turvey, 1992). Measures of constraint and spatial entropy are defined as tools for examining the con-
struction and destruction of constraints in this self-organizing system. 

The ant model will currently be used for three purposes: (1) Exploring the parameter space of the model 
and produce a set of phase diagrams to show how its behavior changes with differing parameter values; (2) 
Introducing the concept of useful work done by the system and show how this is affected by changes in the 
behavioral rules and initial conditions of the model; (3) Discussing the work done by the system in the lan-
guage of statistical thermodynamics.   
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Figure 32. Typical evolution of the ant system 

 (a) Bootstrapping – Gradient Creation: Ants move randomly out from the nest, creating a gradient of nest 
pheromones; (b) Structure Formation: Some ants find the food and begin following the nest pheromones 

while dropping food pheromones that food-seeking ants begin to follow; (c) Structure Maintenance: A stable 
path of both food and nest pheromones is established. As shown in the upper-right corner, cycles that do not 
transport food can also form; (d) Re-exploration: Once all of the food has been transported to the nest the 

pheromones begin to evaporate and the ants disperse 

A. Experimental Setup. The spirit of this model is an extension of the work of Parunak and Brueckner 
(2001), Kugler and Turvey (1987) and Gutowitz (1993). The following simulation of food gathering ants is 
presented for the purpose of calculating statistical and thermodynamic measures that help characterize phases 
of self-organization. The ant system described here is discrete; the positions of all objects in the system are 
specified by a 2-tuple of integers (x, y). The space of positions is a square grid. The three types of objects are 
nests, food, and ants. Ants and the environment are modeled as active agents in the simulation. Additionally, 
each position in the space can contain some amount of nest pheromone and food pheromone, which are de-
posited by the ants as they move. 

Therefore, a basic simulation is set up as follows: A nest and some amount of food are placed in a 
space. All locations have zero levels of both food and nest pheromones. A conserved number of ants is 
placed in the system with varied spatial distributions. The system evolves as the ants move, drop pheromone, 
and transport food. An ant can hold one unit of food at a time and can take one of three actions: (1) move to 
one of eight adjacent locations (includes diagonal moves); (2) pick up a unit of food; and (3) drop a unit of 
food at a nest. At each time step some percentage of the pheromone present at each position «evaporates», or 
is removed. Also, each time step some percentage of the pheromone present at each position «evaporates», or 
is removed. Pheromone evaporation allows adaptation to changes in food location. For example, if there 
were two food sources present, A and B, and the ants were exploiting A for a period of time a strong trail of 
pheromones would be laid between the nest and A. Once the food at A is gone the ants should no longer fol-
low that trail, but should rather explore again to find B. If the pheromones leading to A do not evaporate this 
cannot occur.  

The decay or forgetting of constructed constraints (pheromone trails) allows the system to be adaptive. 
In some experiments, ants have directionality – they can only travel to their forward five positions instead of 
choosing from all eight adjacent positions (see, Fig. 33).  
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Figure 33. Examples of possible next steps (in gray) for an ant according to the last step taken. (In this case, 
ants have fixed context-free constraints preventing backwards movement) 

This local directionality – present regardless of the state of the system – is an example of a context-free 
constraint (Juarrero, 1999).  

The direction of an ant is calculated after each step based on the previous and current positions. At time 
zero each ant chooses a random direction. In addition to this directionality, ants are given a behavior, in some 
experiments, that turns them around when they reach their goal – either the food-source or the nest. In the 
main set of experiments performed for this section, the turnaround behavior and the ant directionality are 
successively turned off to observe the result on the ant-pheromone structure formed when the system reaches 
a steady state. The turnaround and directionality behaviors were originally included to make the system more 
efficient at reaching a structured steady state, but these behaviors constitute information about the environ-
ment and it is central to this section to observe the macroscopic effect of removing this information from the 
microscopic actors. 

Each time step, ants measure a local pheromone level then choose a direction to step. For example, for 
an ant with directionality, pheromone levels are read from the forward five positions. The probability of 
moving to position j is given by:  
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where j is the pheromone level at position j;  is a scaling exponent;  is a random base; and the  denomi-
nator represents the total pheromone level in all possible next positions. In this case N is five. 

The scaling exponent  increases the probability that the next position will be the one with the greatest 
pheromone level, whereas the random base  has the opposite effect. Typical values used in our experiments 
were  = 3,  = 1, and a maximum pheromone level of 511 at any one position. These parameters can be ad-
justed to tune the likelihood that an ant will explore for new food versus exploiting a found food source. The 
parameter  might be thought of as a temperature. By analogy to a physical system, when the temperature is 
high, each particle is highly agitated and the randomness of its motion is high. Any forces – e.g. electrostatic 
or gravitational – have to compete with this agitation for influence over the motion of the particles. The  
parameter effectively acts in the same way: high values of  can randomize the motion of the ants even in 
strong pheromone fields.  These parameters can be adjusted to tune the likelihood that an ant will explore for 
new food versus exploiting a found food source. So, the movement of an ant is constrained by a measure of 
change not an absolute strength. One can think of the gradient as the spatial first derivative of the pheromone 
field. 

B. Constraint and Spatial Entropy Measures. It is in the initial conditions and the relevant behavioral 
rules of the ants and pheromones that we find the propensity of the system to organize into structure. As a 
system organizes, either through mechanisms of self-organization or through intervention by an external de-
signer, components of the system are expected to lose degrees of freedom through the emergence of context-
sensitive constraints (Juarrero, 1999). In this system, ants lose directional degrees of freedom as they are in-
formed by a gradient. This constraint in the model Is measured with a directional entropy. An ant that sees no 
pheromone gradient, which is an equal level of pheromone in all possible next positions, is said to be maxi-
mally ignorant and has an ignorance level of 1. An ant that has no choice but to move to one specific position 
on the next step would have an ignorance of 0, though this never occurs here because of the random base 
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added to each pheromone level as described in Eq. (1). In this system, work is performed on the ants as they 
lose directional degrees of freedom when they are informed by the pheromone field.  We measure this con-
straint in our model with a directional entropy. An ant that sees no pheromone gradient, which is an equal 
level of pheromone in all possible next positions, is said to be maximally ignorant with an ignorance level of 
1. An ant that is constrained to move to one specific position on the next step would have an ignorance of 0. 
The Shannon entropy (Shannon, 1948a, 1948b) of the probabilities of moving to each of the possible posi-
tions on the next step defines the ignorance for each ant 
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n n
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, (2) 

where np  is the probability of moving to position n, and N is the number of possible next positions, in this 

case five.  The denominator is used to normalize the value to the range [0, 1]. The ignorance of a group of 
ants is defined as the average ignorance of all ants. As systems self-organize, statistical measures of order 
increase. In this model, we capture increased order with a spatial entropy measure applied to the positions of 
ants.  

The spatial entropy measure is also Shannon entropy of the form shown in Eq. (2) where np  is the pro-
portion of all ants at position n, and N is the total number of positions in the space. Note that in the case of 
zero ants being at a location 0 log0 0  . The maximum spatial entropy is achieved with an equal number of 
ants at each position and the minimum with all ants at a single location. 

C. Experimental results. The results presented here will be used to support the following three points.  

1. In the bootstrapping phase of the ant model, an increase in spatial entropy leads to a decrease in the 
ignorance of the ants returning to the nest. This increase in entropy enables later phases of structure for-
mation and maintenance. 

2. Structure is created by a positive feedback loop of decreasing ant spatial entropy and increasing con-
straint (decreasing ignorance) on ant movement. A decrease in the former causes, and is caused by, an in-
crease in the latter.  

3. The structure is dependent on the presence of sufficient amounts of food. The presence of a separated 
nest and concentrated food source can be seen as a far-from-equilibrium external constraint necessary for the 
maintenance of structure. 

These points are model-specific restatements of the three ideas from non-equilibrium thermodynamics 
put forth earlier. All results given here are based on an average over 20 runs with the same initial conditions. 
The space was 21 positions square, with a single nest at position (7, 7), a single food source at position 
(15,15), and all ants starting at the nest.  

As an example, Fig. 34 shows the number of food seeking and nest seeking ants averaged over 20 runs 
of a system with 60 ants, all starting at the nest, over 500 time steps.  

As would be expected, the number of each type of ant reaches equilibrium once a path between the nest 
and the food is established. An indicator of which phase the system is in (i.e. order parameter) could be the 
mean path length of the ants. The path length of an ant at a given time is defined as the number of steps it has 
taken since it last picked up or dropped a unit of food.  

Fig. 35 shows the four phases of development with a plot of mean path length vs. time.  

In the bootstrap phase the mean path length increases uniformly. The line in this case has a slope of one 
because each ant takes one step per unit time and no ants have yet found food. The structure formation phase 
begins when food is found which leads to a rapid decrease in the mean path length. During the structure 
maintenance phase, mean path length remains stable at a near minimum value (the shortest distance between 
the nest and food). When the food source is depleted, the mean path length again increases as the ants re-
explore the space for alternative food sources. 

Fig. 36 displays the spatial entropy and ignorance for all ants over the first 100 time steps of an experi-
ment with an inexhaustible food source.  
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Figure 34. Relative population sizes of nest seeking 
and food seeking ants. As the system matures the 

population sizes reach equilibrium 

 

Figure 35. The four phases of development are visi-
ble in this plot of the ants’ mean path length at each 

time step. A path length is calculated as the number 
of steps an ant has taken since it last picked up or 

dropped a unit of food 

In the bootstrapping – gradient creation phase the spatial entropy of the ants increases, which establish-
es a gradient of pheromones around the nest. In the structure formation phase the ignorance of the ants de-
creases as they find food and begin to follow the nest pheromones back. The spatial entropy of the ants also 
begins to decrease when a path is formed between the nest and food. The structure maintenance phase be-
gins when the spatial entropy and ignorance of the ants becomes relatively constant. 

The bootstrapping phase occurs over approximately the first 25 time steps. In this phase, the ants’ ran-
dom walk from the nest causes a rapid increase in spatial entropy and the establishment of a nest pheromone 
gradient around the nest. In the structure formation phase ants that find food use this gradient to direct their 
return to the nest. The food-carrying ants’ constrained movement is reflected in a reduction of overall ant 

ignorance as the gradient informs them to the nest location.  

 

Figure 36. A comparison of the spatial entropy and 
ignorance of ants over time 

 

 

Figure 37. Ant spatial entropy and ignorance over 
time as greater amounts of food are injected into 

the system 
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Increasing spatial entropy causally constraining ant movement is offered as an illustration of Point (1): 
Constraints can be constructed from entropy-producing processes in the bootstrapping phase of self-
organizing systems. This is also in agreement with Parunak and Brueckner’s (2001) findings (see above). 
They describe this effect as «coordination can arise through coupling the macro level (in which we desire 
agent self-organization with a concomitant decrease in entropy) to an entropy increasing process at a micro 
level» (p. 130). 

Fig. 37 demonstrates the dependence of the structure formation and structure maintenance phases on a 
food source. In this case, limited amounts of food are injected every 250 time steps, starting with 5 food units 
at time zero and doubling the amount of food added each interval.  

Remark. The vertical lines represent points at which food is injected (always at the same location). Food 
is injected every 250 time steps, starting with 5 food units and doubling each time. Increased order arises 
with larger injections of food, as shown by the more pronounced decreases in entropy. 

In the presence of a concentrated food source, structure is created as shown by the decreasing spatial en-
tropy and decreasing ignorance of the ants. Once that food source is depleted the structure breaks up as the 
constraints on the ants’ movements (the pheromone field) gradually decay. This effect is offered as an illus-
tration of Point (3): Constraints tend to decay. The continued presence of far-from-equilibrium boundary 
conditions are required to reinforce constraints in the maintenance phase. There is a correlation between spa-
tial entropy and ignorance in Fig. 36. This correlation is due to the positive feedback loop between decreas-
ing ant spatial entropy and increasing constraint on ant movement (decrease in ignorance). 

Fig. 38 makes this correlation (ρ=0.94) more clear with a scatter plot of ant spatial entropy vs. igno-
rance. A correlation coefficient of ρ=0.94 implies a link between the two. The rightmost outliers of high ig-
norance and low spatial entropy occur during the bootstrapping phase when ants leave the nest. The correlat-
ed points occur during the structure formation, structure maintenance, and re-exploration phases. This rela-
tionship is put forth to illustrate Point (2): Positive feedback loops are critical to structure formation. The few 
uncorrelated points occur during the bootstrapping phase as spatial entropy is increasing while ignorance 
remains at its maximum value. 

 

Figure 38. Plot of ant spatial entropy vs. ignorance for the experiment shown in Fig. 37 

Three claims from non-equilibrium thermodynamics were explored in the context of an ant foraging 
agent-based model: (1) Constraints can be constructed from entropy-producing processes, (2) Positive feed-
back loops are critical to structure formation, and (3) The continued presence of far-from-equilibrium bound-
ary conditions are required to reinforce internal constraints. Measures of constraint are developed and order 
that illustrate these claims. These initial findings can be considered first steps in establishing mappings from 
non-equilibrium thermodynamics to ABM. 

Next steps could explore various cycles present in this model as they may relate to thermodynamic work 
cycles which are considered necessary for Kauffman’s Autonomous Agents (2000, 2003). Candidate cycles 
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in this model include (i) ant movement cycles between nest and food sources, and (ii) system cycling through 
the phases of bootstrapping, structure formation, maintenance and re-exploration. 

Remark. An Autonomous Agent (Kauffman, 2000), in brief, is a collectively autocatalytic system per-
forming one or more thermodynamic work cycles that: (1) measures useful displacements from equilibrium 
from which work can be extracted; (2) discovers devices to couple to those energy sources such that work 
can be extracted; and (3) applies work to develop constraints to extract further work. A primary task in ex-
amining a given organization is to understand how the system is displaced from equilibrium and how work is 
extracted from these initial boundary conditions. This exercise is necessarily couched in the language of 
thermodynamics and statistical physics. We are challenged to map this description not only to physically or-
ganizing systems, but to biological, social and computational instances of organization as well. The aim is to 
make the mapping without the crutch of metaphor. We will appropriate the language and methods of statisti-
cal thermodynamics through the generalization of the thermodynamic processes of heat and work for defini-
tion in non-physical systems.  

 
Setup 

 
Where did the Entropy Go? 

(a) 

 
Ant Path with No Pheromones 

 
Ant Path with Pheromones 

 
Unguided Ant’s Entropy 

 
Guided Ant’s Parameters 

(b) 

Figure 39. Pheromone and ant entropy (a) and quided ant’s parameters (b) 

Taking guidance from Atkins (1984), we can understand heat to be the unconstrained transfer of energy 
and its complement, work, to be the constrained transfer of energy. More generally, we might consider heat 
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and work to be unconstrained and constrained processes. Consider a purely physical system where work was 
performed to create an initial concentration of a conserved quantity (e.g. energy, mass, charge, linear mo-
mentum, angular momentum, etc.) in space. A diffusion process from thermal agitation can spontaneously 
arise to move the system to equilibrium absent constraint. This process of the unconstrained transfer of a 
conserved quantity is a heat process. Consider an alternative equivalent system comprised of a conserved 
quantity of computational entities (agents) performing a random walk in space. Beyond analogy, it is gener-
ally accepted that this agent system generates equivalent macroscopic dynamics that diffuse an average dis-

tance that scales with t .  

Fig. 39 shows the dynamic of ant path without/with pheromone and corresponding entropy behavior. 

We anticipate a theory of organization to generalize the common structuring processes present 
in Rayleigh-Bénard convection, lasers, cellular slime molds, immune systems, genetic regulatory networks, 

neural systems, and social insect systems. A robust theory should also apply to systems of more commercial 
interest including firms, supply webs, financial markets, transportation systems, manufacturing production 
lines and consumer markets. This section explores how Kauffman’s Autonomous Agent might be used as a 
foundation for such a theory of organization and will use the context of a familiar computational model of an 
ant foraging system to demonstrate how the emergence and degradation of constraints simultaneously define 
the process of organization. 

In the ant model to be described below, the initial diffusion of random ant movement from a nest source 
is such a process. We describe this as a heat process in a non-physical system. Candidate cycles in this model 
include (1) ant movement cycles between nest and food sources, and (2) system cycling through the phases 
of bootstrapping, structure formation, maintenance and re-exploration. 

The ants as agents have extremely simple rules of gradient-following and pheromone dropping. No in-
dividual ant is capable of learning the location of the food source. Learning and intelligence takes place in 
the colony – environment system taken as a whole. An idea put forth in this section is that «agent-agent» and 
«agent-environment» interactions along with internal rules of agents can be considered forms of constraint. 
From this perspective, organization can be measured, in part, as a bundle of self-reinforcing and evolving 
constraints. 

D. Exploration of the parameter space of the model. With any model, it is important to know how the 
parameters affect the overall system behavior. In this section we look at the three main parameters governing 
the model: pheromone evaporation rate; number of ants; noise or «temperature» parameter . When several 
model runs are averaged over, we determine the effect of varying these parameters by looking at the follow-
ing metrics:  

1. Directional entropy (defined in the previous section, Experimental Setup). Directional entropy can be 
considered a measure of how much work is being performed on an ant. 

2. Mean-free-path of the ants. This is the average number of steps traveled by an ant between picking up 
and depositing a piece of food.  

A high mean-free-path value indicates that the ants are traveling large distances between picking up and 
depositing food; in this case, the system is unorganized – strong pheromone paths between food and nest 
have not yet been formed and the ants take many steps in moving between food and nest. Low values of 
mean free path indicate that the ants go almost directly from food to nest and back, without much deviation. 

3. Number of food pieces picked up in a model run. The higher the number of pieces of food taken from 
food-source to nest over a run, the more efficient the system has become at performing this task.  This is a 
measure of useful work performed. 

The surface plots (Figs 40–42) show the behavior of the system when the parameters are changed.  

A basic summary of these results is as follows: a low pheromone evaporation rate, a large number of 
ants, and a low temperature are required for organization to occur. Organization is measured in the plots by: 
low directional entropy; low mean-free-path (whose surface plot, though absent here, is very similar to that 
for the directional entropy); and a high number of food pieces collected. In each case, the organized state is 
seen as a transition to a trough or a peak in the surface defined over the parameter space. 

It can be seen that these transitions are fairly abrupt – the landscape is relatively flat but it rises or falls 
rapidly. We can think of these changes, from the unorganized state, as phase transitions. 
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Figure 40. An exploration of the effect of evapo-
ration rate and number-of-ant changes on the 
final average directional entropy of a colony 

Figure 41.  The effect of changing the phero-
mone evaporation rate and the number of ants 

on the total food collected per ant 

 

Figure 42. The effect of changing the temperature (noise parameter) and the number of ants on the 
average directional entropy 

E. The effect of the behavioral rules and initial conditions on the organization formed. An interesting 
question to ask of a dynamical system, such as our ant model, is: what happens to the final state of the sys-
tem, and its evolution to this final state, when behavioral rule changes, or changes to the initial conditions, 
are made? We look here at several rule settings and initial conditions. As a baseline experiment, we turn off 
the ant pheromone and the directionality and turnaround behavior. In this case, we have a population of 'ran-
dom' ants, similar to a non-interacting gas. The ants still pick up food at the food-source and deposit it at the 
nest, but, along the way, they neither sense nor deposit pheromone. The baseline experiment is numbered 
zero; the other experiments we perform are as follows:  

Rule Changes: 1) Basic ants; 2) Basic ants with directional motion; 3) Basic ants with directional mo-
tion and turnaround behavior.  

Initial Condition Changes: 4) All ants begin at the nest; all are food-seeking; 5) Ants begin randomly 
distributed, all are food-seeking; 6) Ants begin randomly distributed (half are food-seeking; half are nest-
seeking). 
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The «basic ant» indicated above is simply an ant with no directional behavior i.e. no directional rule or 
turnaround behavior when the ant reaches the food or nest. The three initial condition changes are all per-
formed for ant systems in which the ants are equipped with their full set of rules i.e. directionality and turna-
round. The purpose of these experiments is to begin to understand how much information – relevant to the 
construction of a stable and efficient final organization – is present in the initial conditions of the ants. As we 
add behavioral rules to the ants, the overall number of food pieces picked up increases – the system grows in 
efficiency at this task.  

The results for the total number of food pieces picked up are, for each experiment: 
 

Exp 0 Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6 Exp 7 Exp 8 Exp 9 
4 8 2074 3367 4046 455 980 336 4608 2198 

The previous section showed evidence that when the colony is efficient at food collection, the ants have 
low directional entropy and mean-free-path and are organized into a tight structure. It follows, therefore, that 
the addition of relevant, context-dependent, rules results in the formation of a tighter colony structure and a 
greater potential for the system to organize to perform the task of food collection. 

Changes in the initial conditions also result in striking differences in the capability of the colony to self-
organize. Two factors were identified as displacements from equilibrium in our model. First, the behavioral 
rule that changes the ant state between food-seeking and nest-seeking after touching a nest or food patch, 
creates concentration gradients of differentiated ant types with reciprocal sources and sinks at the nest and 
food. This system partitioning occurs even as the total ant distribution remains equipartitioned in the space. 
The second displacement from equilibrium occurs in some experiments when ants are initially biased to be 
either all food-seekers and/or concentrated at the nest or food source. With all ants in their food-seeking state 
and beginning at the nest, the overall number of food pieces picked up is large (as expected, experiment 4) is 
close to experiment 3)). When the ants are initially randomly distributed, the ability of the colony to organize 
is significantly reduced – the total number of food pieces picked up is much smaller for experiments 5) and 
6) than for 4). 

Experiments 1), 5) and 6) share an interesting feature: despite the low number of food pieces picked up, 
the system does stabilize to a kind of structure – small clusters of ants form throughout the space. These clus-
ters are composed of both nest- and food-seeking ants, one kind laying a pheromone trail attracting the other 
and, therefore, following the other. The result is a collection of tight loops and an organization that is totally 
inefficient at performing the task of food transportation. This loop formation is an example of useless, or 
pathological, self-organization.    

In an attempt to investigate a rule change that might rid the system of this pathological behavior, we 
limit the total pheromone that each ant can deposit between visits to the food and nest. The ants are given 15 
units of pheromone and can, therefore, take 15 steps before their pheromone has depleted. When a nest-
seeking and food-seeking and become caught in a loop, it will not be long before the pheromone of the loop 
is no longer reinforced and the ants move away to discover other pheromone trails. We look at the following 
two cases: 7) Basic ants with limited pheromone, 8) Basic ants with directional and turnaround behavior and 
limited pheromone. 

We also look at the system for ants which have directional behavior but which, instead of encountering 
a 3 cell «wall» blocking their reverse path, encounter only one cell – the cell directly behind them. This sof-
tening of this constraint might be expected to result in more meandering ant behavior and, hence, less well-
formed organization. Therefore, our final experiment is: 9) Basic ant with one cell directional and turnaround 
behavior. The number of food pieces gathered for these three experiments is as follows: 7) 336, 8) 4608, 9) 
2198. The effect of limiting pheromone is to increase the effectiveness of the resulting colony at food collec-
tion – the directional entropies are also lower than for the unlimited pheromone counterparts. Experiments 7) 
and 8) should be compared with 1) and 3). Experiment 9) confirms our suspicion that the ants meander more 
when they are less constrained.  

The results of the baseline experiment show that the case of no organization – the random ants are, by 
definition, incapable of forming structure – actually results in a greater overall amount of food picked up 
than the case in which ants drop and sense pheromone but they have no directionality. The reason for this is 
that the pheromone-sensing ants form the above-mentioned pathological organization – an organization that 
almost completely prevents them from performing the task of transporting food. In summary, the results 
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show that the greater the number of structurally-relevant context free constraints the ants possess, the better 
the final organization is at the task of food collection and the less likely the system is to self-organize into a 
structure that hinders food collection. A further behavioral modification, limiting the total pheromone that 
can be deposited per ant, limits this «useless» self-organization.     

The physical concept of quantum entanglement is brought to the biological domain. We simulate the 
cooperation of two insects by hypothesizing that they share a large number of quantum entangled spin-1/2 
particles. Each of them makes measurements on these particles to decide whether to execute certain actions. 
In the first example, two ants must push a pebble, which may be too heavy for one ant. In the second exam-
ple, two distant butterflies must find each other. In both examples the individuals make odor-guided random 
choices of possible directions, followed by a quantum decision whether to push/fly or to wait. With quantum 
entanglement the two ants can push the pebble up to twice as far as independent ants, and the two butterflies 
may need as little as half of the flight path of independent butterflies to find each other. 

Quantum cooperation of two insects 

A good part of the communication between the members of a species serves to coordinate their behavior 
in the interest of common survival. It is generally believed that this communication is governed by the laws 
of classical physics. Examples would be sound, vibration and direct touch, molecular signaling in the form of 
smell, and the wide field of behavioral expression, which is physically a method of modulating or emitting 
patterns of electromagnetic radiation. However, in the newly emerging branch of physics called quantum 
information it has become clear that many tasks requiring coordination between the actors can be achieved 
significantly better if the actors’ decisions are quantum entangled. The basis for this is Bell’s theorem, which 

proves that observational results obtained at two widely separated but quantum entangled sites can exhibit 
correlations whose magnitude surpasses that of any correlations conceivable by classical physical laws. Giv-
en the importance of correlated action between living systems it is worth while to investigate how quantum 
entanglement could be embedded beneficially in the stream of sensing, deciding and acting of individuals. In 
this section we do this by means of two examples.  

We are discussed how much farther two cooperating ants could push a heavy pebble, and how much 
faster two distant butterflies could find each other (J. Summhammer, «Quantum cooperation of two Insects», 
arXiv quant-ph/0503136 v2, 2005, 23 p.) Since the quantum entanglement is vulnerable in a thermal envi-
ronment, the models incorporate the quantum entanglement in the behavior of the individuals in a way which 
enables them to solve the cooperative task even if the entanglement breaks down, although with less effi-
ciency. 

In physics, quantum entanglement (QE) is a statistical correlation between the properties measured on 
two or more separated particles or systems. The theory knows no upper limit on the complexity and on the 
number of the systems for which QE can exist. If only two particles or systems are involved, QE means that 
the result of a measurement done on one of them is not independent of the result of the measurement done on 
the other one, no matter how far they are apart. While correlations as such are not surprising, the particular 
aspect of QE correlations is their sheer strength, which can give the impression that each particle ’knows’ 

which measurement result has been obtained, or will be obtained, on the other one, so that it can ’behave’ 

accordingly in its own measurement. Einstein called these correlations ’spooky action at a distance’. Mean-
while, numerous experiments have shown the existence of these correlations, including tests which demon-
strated that they are faster than light.  

Mathematically, these correlations are outside of time and are thus instantaneous. Nevertheless, it is not 
possible to use QE for the transmission of information, because the individual measurement results are un-
predictable. An important state, which will be used in the example with the butterflies below, is the so called 
singlet state. Here, the angular momenta of the two particles are always opposite to each other, so that both 
of them together have angular momentum zero. Symbolically, this state is written as 

s
       , 

and called Bell state. Spin up (′+′) and spin down (′--′) are called, respectively. The angular momenta of two 
such particles can easily be measured along different directions, when the particles are sufficiently far apart. 
The possible results are then ′ + +′, ′ -- --′, ′ + --′, and ′ -- +′. Quantum theory can only predict the probabili-
ties for these results, ,p p 

, etc. What these probabilities look like depends on the particular physical state.  
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The probabilities for the possible measurement results are 

       2 21 1
sin , cos ,

2 2 2 2
s s s sp p p p   

    
      

   
 

where α is the angle between the two chosen directions of measurement. Note that these expressions do not 
depend on the individual directions along which the angular momenta are measured. The time of the meas-
urements is also not important. The particles need not be measured at the same time, and it is irrelevant 
which is measured first. Moreover, the distance of the particles plays no role. That is why these correlations 
are called nonlocal. 

As a by-product of interactions, QE should be an omnipresent feature in nature. However, this would 
mostly be at the molecular level and below. In systems of macroscopic scale, be they inanimate or alive, one 
would expect that the effects of QE would quickly be lost, because any macroscopic system interacts perma-
nently with the environment through the exchange of thermal radiation. And as soon as such interaction with 
systems outside the original QE occurs, the original QE gets diminished or fully destroyed. This is partly 
countered by the fact that, with increasing complexity of the entanglement – as would be the case in systems 
of many degrees of freedom, e.g. from molecules upwards – the deviation from classical physics as wit-
nessed by violations of Bell inequalities becomes stronger. Therefore, traces of QE might be noticeable be-
tween such systems even after appreciable contact with the environment. In certain solids this has already 
been detected, because macroscopic properties like the behavior of the magnetic susceptibility are a proof of 
entanglement even at finite temperature. It has also been shown that the thermal environment does not only 
tend to destroy QE, but also permanently creates it by mediating between any two systems. 

Therefore, it is not completely impossible that QE can exist in the biological realm. In fact, its obvious 
advantages may have helped to stabilize mechanisms utilizing QE under evolutionary pressure. First sugges-
tions for a role of entanglement between animals have already been made in (B. D. Josephson and F. Pallika-
ri-Viras, «Biological utilization of quantum non-locality», Found. Phys., 1991, Vol. 21, pp. 197-207). There 
have also been hypotheses of quantum computations, which rely on QE, taking place in the brain. It has also 
been suggested that correlations found between the electroencephalograms from two different persons could 
be due to QE. Indeed, one can easily think of a wide range of biological processes, where QE would lead to a 
Darwinian advantage: Quantum entanglement could coordinate biochemical reactions in different parts of a 
cell, or in different parts of an organ. It could allow correlated firings of distant neurons. And – as shall be 
the topic here – it could coordinate the behavior of members of a species, because it requires no physical link 
and is independent of distance. It is also conceivable that QE correlates processes between members of dif-
ferent species, and even between living systems and the inanimate world. Specifically, the evolutionary ad-
vantage of quantum entanglement could consist in the following: Since quantum entanglement involves no 
transfer of information between the entangled parts, but produces effects over arbitrary distances as if infor-
mation had been transferred, it can eliminate the need to develop further means of communication. 

Nevertheless, QE is a fragile relation easily broken in the thermodynamic environment of living sys-
tems. It is therefore reasonable to expect that QE could have evolved predominantly with such tasks and pro-
cesses, which can also be accomplished without QE, but which will consume less resource, like time or en-
ergy, if supported by QE.  

Remark. Synchronizing distant clocks is a crucial process for telecommunications and satellite position-
ing systems. It is also important for high-accuracy experiments in fundamental physics, such as tests of the 
theory of relativity. Achieving synchronization can sometimes be the limiting factor in the accuracy of such 
measurements. A. Valencia et al. «Setting our watches by entanglement», Appl. Phys. Lett. 85, 2655–2657 
(2004) have conducted a proof-of-principle experiment showing that quantum entanglement of photon pairs 
can provide a synchronization method that avoids the shortcomings of existing techniques. By sending two 
entangled photons (produced by shining laser light into a nonlinear optical material) down optical fibres 1.5 

km long, they have been able to detect synchronized events with picosecond ( 1210 s) accuracy over a dis-
tance of 3 km. For an entangled pair of particles, a measurement on one of them instantaneously determines 
the quantum state of the other. To use this for synchronization, the two photons are dispatched to detectors at 
the two ‘stations’ where the clocks are to be synchronized – say, a satellite and an Earth-based laboratory. If 
the clocks used to time the detection of many successive pairs are synchronized, the event timings will show 
the greatest number of coincidences when the records are compared. In cases of mismatch, the clocks can be 
altered until the detections coincide. As a classic example of cooperation, imagine a system of N excited at-
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oms. An atom is coupled to the ever-present electromagnetic fields, so an excited atom will spontaneously 
emit a photon. But if the N atoms reside at equivalent positions relative to the field, they all couple to the 
electromagnetic fields in the same way and cannot be distinguished by the way they interact with the field. 
Spontaneous emission from the atoms is then cooperative. 

We want to present two such examples. They deal with the cooperation of two ants and of two butter-
flies, respectively. Their behavior is simulated in a numerical model, as is often done in theoretical biology. 
Ants and butterflies were chosen, because these small creatures sometimes show impressively coordinated 
achievements which make it hard to believe that solely the limited computational capacity of their nervous 
systems should be responsible for them. We will, however, not specify a physical or biological mechanism 
which carries and protects the systems within an individual which are entangled with similar systems in the 
other individual, although some remarks will be made in the discussion. We are here mainly interested in 
how QE could be embedded in the stream of sensing, decision making and acting of the individuals. We 
shall see that one way how QE could work is as an «inner voice», which suggests a specific action to the in-
dividual, despite a lack of sufficient information for a rational decision. In this sense it could operate like 
some quantum games, which help the players win even if there is no communication between them, so that 
some of these games exhibit properties of «pseudo telepathy». 

Example: Two ants pushing a pebble. We look at two ants that must push a pebble towards a certain 
goal. Each ant is able to push with a force. In order to move the pebble a minimum force fmin must be ap-
plied. Clearly, if the pebble is too heavy to be moved by any of the ants alone, the two ants must push simul-
taneously, and they must push in similar directions. The two ants go about their task by making a series of 
simultaneous push attempts. However, at each push attempt each ant decides with a probability of 1/2 
whether to push or to rest. This is where we will permit QE to come in. A push attempt is successful if the 
force applied to the pebble is larger than the required minimum. Then the pebble will move a little path 
length proportional to the force and in the direction of the force. In order that the two ants shall be able to 
exploit QE we will speculatively assume that somewhere in their nervous system they have a region which 
contains spin-1/2 systems, e.g., an array of atoms with a magnetic moment. And each of these spins shall be 
quantum mechanically entangled with exactly one such spin in the other ant, where any of these pairs shall 
be in the triplet state. An ant shall be able to make a quantum mechanical spin measurement on any of its 
spins. Somewhat anthropomorphically we can imagine the process of measurement to be a moment of intro-
spection whose result the ant notices as a sudden urge to do this or that, depending on the outcome of the 
spin measurement. 

Each of the pairs of spins shared by the two ants is reserved for a specific push attempt. Before a push 
attempt, an ant must make two decisions: 

- Choose the direction of the push. This decision is derived from the sensory input, specifically from the 
odor emanating from the goal. The chosen direction shall be subject to a probability distribution. Thereby we 
simulate that the ants are not clever enough to keep concentrating on the task, or that they may be distracted 
by other sensory input, or that gusts of wind may temporarily obscure the olfactory information, etc. 

- Decide whether to really push at this attempt, or whether to have a little rest. This decision will be 
made by a quantum measurement of the spin of the particle reserved for this attempt along the push direction 
just chosen. The ant will only push, if the result is «+». This option simulates an ant’s need to come to a de-
cision about an action despite a general lack of sufficient information, or a general inability to come to an 
informed decision because of the limited capacity of its brain. These decisions are made independently by 
each ant and they are not communicated to the other ant. Of course, after the action, each ant could in princi-
ple obtain some information about the decisions of the other ant from the effect on the position of the pebble. 
We assume that this shall not influence an ant’s further strategy, because we wish to see the pure effect of the 

quantum correlations without communication between the partners. (Communication after the fact will be 
permitted in our next example with the butterflies). 

This model of quantum entangled ants can be contrasted with one of two independent ants, in which the 
choice of direction happens exactly as in the quantum model, but the decisions of whether to push or to rest 
are made by each ant independently. We can still imagine these decisions to be based on spin measurements 
along the chosen directions. But the spins shared by the two ants will have no QE whatsoever. Then the 

above quantum mechanical probabilities    ,t tp p   and  tp  will be independent of the chosen angles, and 

will have a constant value of 1/4. Note that, in this independent case, the ants will also be able to push the 
pebble towards the goal. And we can expect that, as long as the pebble is light enough to be pushed by a sin-
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gle ant, there should be little difference in how far the pebble gets pushed with a given number of attempts. 
However, as soon as the effort of both ants is needed to move the pebble, the quantum entangled ants will 
become superior. The reason is that especially for small differences between the choices of angles needed to 
move a pebble which is too heavy for a single ant – the ants will make the same decision of whether to push 
or to rest up to twice as often as the independent ants. Hence, the behavior of the quantum entangled ants 
will be more coordinated, resulting in fewer futile push attempts. Nevertheless, the behavior of a single ant 
which is quantum entangled with another one, will be indistinguishable from a completely independent ant. 

Fig. 43a shows the result of 600 push attempts of the two ants, for the independent (black) as well as for 
the quantum entangled case (red). It is taken from a screen shot of the simulation the actual random deci-
sions. Ants must push the pebble to the upper line of the picture.  

 

(a) 

 

(b) 

 

(c) 
 

(d) 

Figure 43. Typical stochastic paths of the pebble as pushed by quantum entangled ants (red) as well as by 
independent ants (black) (a); Gain in distance the pebble can be pushed by the quantum entangled ants rela-
tive to the independent ants, as a function of the force needed to move the pebble. Solid line: Both ants have 

force 1. Dashed line: One ant has force 0.9, the other has force 1.1 (b); Typical flight paths of the two butter-
flies. Initial distance: 1600 units. Length of one short flight: 40 units. Learning factor l = 0.5. The lines jut-

ting out from the two main lines are short flights after which the respective butterfly had to fly back.  

Note that sometimes several attempts had to be made to find a good direction (a); Statistical results of 
40 independent and 40 quantum runs, respectively. Initial distance: 1600 units. Length of one short flight: 5 
units. Learning factor l = 0.5. The quantum entangled butterflies needed an average of 2778 short flights to 
find each other. The independent butterflies needed an average of 5255 short flights (b); (c); Total number of 
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short flights needed by the two butterflies to find each other, as a function of learning factor l. Calculated 
from 40 runs at each l. Solid lines: Average and range of standard deviation for quantum entangled butter-
flies. Dashed lines: For independent butterflies (d) 

The erratic lines with the fat endpoints show typical paths of the pebble. The crosses indicate the theo-
retically expected endpoints of the pebble. For the sake of simplicity the probability distribution for the 
choice of push directions of an ant has been assumed to be the same for both ants and was taken as piecewise 
linear for positive and negative angles. Typical stochastic paths of the pebble as pushed by quantum entan-
gled ants (red) as well as by independent ants (black). In both cases 600 push attempts were made.  

The crosses show the theoretically expected endpoints of the pebble. The probability distribution of the 
push directions was set such that it was three times (as likely for the ants) to push forward than to push 
backward. One ant could exert a force of 0.9, the other a force of 1.1. 

Fig. 43b shows the ratio of the distance the pebble can be pushed by the quantum entangled ants over 
the distance achievable by the independent ants with the same number of push attempts. The solid line shows 
the case of two equally strong ants (both can exert a pushing force of 1). Not surprisingly, the superiority of 
the quantum entangled ants really sets in as soon as the pebble becomes too heavy to be moved by one ant 
alone. If the pebble requires the maximum force of the two ants, the quantum entangled ants can push the 
pebble twice as far as the independent ones. The reason is that both ants must push in the same direction. 
Then the quantum entangled ants will either both push or both rest, while the independent ants will do so 
only half as often. The more general case of two ants of different strength is shown by the dashed line. A 
certain advantage of the quantum entangled ants sets in as soon as the force needed to move the pebble is 
larger than can be exerted by the weak ant (which here is 0.9), because all efforts by the weak ant alone be-
come futile. If the pebble becomes so heavy that even the strong ant cannot move it alone, the full advantage 
of the quantum entangled ant’s sets in.  

It is interesting to note that in both scenarios a very small advantage for the entangled ants exists also 
when the pebble can be moved by any of the ants alone. This is due to the fact that, even for light pebbles, 
there is a difference in how the pebble gets moved. E.g., for large angles between the chosen directions the 
forces on the pebble may almost cancel each other and the pebble will not move. Such futile attempts occur 
with some frequency for the independent ants. But they are rare for the quantum entangled ants.  

Thus, quantum entangled ants profit from making fewer «wrong decisions». 

Example: Two butterflies finding with entanglement each other. With certain kinds of butterflies it is 
known that a male and a female can find each other even when they are initially many kilometers apart. The 
usual explanation is that each butterfly emanates scent molecules to guide the other one. The huge antennas 
of a butterfly capture the molecules, permitting it to determine the gradient of the distribution and hence the 
direction of the origin of the scent. Nevertheless, one may wonder, whether for large distances the infor-
mation contained in the few scent molecules is sufficient to give a butterfly a clear direction where to fly. In 
the present scenario we shall assume that this information will allow a butterfly only to come up with a prob-
ability distribution for the directions in which it should fly. The decision whether the butterfly will actually 
do a short flight in the chosen direction will come from a quantum measurement. As in the case of the ants, 
we assume that the two butterflies share a large number of maximally entangled pairs of spin-1/2 particles, of 
which each butterfly holds one particle. However, here the entangled state will be the singlet state, because 
we want the butterflies to get the same measurement result, if they measure their respective spins along op-
posite directions. 

The details of the scenario are as follows: 

(i) The intensity of the scent emanated by each butterfly drops off as 21 r  where r is the distance from 
the butterfly; 

(ii) The propagation of the scent is very much faster than the speed with which the butterflies fly, so that 
each butterfly can notice a change of the distance of the other one with little delay as a change of intensity of 
the scent. 

(iii) Each butterfly moves in a sequence of short straight flights of constant length. Before such a short 
flight the butterfly has to make two decisions in the following order: 

- Choose a direction for the short flight; 
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- Decide whether to really do the short flight, or whether to have a little rest. 

The first decision is resolved in the usual neuronal manner: The butterfly chooses the direction for the 
short flight randomly, but weighted with the probability distribution of directions which it considers appro-
priate in view of its experience of change of intensity of the scent in the previous short flights. In the model 
calculations, each butterfly can choose among 16 directions evenly spaced over 2π. In the beginning, this 

probability distribution is isotropic. After each short flight, the distribution is updated according to a rule 
which will be explained later. 

The second decision comes from a quantum measurement. The butterfly measures the spin-1/2 particle 
designated for this short flight along the chosen direction. If the result is «+», it does the short flight, other-
wise it rests until the next short flight is due.  

The rule for updating the probability distribution of flight directions now looks as follows. (It is only 
applied, if the short flight has actually taken place. If, instead, the butterfly has taken a rest, it will retain the 
probability distribution from before the rest.) The butterfly measures the intensity of the scent of the other 
one: 

- If the increase of the intensity, i.e. the average gradient of the scent along the short flight path, is above 
a certain threshold, the butterfly judges this to have been a good direction and enhances the corresponding 
probability weight by the factor (1+l). This direction is then more likely to be chosen again in one of the next 
short flights. The parameter l can be set between 0 and 1. When it is 0, no learning from experience occurs. 

- If the increase of the intensity is below the threshold, the butterfly flies back, because it judges this to 
have been a bad direction. In addition, it reduces the probability weight of this direction by the fac-

tor  
1

1 l


 . This direction is then less likely to be chosen again in one of the next short flights. 

The threshold is taken as a certain fraction of the strongest increase of the intensity of the scent encoun-
tered in the short flights until then. Therefore, as the butterflies get closer to each other, the threshold will get 
higher and they will become more discriminating in judging a short flight as having been good or bad. 

This quantum scenario can again be compared to a scenario of butterflies who make independent deci-
sions. In that scenario the decision before each short flight, whether to fly or to rest, is made completely in-
dependently by the two butterflies. Each will decide randomly with a constant probability of 0.5 whether to 
fly or to rest. 

Fig. 43c shows parts of the screenshot of the program which simulates the behavior of the two butter-
flies. The top picture (c) demonstrates actual tracks. The interesting result is the total number of short flights 
including the back flights, i.e., the total flight distance the two butterflies had to cover to meet. This is shown 
in the lower picture (d) which indicates the statistical results of 40 runs of independent, and of 40 runs of 
quantum entangled butterflies, respectively. The red pointers in the upper half indicate the number of short 
flights of quantum entangled butterflies, the black pointers in the lower half those of the independent butter-
flies. It is noticeable that the quantum entangled butterflies can find each other with much fewer short flights 
than the independent ones. This is because the former decide more often simultaneously to actually do the 
short flight, if the chosen directions happen to point roughly towards one another. This in turn, gives more 
often valid short flights, i.e. short flights where the increase of the scent is above the threshold so that neither 
of them will have to fly back. Also, it leads to a quicker adaptation of the probability distribution of flight 
directions to favor the current good directions. The derivation of the theoretical expression for the number of 
short flights needed until the encounter takes place is a laborious exercise and will not be given here.  

Instead, Fig. 43d shows for 40 quantum runs and for 40 independent runs, respectively, the averages and 
standard deviations of the total flights needed until the butterflies meet, as a function of the learning factor l. 
The initial distance of the butterflies is 1600 units. The length of one short flight is 5 units. The threshold for 
flying back is that the butterfly does not undo a short flight if the increase of the intensity of the scent of the 
other butterfly was at least 60% of the strongest increase of the scent found until then. Obviously, the quan-
tum entangled butterflies find each other faster. For a learning factor of l = 0 they need only about 83% of 
the short flights of the independent butterflies, and for l = 1 they need only about 48%. 

It may be surprising that the quantum entangled butterflies have an advantage over the independent but-
terflies even for l = 0, i.e., when the butterflies don’t learn from experience so that for all short flights all di-
rections remain equally likely. This can be understood qualitatively when looking at the probabilities that a 
butterfly does not have to fly back after a short flight. Suppose that for the next short flight the butterflies 
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happen to choose directions pointing exactly at each other. If both happen to really do the short flight, neither 
will have to fly back, because the increase of the intensity of the mutual scents will be the highest possible. 
Now, the probability that both will fly is 1/2 for the quantum case, but only 1/4 for the independent case.  

For the independent case, there is also a chance of 1/2 that only one butterfly will fly, but in these in-
stances the increase of the intensity of the scent will likely not be high enough and the butterfly will fly back. 
Altogether, there should thus exist an advantage for the quantum entangled butterflies. And they should have 
a similar advantage over quite a range of roughly forward pointing directions, the exact angular width of this 
range depending on the choice of threshold for flying back. 

In the example with the ants no communication between the ants is necessary. At each attempt each ant 
just selects a direction and does or does not push. The momentary position of the pebble from which some 
information about the previous decisions of the other ant could be gleaned has no influence on what choices 
the ant makes. However, an important communication, which in practice will be olfactory, must permanently 
happen from the goal to the ants. A scent must always tell the ants where the goal is, because the advantage 
of the quantum entangled ants pushing a heavy pebble results solely from their preference of pushing to-
wards the goal: For similar choices of directions it leads to more frequent occurrences of both ants’ simulta-
neous decisions to push, which is the only way to move a heavy pebble. 

In the example with the butterflies there is no external goal where both must fly, but each butterfly rep-
resents the goal for the other one. Therefore, the communication must happen between them, as is affected 
by each one permanently checking the intensity of the scent of the other one. Without this information the 
butterflies would have no preference for flying towards each other, because the quantum correlations would 
also favor directions which lead directly away from each other. 

In both examples we have only looked at maximally quantum entangled decisions of the two cooperat-
ing insects on the one hand, and compared them to completely independent decisions on the other. Clearly, 
there is also the possibility of correlations whose strength lies anywhere between, e.g., correlations covered 
by classical physics which would fulfill Bell’s inequality, and which could be realized by neuronal circuits 

exploiting all the information held by an individual. Such correlations would lead to achievements between 
those of the two extremes we have investigated, because the strength of the correlations is directly reflected 
by how far a heavy pebble gets pushed by the two ants, or by how soon the two butterflies find each other, 
respectively. 

The simulations underline that QE between decisions of cooperating individuals – no matter how these 
correlations are physically realized – can enhance the cooperative achievements significantly beyond those 
obtainable with even the fullest exploitation of the information available to an individual as might be facili-
tated by neural networks. This is because QE does contain extra information which is inaccessible to any 
individual alone but comes to the fore in the result of joint measurements on the quantum entangled systems. 

 Cellular automata  

The origins of ABM cellular automata – rows in a checkerboard that evolve into the next row based on 
simple rules. The idea of cellular automatons can be traced to John von Neumann and Stanislaw Ulam, fur-
ther developed and popularized in Conway’s Game of Life, and more recently Wolfram. It is interesting to 

note that Watson and Crick’s work unraveling the structure of DNA took place nearly concurrently with 

much of von Neumann’s study of machine reproduction. It is noteworthy that the logical basis of reproduc-
tion in living cells mimics von Neumann’s machine reproduction theory; in fact, biology’s terminology 

closely follows von Neumann theory.  

But the converse is also true. Biology has been instrumental in driving agent-based models.  

Let us now discuss the recent developments in the studies of self-organization in abiotic, biotic (bacteri-
al) colonies and man-made (programmable chips) systems, aimed at seeking to unravel the general principles 

of biotic self-organization. A typical bacterial colony consists of 9 1210 10  bacteria. Self-organized pattern 
formation is observed in bacterial colony growth.  

Such cooperative behavior can be considered as an adaptive response under unfavorable environments. 
It is not created by pre-design or according to a plan, but through a process of biotic self-organization. The 
elements (bacteria) store the information for creating the needed «tools» and the guiding principles needed 
for the colonial self-organization. Additional information is cooperatively generated as the organization pro-
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ceeds following external stimulations. The outcome is an adaptable complex system that can perform many 
tasks, learn and change itself accordingly. Consequently, the idea of engineered self-organization is to let 
many collections of element self-organize in a pre-engineered environment they can exchange information 
with. The most efficient collections will be let to further self-improve via evolution algorithms of the com-
ponents internal structure and capabilities (the analog of evolution of the potential for gene expression). The 
system itself should regulate the evolution of its components. 

Engineered self-organization of a bacteria colony 

The rapid developments in communication, informatics and nano- and bio- technologies give rise to a 

new difficulty: how to build a complex functioning system from a large number (say, 10 1210 10 ) of smart, 
man-made interacting elements. Such systems are too complex for design and for blueprint construction. The 
challenge is to develop a new engineering methodology for the creation of such systems. Currently, despite 
the great progress in computational power, we have not reached even the ability to simulate the intracellular 
gel of a single bacterium, the simplest living organism, let alone design one. This macromolecular plexus, 

composed of ~ 1110 interacting polymers, proteins and nucleic acid segments, each with its own internal 
structure, continuously re-organizes its structure and composition in response to external stimuli and accord-
ing to information stored in the DNA. Nature has not built such gels, cells, organs and organisms following 
some pre-designed blueprint, but rather via a process of biotic self-organization. It is conducted in parallel 
investigations of bacterial and neuronal self organization, seeking to unravel the general principles of biotic 
self-organization. 

The foundations of abiotic self-organization 

Diverse non-living open systems, when forced to be far from equilibrium, respond by forming complex 
hierarchical spatio-temporal organizations. In the early 1950’s, Alan Turing motivated by the attempt to un-
derstand morphogenesis in living systems, proposed that complex structures emerge in open systems only 
when there is competition between two or more tendencies. He thus started the field of self-organization and 
set its first principle – patterning via competition.  

Bacteria use a variety of available sources of energy and entropy imbalances encountered in their differ-
ent environments, from deep inside the earth crust to nuclear reactors and from freezing icebergs to sulfuric 
hot springs. Using thermodynamic imbalances bacteria are capable of converting myriad substances, from tar 
to metals, into life sustaining organic molecules. More complex organisms depend on this unique bacterial 
(and the symbiotic chloroplast) capacity. And, as Schrödinger noted, with all of our scientific knowledge and 

technological advances, we cannot design man-made machines to mimic the ways in which bacteria solve 
this fundamental requirement for life. Both biotic and man-made machines use imbalances for their opera-
tion, yet there are some essential differences.  

Often, competition is between global and local approaches towards equilibrium. In such cases, the glob-
al kinetics drive the system towards decorated, irregular, scale free shapes, while the local dynamics imposes 
local characteristic length-scales and order as well as overall symmetries and organization. For example, in 
the formation of a snowflake, the local dynamics at the interface, giving rise to surface tension, surface kinet-
ics and growth anisotropy competes with the diffusion of water molecules towards the growing flake. The 
outcome is that the six-fold symmetry of the ice crystal is imposed on the overall symmetry of the flake.  

To increase the efficiency, the biotic machines can maintain a non-equilibrium (evolving) state, where 
both their internal structure and composition are regulated by internally stored information. In addition, bio-
tic machines possess a membrane which enables them to generate from the external environment large inter-
nal imbalances which may be regulated and used when needed. Moreover, the exchange of energy, matter 
and information across the membrane is actively regulated according to the internal state and stored infor-
mation of the biotic machine and the surrounding conditions. Bacteria and chloroplasts share an additional 
operating principle: low-entropy energy is first stored in transferable packets of usable «currency» – ATP 
molecules. Namely, the photon energy is stored in nano-size coins for ready use. These coins are used in a 
regulated manner only when and where needed according to the internally stored functional information that 
reflects the intra-cellular state (including the gene-network state) of the cell. In this fashion, the low-entropy 
quanta of high energy are fed directly into micro-level degrees of freedom of the system and the process is 
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self-regulated by the very same biotic machine according to its specific needs and stored knowledge. This is 
perhaps one of the most essential differences between man-made and biotic machines: a biotic machine 
should be compared not to a single man-made machine but to a cluster (factory) of man-made machines and 
information processing systems that regulate the operation and exchange of energy and materials between 
the machines.  

The surprising discovery is that, despite these vast differences in length-scales (from nanometer to mil-
limeter), the macro-level can cause the micro-level dynamics to act as a singular perturbation: When the sys-
tem is driven farther from equilibrium, the global tendencies are intensified and amplify the local effects to 
the extent that small changes on the micro-level can alter the macro-level organization. By the same token, 
modifications on the global level (possibly caused by micro-level modifications) can act as a singular feed-
back, i.e. can reach down and affect the micro-level organization by favoring one particular micro-level 
structure over the others. Only recently have we come to appreciate that an emergent pattern is determined 
via a singular interplay between the macro- and micro-levels subject to a microscopic solvability principle. 
Moreover, the two-level picture is often insufficient. In such cases, a hierarchical multi-level organization is 
generated as the only possible solution to a hierarchical self-consistency principle of self-organization.  

Both ordered and disordered patterns should have similarly low values of complexity and patterns with 
hierarchical or scale-free organization should have the highest complexity. Structural complexity might be an 
appropriate quantity, instead of entropy production, to describe the response of open systems to external im-
posed conditions — especially when these conditions vary in time and/or space. In this regard, a new princi-
ple of «complexity-based-flexibility» was suggested. Ordinary notions of stability, as used for closed sys-
tems or open systems with regular steady states, are not valid for the hierarchical or scale-free spatio-
temporal complex patterns formed during abiotic self-organization. In such cases, higher complexity elevates 
the flexibility of the system, thus imparting it higher tolerance and robustness. 

The fundamental principles of abiotic self-organization enable one to engineer or pre-design conditions 
that form desired patterns by the system during its self-organization, a process dubbed, «engineered self-
organization». One of the most fundamental aspects of biological systems is that they can use internally 
stored relevant information to self-design their own «engineered» self-organization. Moreover, during the 
process, internal and external information is processed and used to alter the engineering of the very same 
self-organization process enabling the system with the special capabilities and characteristics described in 
this review. Bacteria are not the solitary, simple organisms as they are usually depicted. Under natural 
growth conditions, certain bacterial species self-organize into hierarchically complex structured colonies 

containing 9 1210 10 organisms (see, Fig. 44).  

To coordinate such cooperative ventures, these bacteria have developed and utilized various methods of 
biochemical communication, by using a variety of mediators, which range from simple molecules to poly-
mers, peptides, complex proteins, genetic material, and even ‘‘cassettes of genetic information’’ such as 

plasmids and viruses. The resulting colony patterns reflect cooperative survival strategies. The colony be-
haves much like a multi-cellular community. It has been proposed to view the colony’s capabilities to per-
form collective sensing, distributed information processing and collective gene-regulation as fundamental 
cognitive functions. And consequently it can change its spatio-temporal organization (engineered self-
organization) for better adaptability to changes in the environment. 

We emphasize that in addition colonial internal sensing is crucial since the complex patterns emerge 
through the communication-based interplay between individual bacteria (the micro-level), as well as sensing 
characteristics of the collective, i.e., the colony (the macro-level). 
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Figure 44. Hierarchical colony pattern generated by Paenibacillus vortex bacteria 

Self-engineering capabilities of bacteria 

Under natural growth conditions, bacteria can utilize intricate communication capabilities (e.g. quorum-
sensing, chemotactic signaling and plasmid exchange) to cooperatively form (self-organize) complex colo-
nies with elevated adaptability – the colonial pattern is collectively engineered according to the encountered 
environmental conditions. Bacteria do not genetically store all the information required for creating all pos-
sible patterns. Instead, additional information is cooperatively generated as required for the colonial self-
organization to proceed. A new picture is thus emerging, one in which adaptable self-engineering can be 
viewed as the bacteria solution to a challenging self-consistency mathematical problem at the forefront of 
optimization and control in nonlinear dynamics. So it is reasonable to conclude that collectively, bacteria can 
glean information from the environment and from other organisms and interpret the information in an exis-
tential «meaningful» way, i.e. by building an appropriate colony structure. It is perhaps even not so far-
fetched to imagine that the bacteria can develop common knowledge and learn from past experience.  

Figs 45 and 46 show the main principles and robustness of self-engineering design systems. 

Complex colonial forms (patterns) emerge through the communication-based singular interplay between 
individual bacteria (the micro-level) and the colony (the macro-level). Each bacterium is, by itself, a biotic 
autonomous system with its own internal cellular gel that possesses informatics capabilities (storage, pro-
cessing and interpretation of information) (Hellingwerf, 2005). These afford the cell certain freedom to select 
its response to biochemical messages it receives, including self-alteration and broadcasting messages to initi-
ate alterations in other bacteria. Such self-plasticity and decision-making capabilities elevate the level of bac-
terial cooperation during colonial self-organization. 

 

Figure 45. The idea of «Engineered Self-Organization» – «Forcing» the system to express its hidden «abili-
ties» 
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Figure 46. Robustness and specificity – The same P. vortex bacteria under different growth conditions 

As the individuals in a growing colony begin to respond to the colony itself (i.e. information flow from 
the colony to the individual), these individuals response by regulating their movements, growth rates, various 
tasks they perform, the chemical signals they send to other bacteria and even their gene-network state (phe-
notypic state) according to the received signals.  

By doing so, the individual cells collectively alter the colony so as to increase its durability and adapta-
bility. Collectively emerge during biotic self-organization on every level, from the membranes and cyto-
plasm to the whole colony. The cells thus assume newly co-generated traits and abilities that are not explicit-
ly stored in the genetic information of the individuals. For example, bacteria cannot genetically store all the 
information required for creating the colonial patterns. In the new picture, they do not need to, since the re-
quired information is cooperatively generated as self-organization proceeds by bacterial communication, in-
formatics and self-plasticity capabilities. 

Bacteria can perform most elementary cognitive function more efficiently as can be illustrated by their 
cooperative behavior (colonial or inter-cellular self-organization). As a member of a complex super-
organism — the colony — each unit (bacteria) must possess the ability to sense and communicate with the 
other units comprising the collective and perform its task within a distribution of tasks. Bacterial communi-
cation thus entails collective sensing and cooperativity. The fundamental (primitive) elements of cognition in 
such systems include interpretation of (chemical) messages, distinction between internal and external infor-
mation, and some self vs., non-self distinction (peers and cheaters). 

Molecular biology is a subfield of biology that grew out of the fields of biochemistry, which is con-
cerned with the chemical properties of living cells, and genetics, which is concerned with the evolutionary 
history of organisms and the relationships between them. The molecules of concern to molecular biology are 
those biochemical structures that are directly involved in encoding the information necessary for an organism 
to sustain its own life as well as to pass information to the next generation through the reproductive process. 
Main molecules are DNA, RNA and Protein.  

DNA: Deoxyribonucleic acid. The double-stranded chemical instruction manual for everything a plant 
or animal does: grow, divide, even when and how to die. Very stable, has error detection and repair mecha-
nisms; stays in the cell nucleus; can make good copies of itself. DNA is a polymer (a molecule) with two 
long complementary strands.  

DNA bases – A: Adenine, T: Thymine, G: Guanine, C: Cytosine; DNA Base pairs: A T  and 

G C . Human genome has approximately 93 10 bases and 315 10  genes. 

 

 

 

 

http://www.postmodern.com/~jka/rnaworld/nfrna/nf-cellsed.html
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RNA: Ribonucleic acid. Single-stranded where DNA is double-stranded, messenger RNA (mRNA) car-
ries single pages of instructions out of the nucleus to places they're needed throughout the cell. No error de-
tection or repair; makes flawed copies of itself. Evolves ten times faster than DNA. RNA is a polymer, a 
molecule related to DNA. Transfer RNA (tRNA) helps translate the mRNA message into chains of amino 
acids in the ribosomes. The expression of the genetic information in DNA is accomplished by transcribing a 
sequence of bases in DNA into a sequence of bases of RNA. 

RNA bases – A: Adenine, U: Urile, G: Guanine, C: Cytosine. RNA Base pairs: A U and G C . 

RNA differs from DNA in that it is single stranded and tends to fold back into itself forming hairpins. 
The DNA and RNA bases are also called nucleotides. 

So these structures include DNA and RNA, each of which are strands of nucleotides; these nucleotides 
cluster into groups of three to form amino acids, and these amino acids are the building blocks of proteins.  

 

(a) 

 

(b) 

Figure 47. Structure of central dogma in molecular biology 

http://www.postmodern.com/~jka/rnaworld/nfrna/nf-rnadefed.html#anchor469730#anchor469730
http://www.postmodern.com/~jka/rnaworld/nfrna/nf-rnadefed.html#anchor469730#anchor469730
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What is known as the «central dogma» in molecular biology (see, Fig. 47) is the idea that the genome is 
the repository or template for all of the genetic information that is required both for organisms to perpetuate 
their own life and for them to pass this information on to the next generation through the reproductive pro-
cess.  

The central dogma initially stated that information in the organism flows from DNA to mRNA to pro-
tein in a unidirectional manner, but with the discovery of retroviruses and other organisms that transcribe 
genetic information from RNA to DNA and then back to mRNA to proteins, the unidirectionality rule has 
had to be relaxed.  

The sequence hypothesis of molecular biology states that the sequences of nucleotides and amino acids 
determine the structure and function of the proteins that they code. The overarching goal of research in mo-
lecular biology since Watson and Crick first elucidated the sequence hypothesis in 1953 has been to discover 
just how these simple sequences of nucleotides are translated into proteins, and what impact the nucleotide 
sequence has on the 3-dimensional structure of proteins and function these proteins play within the organism. 

So what is the importance of information theory to molecular biology? Since the development of infor-
mation theory coincided with the work Watson and Crick were doing that led to the enunciation of the struc-
ture and role of DNA, it had an influence on the way molecular biologists conceptualized DNA. The paral-
lels to the kinds of symbolic messages and communication systems about which Shannon was writing were 
obvious: DNA has an «alphabet» of four nucleotides (Adenine, Guanine, Cytosine, and Thymine (Uracil in 
RNA)), and a DNA strand is made up of a backbone of deoxyriboses, or sugars, each one attached to one of 
the four nucleotides.  

The sequence of these nucleotides in turn determines what amino acids and proteins will be produced. If 
you consider the central dogma of molecular biology (at least for most prokaryotes and eukaryotes) that in-
formation moves from DNA to mRNA to protein, you can map this onto the model of a communication sys-
tem we saw earlier. The source of the genetic message is the DNA strand. 

Figs 48 and 49 are shown the structure of RNA. 

 

Figure 48. Structure of RNA 
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Figure 49. Two types of RNA 

The message itself is the sequence of nucleotides in that strand. The channel is the RNA polymerase 
that recruits and attaches the proper nucleotides to the new mRNA strand, and the receiver is the mRNA 
strand.  

The destination is the ribosome, which in turn initiates a process of translation from the sequence on the 
mRNA strand into proteins.  

Errors or noise can be introduced as the RNA polymerase reads the DNA sequence and recruits the cor-
responding nucleotides (see, Fig. 50). 

 

Figure 50. (a) Coupling between information processing and cellular metabolism; (b) The logical relation-
ship between the nucleotide sequence of the nucleic acid and the amino acid sequence of the protein is the 

genetic code, which assigns an amino acid or a stop signal to each nucleotide triplet 
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In the translation step, mRNA is the source, the message is the transcribed nucleotide sequence, and the 
channel is the tRNA that directs the translation of nucleotide triplets (or codons) into amino acids (and is the 
place where noise in the form of translational errors can be introduced). The receiver is a polypeptide chain, 
and the destination of the completed protein can be any number of cellular structures that govern function in 
the cell.  

The metabolism of the cell provides all the building blocks for the construction of the molecules present 
in the cell. Free energy, the driving force for these processes, comes from the conversion of food into waste 
products. Metabolism drives the elaboration of information in the cell, which can be expressed according to 
the central dogma of molecular biology.  

The first step is transcription, which copies some of the DNA into RNA, which constitutes a sort of 
«working copy» of the genetic information. This RNA, called messenger RNA, is then translated into protein 
by a highly complex molecular mechanism involving the ribosome, a supra-molecular complex with many 
components. 

Fig. 51 shows the entropy (in bits) for all pairs of bases of the set of E. coli sequences used to produce 
the entropy map, which demonstrates how the correlated paired bases in the four stems stand out [19]. This is 
endeavor proved successful, and the level of understanding is now such that we feel and can hint at a new 
approach to building complex man-made systems.  

The human being central nervous system is composed of 11 1210 10  neurons with about 1610 synaptic 
connections.  

 

Figure 51. Mutual entropy (information) between all bases (in bits), colored according to the color bar on 
the right, from 33 sequences of E. coli tRNA [19] 

(The four stems are readily identified by their correlations as indicated) 

A typical bacterial colony consists of 9 1210 10 bacteria. Both systems are not created by pre-design or 
according to a plan, but through a process of biotic self-organization. The elements (neurons or bacteria) do 
not store the information required to construct the system, but rather the information for creating the needed 
«tools» and the guiding principles. Additional information is cooperatively generated as the organization 
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proceeds following external stimulation. The key principles that enable it are communication and self-
plasticity of the components. The outcome is an adaptable complex system that can perform many tasks, 
learn and change itself accordingly. 

Consequently, the idea of engineered self-organization is to let many collections of element self-
organize in a pre-engineered environment they can exchange information with. The most efficient collections 
will be let to further self-improve via genetic algorithms of the components internal structure and capabilities 
(the analog of evolution of the potential for gene expression). The system itself should regulate the evolution 
of its components. 

We can conclude with projections in regards to turning the conceptual idea, of engineered self-
organization of communicating elements with self-plasticity, into an operational approach that will enable 
the creation systems too complex for design, yet with desired pre-specified capabilities.  

Role of quantum correlations and information transport in self-organization 
models 

For QA design of self-organization based on QFI-model we will use examples of novel information-
transport and self-organization processing mechanisms in nanometer-scale structures based on different 
types of quantum correlations. The local modulation and detection of a quantum state can be used for infor-
mation transport at the nanometer length-scale, an effect called a «quantum mirage» [50 – 52].  

Unlike conventional electronic information transport using wires, the quantum mirage can be used to 
pass multiple channels of information through the same volume of a solid. Nanometer structures offer the 
possibility of fundamentally different ways to transport and process information, and the ‘clunk’ in computa-
tional structures, so far as physical limitations are concerned, is not encountered, at least down to nanometer 
dimensions.  

A new class of nanometer-scale structures called ‘molecule cascades’ was discussed [50], and show 
how they may be used to implement a general-purpose binary-logic computer in which all of the circuitry is 
at the nanometer- length-scale. Bottom-up approach is one of the main focus research areas of nanoscience 
where various atomic structures will be constructed on an atom-by-atom basis. Manipulation with a scanning 
tunneling microscope (STM) tip allows engineering of man-designed structures using single at-
oms/molecules or investigating the physical/chemical properties of materials at an atomic level. Positioning 
of single atoms with subatomic level precision on a surface requires an extremely fine control over the tip-
atom-surface junction. The detailed knowledge of how an atom moves across a surface is valuable for both 
fundamental understanding and further progress of nanoscience.  

A. Definition of Quantum Mirage. According to the definition «Quantum Mirage» is as following: A 
nanoscale property that may allow information to be transferred through use of the wave property of elec-
trons. Thus, quantum computers might not require wires as we know them.  

Quantum Wire: Another form of quantum dot, but unlike the single-dimension «dot», a quantum wire is 
confined only in two dimensions – that is it has «length», and allows the electrons to propagate in a «parti-
cle-like» fashion. Constructed typically on a semiconductor base, and (among other things) used to produce 
very intense laser beams, switchable up to multi-gigahertz per second. 

Fig. 52 shows the effect of quantum mirage in Cu(111) quantum dot. 

B. Surface states and quantum corrals. The Cu(111) surface has surface-state electrons that form a near-
ly ideal two dimensional non-interacting electron gas. These surface-state electrons are scattered by step 
edges and defects creating standing waves in the local density of states (LDOS) that are readily imaged with 
the scanning tunneling microscope (STM) (see Crommie et al . 1993a). Crommie et al (1993b) showed how 
these electrons could be confined in-plane to structures called «quantum corrals». 

Remark. Quantum corrals are built by positioning atoms, typically transition metal atoms, along a closed 
line on the clean surfaces of noble metals. In recent experiments Manoharan et. al have built elliptical corrals 
with Co atoms on the (111) surface of Cu. The Cu (111) surface (see, Fig. 52) has a band of surface states, 
orthogonal to the bulk states, which can be represented as a two dimensional electron gas confined at the sur-
face. The Fermi level is placed at 450 meV above the bottom of the surface state band. The atoms forming 
the corral act as scattering centers which tend to confine surface electrons inside the corral. If the corral fence 
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where an impenetrable wall electrons inside the corral would be perfectly confined and the energy spectrum 
would consist of a set of delta functions at the energies of the bound states. The characteristic energy separa-
tion between these states decreases as the size of the corral increases. In real systems, there is some leaking 
of the wave function: electrons can tunnel through the fence and the bound states acquire a finite life time. 
The energy spectrum inside the corral (the local density of states) then consists of resonances, the width of 
which increases with increasing energy.  

 

Figure 52. The example concerns a novel method for information transport  

[The quantum-mirage effect – The Cu(111) surface (Manoharan et. al, 2000, [52])] 

C. Role of correlation types in quantum corral self-organization. The fabrication of solid state quantum 
computing devices involves both the ability to manipulate mater at the nanoscale and to design structures 
that interact according to prescribed quantum computing Hamiltonians. Tuning and controlling quantum in-
teractions are basic problems faced by the quantum computing community. This requires engineering the 
structure of electronic wave functions in different environments and conditions. The manipulation of indi-
vidual atoms with STM has made possible the construction of arbitrary quantum structures on top of surfac-
es.  

Quantum corrals are a collection of atoms arranged in a controlled manner on top of a metallic surface. 
These novel structures generate quantum confinement of the surface conduction electron wave functions 
leading to striking phenomena such as resonant electronic states and the formation of quantum mirages. 
Generally speaking, quantum mirages are the projection of a perturbation on a point into another distant 
point of the surface. The magnetic interaction between magnetic impurities can be strongly enhanced due to 
the electronic confinement produced by quantum corrals. 

Example: Design of a quantum corral to generate chosen couplings between three spins. In general, to 
lowest order, the magnetic behavior of a collection of impurities at coordinates  iR is given by the following 

target Hamiltonian [51]: 

  target
, ,

,ij i j i j i j
i j i j

H s s J J C R R    , (3) 

where the summation is done over all impurity pairs. The exchange parameters ij can be written as 

 ,ij i j i jJ J C R R  with the corresponding correlation function  ,i jC R R .   
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Case1: A single mirage. To test of method in this simple case, the simulated annealing algorithm was 

instructed to maximize the quantity  1 2,C R R , i.e. to project a perturbation from 1 2 to R R as efficiently as 

possible. The cost function was chosen to be simply  1 1 2,E C R R  . The reflection symmetry at the x-axis 

was imposed on the corral impurities to simplify the problem. The distance between the spins at 

1 2 and R R was fixed to 140 
o

A to resemble the experimental conditions. Once the optimization procedure is 
completed, the correlation function is plotted in [51].  

Fig. 53 shows the response function and the quantum corral resulting form optimization process. For the 
results case of Fig. 53 we have: target 1 2H s s    .  

 

 

Figure 53. Case 1 

 

Figure 54. Case 2 

Fig. 53 also shows that the minimum found presents some resemblances to the ellipse but new unex-
pected features also appear. First of all, the atoms of the corral tend to accumulate around the location of the 
perturbation and also around the location of the desired mirage. Atoms on the long sides have less im-
portance and are placed in a less dense arrangement.  

 This contrasts with the evenly spaced atoms of the early experimental setups. A second shell of impuri-
ties appears to be more efficient than a single shell to confine the electron gas and produces better mirages. 

For comparison the family of con-focal ellipses have studied that can be formed with the same number 
of equidistant impurities (being the perturbation at one focus and the mirage at the other). The best mirage 
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was finding that formed by the family as a factor 3 smaller than the one obtained with the structure shown in 
Fig. 53.  

Case2: A complex mirage. Suppose now that we want to build a quantum corral such that generates a 
target magnetic Hamiltonian of three impurities:  

target 1 2 1 3H s s s s       , 

i.e. only a selected set of pairs of the three spins are coupled. We arbitrarily choose the coordinates of the 

spins 1 2 3,  and R R R to be in the vertexes of an equilateral triangle of side d = 121
o

A .  

Note the following: (i) the last equation is a particular case of Eq. (3) where 23 12 230 and     ; 
and (ii) the target Hamiltonian has a different symmetry than the desired positions of the magnetic spins.  

That is, we require the magnetic couplings on two sides of the triangle but not on the third. The resulting 
corral is shown in Figs 53 and 54; the original requirements are efficiently achieved in [51].  

In Fig. 54 the optimum configuration found for the impurity atoms has dense focusing structures near 
the source of the perturbation and near the mirages. Amazingly, some atoms are automatically located in the 
middle of the corral to split the standing waves towards the «targets» at 2 3 and R R .  

 

Figure 55. Case 3 

 

Figure 56. Case 4 
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Fig. 55 (case 3) shows the effect of a magnetic impurity at 3R  which produces a large response at 1R  

but not at 2R [in contrast with the case of an impurity located at 1R  (compare with Fig. 54)]. The corral is the 
same in Figs 53 and 54; the difference is the position of the magnetic perturbation.  

Comparison of Figs 54 and 55 shows that the interaction will induce couplings as initially designed. The 
resulting magnetization shows that 2 3 and s s  are not directly coupled. At the same time the interactions be-

tween 1 2 and s s  , and between 1 3 and s s  are enhanced.  The positions of the spins and the Hamiltonian cho-
sen are arbitrary. 

The resulting design for four spins with a target Hamiltonian:  

 target 1 3 2 4H s s s s              (4) 

where the positions of the spins form a square.  

The results of minimizing are shown in Fig. 56 (case 4). Fig. 56 shows the spin density generated by a 
perturbation at 1R .  The spin density when the magnetic perturbation is at 2R gives another position of corral. 
Therefore, the spin Hamiltonian formed by this structure has two pairs of spins interacting independently. 
Each pair of spins does not couple with the other pair, even though the interaction is mediated by an electron 
gas that is shared by both pairs. Thus the designed structure of corral is dependent from type of quantum cor-
relation [11, 51, 52]. 

D. Role of information-transport in quantum corral self-organization. Let us now to discuss two exam-
ples of novel information-transport and processing mechanisms in nanometer-scale structures. The local 
modulation and detection of a quantum state can be used for information transport at the nanometer length-
scale, an effect we call a «quantum mirage». Unlike conventional electronic information transport using 
wires, the quantum mirage can be used to pass multiple channels of information through the same volume of 
a solid. A new class of nanometer-scale structures called ‘molecule cascades’ is discussed [11, 25], and show 

how they may be used to implement a general-purpose binary-logic computer in which all of the circuitry is 
at the nanometer length-scale. The power dissipated in mirage-based information transport is independent of 
the distance over which the information is transported. The detection of the mirage necessarily requires crea-
tion of either particle-like or hole-like excitations in the quantum system and is thus dissipative. 

Example: Multi-channel information transport. One of the most intriguing capabilities of mirage-based 
information transport comes from its wave-coherent nature. In the non-interacting limit, the electrons of a 
system can be considered as independent and the principle of superposition holds true. This suggests that, as 
with classical waves, we should be able to transmit multiple channels of information through the same vol-
ume of space by selectively modulating spatially overlapping quantum states.  

Fig. 57 shows how two channels of information could be transported in a crossed-ellipse-shaped quan-
tum corral specifically designed for this purpose [50].  

The mirages shown in (h) demonstrate the ability to pass two channels of information through the same 
volume of space using the quantum-mirage effect [50].  

While it is true that electrons always interact with each other and a system of electrons must be properly 
described by a many-body wave function, Fig. 57 demonstrates that there are regimes in which the single-
particle non-interacting approximation is useful and the isolation between channels is more than adequate for 
the transmission of binary information.  

The successful application of multi-channel information «cross-troughs», such as that shown in Fig. 57, 
has the potential to significantly reduce the number of wiring layers in a chip. 

We will discuss a novel mechanism of nanostructure growth based on quantum confinement of surface-
state electrons.  

Ab initio calculations and the kinetic Monte Carlo simulations reveal the phenomenon of confinement-
induced adatom self-organization in quantum corrals.  

The studies indicate that new atomic scale nanostructures can be engineered exploiting the quantum 
confinement of surface electrons. 
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Figure 57. Multi-channel information transport with the quantum mirage 

(a), (c), (e), (g) STM topographs of crossed-ellipse structure. (a) No atoms at foci of ellipses; (c) atom at left 
focus; (e) atom at top focus; and (g) atoms at left and top foci. (b), (d), (f), (h) dI/dV difference images corre-

sponding to the topographs (a), (c), (e) and (g), respectively. (b) No mirage; (d) mirage at right focus; (f) 
mirage at bottom focus; (h) mirages at both right and bottom foci  

E. Adatom self-organization induced by quantum confinement of surface electrons. As above mentioned 
noble metal surfaces featuring a surface state are especially appealing substrates to study quantum confine-
ment. It is known that surface-state electrons on (111) noble metal surfaces form a two-dimensional (2D) 
nearly free electron gas. Particularly fascinating phenomena occur if the surface electrons are confined to 
closed structures (corrals). The direct observation of standing-wave patterns in the Fe corral on Cu(111) is 
one of the most spectacular examples demonstrating quantum effects at the atomic scale. The quantum con-
finement of surface electrons inside corrals can lead to a mirage effect, i.e., the projection of the electronic 
structure of adatoms to a remote location. Quantum corrals can be used to tailor the spin polarization of sur-
face electrons and magnetic interactions between adatoms.  

We will concentrate on self-organization properties on Co adatoms on Cu(111) and Ce adatoms on 
Ag(111) confined to quantum corrals, and demonstrate a novel mechanism of quantum growth on metal sur-
faces. The self-organization of adatoms inside corrals has been revealed. One of the most important aspects 
in nano-science is the formation of artificial nanostructures. Ordered structures of atoms and molecules can 
be generated either by the manipulation of single atoms or molecules by means of the tip of a scanning tun-
neling microscope or by using self-assembly processes of particles. 

Fig. 58 shows the self-organization process in a man-made atomic ring and the interference pattern of 
electrons «confined» in this structure.  

Surface-state electrons are confined within the corral by strong scattering at the corral walls. The quan-
tum interference between electronic waves traveling towards to the corral walls and the backscattered ones 
leads to the standing-wave patterns. In other words, strong oscillations in the LDOS manifest the confined 
surface states. The interaction of the confined surface electrons with adatoms leads to an interesting effect. 
The energy of the Co adatom placed inside the corral is calculated. For large distances between the adatom 
and the corral walls the interaction energies are calculated in the framework of the frozen potential approxi-
mation using single-particle energies instead of total energies. The energy exhibits an oscillatory behavior 
and can be attractive or repulsive. For the adatom it appears to be energetically favorable to rest in regions of 
high LDOS. These results clearly demonstrate the impact of the quantum confinement of surface electrons 
on energetics of adatoms.  

The quantum confinement of surface electrons and the surface-state mediated long-range interactions 
with spatial quantum correlation are shown to determine the growth process in quantum corrals based on 
self-organization possibilities.  
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Figure 58. Self-organization in quantum dot 

Qualitative description of quantum effects in self-organization processes 

Let us consider the common parts of models of self-organization processes of natural evolution process-
es according to abovementioned Items 1 and 2 of our results in this paper. 

As example we are consider pedestrian walkway flow in different crowd types.  

Fig. 59 shows the different types of pedestrian walkway flows. 

What the common operators of flow description can we observe from Fig. 59? 

For a crowd in Fig. 59a (Box 1) we can to see that self-organization process of pedestrian flow based on 
superposition of people pairs that illustrated in Fig. 60.  

In analogy Fig. 61 is demonstrated the communication process between pedestrian pairs with the quan-
tum entanglement for a crowd in Fig. 59a (Box 2).  

The role of quantum interference is demonstrated in Fig. 62 in the case of a crowd in Fig. 59a (Box 3). 

Fig. 59b is demonstrated the role of quantum temporal correlation in the self-organization of pedestrian 
flow in crowd. Fig. 58 shows the quantum spatial correlation in quantum dot structure of evolution design. 

Thus the self-organization process can be considered as the classical process on macro levels with quan-
tum effects in hidden (micro) levels.  
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(a) 

 

(b) 

Figure 59. Structure of pedestrian walkway in crowds 

(a) – types of pedestrian walkways; (b) – types of quantum correlation in self-organization 
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Figure 60. Creation of superposition in pedestrian crowd flow 

 

  

Figure 61. Communications between pedestrian pairs in a crowd with quantum entanglement 
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Figure 62. Interference of pedestrian flow in crowd 

Remark. The structure of quantum fuzzy inference (QFI) model that realize the self-organization process 
is a new quantum algorithm. QFI is one of possible realization of quantum control algorithm of the self-
organization processes that includes all of these features: (i) superposition; (ii) selection of quantum correla-
tion types; (iii) information transport and quantum oracle (dynamic evolution); and (iv) interference. QFI 
model is introduced based on thermodynamics and information-theoretic measures of agent interactions in 
communication space between macro- and micro-levels (the entanglement-assisted correlations in an active 
system represented by a collection of intelligent agents). From computer science viewpoint, QA of QFI mod-
el plays the role of the information-algorithmic and SW-platform support for design of self-organization pro-
cess. Physically, QFI supports optimal thermodynamic trade-off between stability, controllability and robust-
ness in self-organization process. The dominant role of self-organization in robust knowledge base (KB) de-
sign of intelligent fuzzy controllers (FC) for unpredicted control situations is discussed. 
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General Structure of QA of Self-Organization Processes 

Fig. 63 shows the general structure of QA for logical design of bio-inspired self-organization process 
(see, Fig. 7) that includes these common parts. 
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Figure 63. Quantum Algorithm of logical design of bio-inspired self-organization process  

Quantum swarm algorithm 

It is a QA design of self-organization with problem-oriented quantum operators:  

- First step of algorithm, initial states are vector-state that describes component’s templating of future 

designed structure. From bio-inspired structure point of view it is genetic inspired initial structure of evolu-
tion process; from computer science stand viewpoint it is coding of problem searching solution. It is well-
known in computer science that vector and matrix can be presented using quantum state: The quantum repre-
sentation of vector and matrix may be the base of quantum data structure (for compression presentation of 
massive classical data [21] in templating); 

- On second step of algorithm a self-assembly process is used (from bio-inspired structure point of 
view); from computer science stand viewpoint it is a decision-making process on choice of problem-oriented 
correlation. An action of correlation operator on initial state in templating prepare a structured assemble of 
components with hidden possible solutions of design structure;  

- Evolution dynamic realize a self-organization process of new structure design on the third step. Algo-
rithmic description of self-organization process is a random quantum search process of hidden solution in 
self-assembly structure and acts as corresponding operator on self-assembly structure;  

- Natural decoding of searching solution is given the answer about final state of a new self-organized 
structure.  

The described algorithm is in general a quantum control design algorithm that includes all operation 
from general structure of QA.  

Remark. In this section we briefly consider analogy with structure of a QA [22, 23]. In the following 
section, further concepts of quantum computing will be introduced that will be necessary to apply the de-
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scribed methodology. General structure of QA consists from three quantum as superposition, entanglement 
(quantum correlation) and interference. Classical measurement gives the final result of quantum computa-
tion. Superposition operation is realized by Hadamard transform, entanglement is realized by CNOT-
operation or by quantum oracle, and interference is realized by QFT-operator. Main goal of QA applications 
is the study and search of qualitative properties of functions as the solution of problem.  Initial states are cod-
ing of function property. Superposition describes the generalized searching space; a quantum oracle finds the 
searching solution; with interference operator and classical measurement the searching solution is extracted. 
The method of collective behavior (swarm method) is the simplest and most evident way for the algorithmi-
zation of quantum models. The passage from the single particle to the swarm of its samples seems to be the 
easiest way to overcome contra intuitiveness featured to quantum theory. With some additional suppositions 
a swarm method gives the algorithm of simulation of the dynamics with linear complexity of the number of 
particles. These additional suppositions lay in the framework of the basic idea of algorithmic approach the 
limitation of the memory and time for the simulation [1, 24].  

Fig. 64 shows the general structure of QA [11].  
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Answer Problem
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Figure 64. General structure of quantum algorithm 

The superposition is that we should treat as realizable only states of the system 

1 2 1 2, supS S S S S   of the form [24] 

 
1 2

j j
S j S S

j

     , (5) 

where
1 1 2 2

1 2 1 2, ,  and ,S S S S    are orthonormal basis in space of states of subsystems 1 2 and  S S corre-

spondingly, and each of these basic states has the same form, with some depth of nesting. Factually, this is 
one particle states, where the entanglement is distributed among the particles sequentially nested in each oth-
er.  

The quantum swarm model of self-organization was described in [1].  

Remark. Based upon quantum entanglement, several paradigms of self-organization (such as inverse 
diffusion, transmissions of conditional information, decentralized coordination, cooperative computing, 
competitive games, and topological evolution in active systems) can be introduced and discussed. This result 
was motivated by recent discovery and experimental verification of the most fundamental and still mysteri-
ous phenomenon in quantum mechanics: quantum entanglement. Formally, quantum entanglement as well as 
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associated with it quantum non-locality follows from the Schrödinger equation; however, its physical mean-
ing is still under extensive discussions. The most attractive aspect of quantum entanglement, in terms of a 
new quantum technology, is associated with instantaneous transmission of messages on remote distances. 
However, practical applications of this effect are restricted by the postulate adopted by many authors that 
these messages cannot deliver any intentional information. That is why all the entanglement-based commu-
nication algorithms must include a classical channel. The main challenge of this study is to evaluate the de-
gree of usefulness of entanglement-based communication technology without any classical channels. The 
first attempt of this kind has been demonstrated how a randomly chosen message can deliver non-intentional, 
but useful, information under special conditions which include a preliminary agreement between the sender 
and the receiver. This effort can be to extend by applying the entanglement-based correlations to an active 
system represented by a collection of intelligent agents. The problem of behavior of intelligent agents corre-
lated by identical random messages in a decentralized way has its own significance: it simulates evolutionary 
behavior of biological and social systems correlated only via simultaneous sensoring sequences of unex-
pected events.  

As shown in this report that under the condition that the agents have certain preliminary knowledge 
about each other, the whole system can exhibit emergent phenomena such as a new robust KB of intelligent 
control system for unpredicted control situations. It also can perform transmission of conditional infor-
mation, decentralized coordination, cooperative computing, competitive games, topological self-
organization, and inverse diffusion [1, 11, 25]. 

Quantum control algorithm of self-organization processes 

Let us consider the peculiarities of common parts in self-organization models (presented in Fig. 7) [11]: 

(i) Models of self-organizations on macro-level are used the information from micro-level that support 
thermodynamic relations (second law of thermodynamics: increasing and decreasing of entropy on micro- 
and macro-levels, correspondingly) of dynamic evolution; 

(ii) Self-organization processes are used transport of the information on/to macro- and from micro-
levels in different hidden forms; 

(iii) Final states of self-organized structure have minimum of entropy production; 

(iv) Types of correlation in natural self-organization processes are don’t planning before the evolution 
(Nature given the type of corresponding correlation through genetic coding of templates in self-assembly); 

Coordination control for design of self-organization structure is used; 

Random searching process for self-organization structure design is applied; 

(vii) Natural models are biologically inspired evolution dynamic models and are used current classical 
information for decision-making (but don’t have toolkit for extraction and exchanging of hidden quantum 

information from dynamic behavior of control object). 

In man-made self-organization types of correlations and control of self-organization are developed be-
fore the design of the searching structure.  

Thus the future design algorithm of self-organization must include these common peculiarities of bio-
inspired and man-made processes: quantum hidden correlations and information transport.  

Fig. 65 shows the structure of a new quantum control algorithm of self-organization that includes the 
above mentioned properties. 

Remark. The developed quantum control algorithm includes three possibilities: (i) from the simplest liv-
ing organism composition in response to external stimuli of bacterial and neuronal self-organization; and (ii) 
according to correlation information stored in the DNA; (iii) from quantum hidden correlations and infor-
mation transport used in quantum dots.  

Quantum control algorithm of self-organization design in intelligent control systems based on QFI-
model is described in [1, 11]. In particular case, QFI model is the background of robust KB design infor-
mation technology. 
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Main goal of quantum control algorithm of self-organization in Fig. 65 is the support of optimal ther-
modynamic trade-off between stability, controllability and robustness of control object behavior using robust 
self-organized KB of intelligent control system. 
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Figure 65. Structure of quantum control algorithm of self-organization  

Related works. In many publications the models of self-organizations are described [2-10, 18, 53-57] 
etc. In mentioned publications quantum control algorithms of self-organization is not introduced. Our paper 
is a generalization of abovementioned publications. Present paper has extended analysis of self-organization 
models on five levels that differ in principle from abovementioned publications. The result of this work is the 
description in detail the developed quantum control algorithm of self-organization that includes a new quan-
tum operator types for design quantum control of self-organization processes. 

Conclusions 

As formulated analysis of self-organization models described in this paper gives us the following re-
sults:  

1. Natural evolution processes are based on the following steps [2 – 7]:  

(i) templating; (iii) self-assembling; and (iii) self-organization. 

2. Models of self-organization are included natural quantum effects and based on the following infor-
mation-thermodynamic concepts:  

(i) macro- and micro-level interactions with information exchange (in ABM micro-level is the commu-
nication space where the inter-agent messages are exchanged and is explained by decreased entropy on a 
macro-level and increased entropy on a micro-level);  

(ii) communication and information transport on macro- and micro-levels («quantum mirage» in quan-
tum corrals);  
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(iii) different types of quantum spin correlation that design different structure in self-organization (as 
example, quantum dot);  

(iv) coordination control (swam-bot and snake-bot). 

We choice for analysis of common futures as Benchmarks the following examples [2–19]: 

(1) Pedestrian behavior and self-organization; 

(2) «Phantom panics» and self-organization; 

(3) Self-organization of traffic flow models; 

(4) Swarm self-organization and swarm intelligence (SI):  

4.1. Applications of SI and ant colony self-organization;  

4.2. Agent-Based Models (ABM); 

4.3. Quantum cooperation of two insects; 

4.4. Engineered self-organization of a bacteria colony; 

(5) Self-organization in nano-scale structures: Quantum corrals. 

As can we to see different models of self-organization processes are described from physical, infor-
mation, and algorithmic (quantum computing) point of view. Role of quantum correlation types and infor-
mation transport in self-organization of structure type design was discussed. The physical interpretation of 
self-organization control process on quantum level is introduced and based on the information-
thermodynamic model of the exchange and extraction of quantum (hidden) value information from/between 
classical particle’s trajectories in particle swarm. New types of quantum correlations (as behavior control 
coordinator) and information transport (value information) between particle swarm trajectories are intro-
duced.  

Q: Why self-organization control algorithm is quantum? 

A: (i) In quantum computing theory every QA in general form includes the following unitary quantum 
operators: (i) superposition; (ii) entanglement (quantum oracle); (iii) interference. Measurement is the fourth 
classical operator. [It is irreversible operator and is used for measurement of computation results].  

(ii) The developed algorithm of self-organization includes these operators. 

(iii) With superposition is realized templating operation, and based on macro- and micro-level interac-
tions with information exchange of active agents.  

(iv) Selection of quantum correlation type is dependent from the properties of concrete nonlinear sys-
tems and organize self-assembling using power source of communication and information transport on mi-
cro-level.  

(v) Quantum oracle calculates intelligent quantum state that includes the most important (value) infor-
mation transport for coordination control.  

(vi) Interference is used for extraction the results of coordination control and design in on-line robust 
self-organization structure.  
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