OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn» Bobinyck Ne3, 2014 rog

YK 004.415.2, 004.588

GENERAL SOFTWARE/HARDWARE APPROACH IN ACCELERATION OF QUANTUM
COMPUTING AND CLASSICALLY EFFICIENT QUANTUM ALGORITHM SIMULATION

Barchatova Irinal, Rizzotto Gian Giovanni?, Porto Massimo?, Ulyanov Sergey*

!PhD Student;

Dubna International University of Nature, Society and Man,
Institute of system analysis and management;

141980, Dubna, Moscow reg., Universitetskaya str., 19;
e-mail: i.a.barhatova@gmail.com.

2PhD, professor;

ST Microelectronics;

20041 Agrate Brianza, Italy, Via C. Olivetti, 2;
e-mail: gianguido.rizzotto@st.com.

3PhD, professor;
ST Microelectronics;
20041 Agrate Brianza, Italy, Via C. Olivetti, 2.

“Doctor of Science in Physics and Mathematics, professor;
Dubna International University of Nature, Society and Man,
Institute of system analysis and management;

141980, Dubna, Moscow reg., Universitetskaya str., 19;
e-mail: ulyanovsv@mail.ru.

This article describes how to build a classical hardware (HW) device, which accelerates the simulation
of QA on classical computer. The usual approach for so doing consists in the simulation of the either QAs
and their underlying quantum systems. The main aim of this article is not to work on real quantum HW (as
guantum dots, ion traps, NMR etc.) but to take quantum computing as a computation paradigm (alternative
to classical computing and soft computing).

Keywords: quantum algorithm, software simulation, hardware of quantum computing acceleration.

OBLWMK Nnoaxopn K NPOEKTUPOBAHUIO MPOrPAMMHOIO U ANNAPATHOIO
OBECMNEYEHUA ANA YCKOPEHUA KBAHTOBbLIX BbIYMUCIIEHUU U KNACCUYECKH
QPPEKTUBHOE MOAEJIMPOBAHUE KBAHT OBbIX AJIFCOPUTMOB

Bapxaroa Upuna Asnexcanaposnal, Puzorro Jxuanu?, llopro Maccumo?,
Yabsinos Cepreii Bukroposuy*

YUcnupanm;

I'BOY BO «Meaicoynapoonwtii Yuugepcumem npupoosl, oowecmaa u yeioseka «Jyounay,
Hncemumym cucmemHo20 anaiusa u ynpasieHusl,

141980, Mockosckas 001, e. [[yona, ya. Yuueepcumemckas, 19;

e-mail: i.a.barhatova@gmail.com.

2[loxmop nayx, npogheccop;

ST Microelectronics;

20041, Amanus, Agrate Brianza, Via C. Olivetti, 2;
e-mail: gianguido.rizzotto@st.com.

3loxmop nayx, npogheccop;
ST Microelectronics;
20041, Umanus, Agrate Brianza, Via C. Olivetti, 2.

OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn» Bobinyck Ne3, 2014 rog

*loxmop nayx, npogheccop;

Dakynvmem MEXaHUKU U MEXHULECKOU KUOEpHemuKu (WHMeJLIeKMyaibHble CUCmeMbl), YHueepcumem nepeoasu uH-
Gdopmayuu;

1-5-1, Anonus, Toxuo, Chofu, Chofugaoka ,182;

e-mail: yamafuji@yama.mce.uec.ac.jp.

8/Joxmop usuxo-mamemamuueckux nayk, npogpeccop;

I'BOY BO «Meswcoynapoonsiii Yuusepcumem npupoovl, obujecmasa u uenosexa «yonay,
Hremumym cucmemHo20 aHanusa u ynpagienus,;

141980, Mockoeckasi 00x., 2. [[yb6na, yn. Yuusepcumemckas, 19;

e-mail: ulyanovsv@mail.ru.

B Oannoii cmamee paccmampueaemcs 60npoc NOCMPOeHUs KIACCUYECKOU annapamuoli no00epi’CKU,
no3601A0Wel YCKOPAMb MOOEIUPOSAHIUe KBAHMOBLIX AN20PUMMO8 HA KAdccuyeckom Komnviomepe. Obvlu-
HbLU N00X00 K peuteHuio OaHHOU NPoobaeMbl 3aKII0UAEMCs 8 MOOETUPOBAHUU HENOCPEOCBEHHO KBAHMOBO20
aneopumma ¢ nociedyruell peanuzayuel 8 coomeemcmayoujeli Keanmoegou cucmeme. Llenvto 0anuol cma-
Mol AGNAEMCA peanu3ayus K8AHMOBbIX BbIYUCIEHUL KAK BbIYUCIUMENbHOU Napaouemsl (aibmepHamuea
KAACCUYeCKUX U MASKUX BbIYUCTeHUL) 0e3 UCNONb308AHUS KEAHMOBOU AnNapamtHol yacmu (Hanpumep,
K8AHMOBLIX MOUEK, UOHHBIX JIOBYULEK, AO0EPHBIX MACHUMHBIX PE3OHAHCO8 U M.O.).

KitoueBbie clioBa: KBaHTOBBIH alNTOPUTM, MOJACIMPOBAHHME MPOTPaMMHOTO OOecrieyeHus, anmnapaTHas
MOAJEPHKKA YCKOPEHHS KBAHTOBBIX BBIYMCICHUI.

The general approach for quantum algorithm (QA) simulation on classical computer is introduced. Effi-
cient fast algorithm and corresponding SW for simulation of Grover's quantum search algorithm (QSA) in
large unsorted database is presented. Comparison with common QA simulation approach is demonstrated.
Hardware (HW) design method of main quantum operators that are used in simulation of QA. Grover’s QSA
as Benchmark of HW design method application is considered. This approach demonstrates the possibility of
classical efficient simulation of QA gates (QAG) [1 - 5].

Quantum computing is not only a beautiful way of exploiting HW devices governed by quantum me-
chanics, but also a new approach for information processing which may (and is) interesting and useful. The
ideas introduced by quantum computing, like the use of reversible operators, have applications even without
the disposability of real quantum computer. In fact in the rest of this report the new methodologies, which
hybridize quantum computing and soft computing (referred to as Quantum Soft Computing methodologies)
are introduced.

These new methodologies widen the range of applicability of soft computing techniques, keeping their
actual advantages. Since we are interested in applying the quantum computation paradigm, our approach
consists first in the analysis of the input-output relations of each block and then in the simulation of these
relations. In particular, we present a new circuit implementation of QSA with information criteria (minimum
of Shannon entropy) for search termination process that is the background for optimisation of control pro-
cesses. We focus our attention on superposition, entanglement, and interference quantum operators (there are
the fundamental quantum operations of QSA) and propose a new HW accelerator structure for Grover's
QSA.

All the proposed HW architectures are modular in the sense that they can be generalized by adding simi-
lar parts according to the desired number of g-bits; furthermore we don’t use multipliers and, by utilizing
logic gate in an analogical scheme, we reduce the number of operation and component, providing a substan-
tial increase in speed-up of computation.

1.1. Fast algorithm and HW design for efficient computational intelligence of
main quantum algorithm operators on classical computer

Quantum algorithms (QA) demonstrate great efficiency in many practical tasks such as factorization of
large integer numbers, where classical algorithms are failing or dramatically ineffective. Practical application
is still away due to lack of the physical HW implementation of quantum computers.

OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn» Bobinyck Ne3, 2014 rog

We describe design method of main quantum operators and hardware (HW) implementation of QAG for
fast search in large database and related topics concerning the control of a process, including search-of-
minima intelligent operations. This method is very useful for minimum efforts of searching among a set of
values and in particular is the first step for the realization of a HW control systems exploiting artificial intel-
ligence in order to fuzzy control in a robust way a non-linear process or in order to efficient search in a data-
base. The presented HW performs all the functional steps of a Grover QSA (This algorithm and its modifica-
tions are described in Chapter 1 and 4). By suitable changes of traditional matrices approach, a modular n-g-
bit-hybrid structure is realized in order to prove the usefulness of iterations of the gate, which provide a
higher probability of exact solution finding. A minimum-entropy based method is adopted as a termination
condition criterion and realized in a digital part together with display output. The possibility of providing an
external clock signal for iteration management allows implementing a very fast Grover’s QSA, many times
faster than the corresponding software (SW) realization, and less sensitive to g-bits improvement.

The difference between classical and QAs is following: problem solved by QA is coded in the structure
of the quantum operators. Input to QA in this case is always the same. Output of QA says which problem
was coded. In some sense you give a function to QA to analyze and QA returns its property as an answer.
QA studies qualitative properties of the functions.

The core of any QA is a set of unitary quantum operators or quantum gates. In practical representation
guantum gate is a unitary matrix with particular structure. The size of this matrix grows exponentially with
the number of inputs, making it impossible to simulate QAs with more than 30 — 35 inputs on classical com-
puter with von Neumann architecture.

In presented Chapter we are described a practical approach to simulate most of known QAs on classical
computers. We demonstrate the results of the classical efficient simulation of the Grover’s QSA as a Bench-
mark of this approach and background for quantum soft computing and fuzzy control based on quantum ge-
netic (evolutionary) algorithms and quantum neural network. The role of this approach in quantum soft com-
puting and in fuzzy simulation is also discussed.

Let us consider a new design method of HW architecture and implementation for main quantum opera-
tors using as Benchmark Grover’s QSA and fast algorithm simulation of main quantum operators.

1.2. HW implementation of main quantum algorithm operators

It has been found a new method and circuit that implements the operations performed in second and
third step of a QA (the so-called entanglement and interference operators), able to perform Grover interfer-
ence without products.

The proposed circuit, which is one of the first HW realization of QA, is also the first one not based on
matrices products but on functional relation between input and output vectors.

A general form of the entanglement output vector U_ =G can be the following:

G:[91192!"'1gi1""gzml]! (1)

where g, =y, @ f ;. and y, is the general term of superposition transformed in a suitable binary value.
I+——
2

The so-called superposition vector is fixed if we choose as input the canonical base. In order to find a suita-
ble input-output relation, some particular properties of matrix D, ® | have to be taken in consideration. The

generic element v; of V (that is our output in Eg. (2)) can be written as follows in function of g;:

1 & ,
FZgZH—gi, for i odd
R I . @
> d,;—9;, for i even

n-1
2t &

This fact allows a great reduction of the number of operation (and therefore of electronics components)
and consequently a significant increase of computational speed.

According to the proposed high-level scheme, our circuit realization can be divided into two main parts:

3

OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn» Bobinyck Ne3, 2014 rog

1.3. Limitations of classical approaches: A new strategy of computation for
entanglement and interference operators

Following classical approaches, it is quite evident that the number of g-bits of a QA could be very criti-
cal in terms of computational speed. In fact, it must be noted that the addition of only one g-bit implies that
matrices dimension become double with respect to the previous configuration and the number of elements
(and of products) increases exponentially.

Preparing the gate with n g-bits set to |0>, the output of superposition can be represented in the follow-
ing way:
Y= [y1 Yo ... Vieewonn y2”+1]) (3)
where y; =(-1)"*1/2D2 Therefore, the output Q of the whole quantum gate becomes

G=[(D,®1)-U. Y (4)

in which a sparing of operations can be noted.

However this is not sufficient, being most of the computational weight due to entanglement matrix U
and interference matrix D.®I , which have to be iterated several times. Similarly to the case of superposition,
a single-element approach is followed to find the functional relation existing between the output vector and
the corresponding input. All the necessary operations can be therefore implemented via simple logical and
analogue gates.

This fact will be explained in the following section.

1.4. A new design method for entanglement and interference

The most important problem in a software implementation of the algorithm is that some of the speed
performances vanish due to the vector representation of g-bits and, above all, to tensor products of matrices,
which spend a lot of time in order to be executed. Moreover, it must be remarked that larger databases need
larger amount of products, especially in the interference block. To this aim an alternative method and the
corresponding circuit for the operation entanglement and interference is proposed. It avoids the use of multi-
pliers and, by utilizing only logic gates and OPAMPs, reduce the number of operation and components.

1.4.1. Entanglement method and circuit design

All the steps for entanglement circuit design are presented here. The case concerning two g-bits is ana-
lysed, being the case with more g-bits a simple extension of it. Let us suppose to consider a function
f:{0,1}*—>{0,1} having the following definition law:

{f(Ol) =1

f()=0 elsewhere’

Its graphics is depicted in Fig. 1.

fix)

0o 00 0l 10 11

Figure 1. The definition of function f(x)

According to the theory and design method, this function should be translated into an injective function
F:{0,1}*-{0,1}* and therefore into Ur in order to obtain the output of entanglement G=Uk-Y.

OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn» Bobinyck Ne3, 2014 rog

The following method allows bypassing the use of F and Ur providing directly the output vector. Since
each element of the superposition output vector may assume a y or a -y value (where y depends only on the
number of g-bit), Y can be easily transformed in a binary vector through the substitution

yi = (Yi +y)/2.

This fact allows performing exchange operations of entanglement in a simple way by using driven
switches or XOR gates like in Fig. 2, in which a 2-g-bit case is represented. The values of f are taken as the
second input in each couple of gate while all the elements of superposition vector are sent to the first ones. It
can be noted that, if n is the number of g-bit, 2" components are needed instead of 22" *2, which is the num-
ber of elements of Ur.

X

245 s a’iﬁj gJE*:? DY 5)‘—\\ £

fixd JF 0

01 10 11

Figure 2. Circuit implementation of entanglement operator, 2 g-bit case
A general form of the entanglement output vector G can be the following:

G= [gl g2 (T g2”+1],
where gi = Yi @ fiunti- 12 and i is the general term of superposition transformed in a suitable binary value.
In our example we have f; =0, f, =1, f; =0, f, =0 and

{1_1 1 1 1 1 1_1}T
l2v2 202 22 22 22 22 22 22

that in binary form becomes Y=[1 010 1 0 1 0]". From previous considerations it can be found that G=[1 0 0
11010] or, by applying the reverse transformation

22 22 22 22 22 22 22 22

{1 1 1 1 1 1 1 1T

1.4.2. Interference method and circuit design

A quite more difficult task is to deal with interference operator. In fact, differently from entanglement,
in this case vectors are not composed by elements having only two possible values. Moreover, the presence
of tensor products, whose number increases dramatically with the dimensions, constitutes a critical point at
this step. In order to find a suitable input-output relation, some particular properties of matrix D®I have to
be taken in consideration.

Odd columns (or rows, being D,®1 symmetric) have nonzero odd elements and even columns have non-
zero even elements. This fact descends easily from the definition of tensor product.

If we except i element of i*" column (diagonal elements), the value of all nonzero elements is 1/2™2. In
the cited exceptions, these values are the same but decreased of 1.

Considering G the output vector of entanglement, the direct product V=(D,&®I)G (output vector of inter-
ference) involves only a suitable weighted sum of its elements, being the value 1/2™ dependent only by the
number n of g-bits.

From the above analysis, the generic element v; of V can be written as follows in function of g;:

OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn» Bobinyck Ne3, 2014 rog

1 &
> 9,,.—9; , for i odd

n-1
2t

1

Vi = on .
2n—_1zg2j —g,, for i even
j=1

This simple but powerful result has several consequences. Regarding the computational speed, a great
improvement has been provided due to a smaller number of products (only one for each element of the out-
put vector) and more precisely 2" against 4™ of classical approach. Also additions are less than previously
(2"(2"+1) instead of 4™1).

But the most important fact is that all these operation can be easily implemented in hardware with few
operational amplifiers (2" + 2). An example can be given in Figs 2 and 3 where a complete 2-g-bits Grover
Quantum gate is depicted.

According to the above formulas, the pre-interference sum blocks perform separate sums of odd and
even elements with a gain of 1/2"-* (0.5 in this case). Each one of the eight OPAMPs outputs one element of
the interference output vector. When the Grover search is finished, only two of them may assume values

close to i%ziO.?O?lOG?, denoting the position of searched element. With the same entanglement as in

the previous section, third and fourth OPAMPs (int3 and int4) must have nonzero values. This fact is con-
firmed by the particular of a PSPICE simulation depicted in Fig. 4 (707 mV against 0.1 mV of other out-
puts).

Part I: Base module. It implements a 3-g-bits system and it performs step-by-step calculation of output
values. This part is divided in the following subparts:

a: Entanglement c: Interference

b: Pre-Interference d: Modular interface

Part I1: Control module. It performs entropy evaluation in Eqgs (3) and (1), vector storing for iterations
and output visualization. This part also provides initial superposition of basis vectors |0> and |1>.

Entanglement operator composed by eight driven switches (see Fig. 6).

Referring to Fig. 7, the switches (MAX394) present in the circuit are only the odd ones. They receive
the elements of initial superposed vector in couples (Voutl and VNI, Vout2 and VN2...) and perform the
exchange according to the signal coming from the encoder.

The output signals (01, ..., 08) are the odd values of the entangled vector (even values are correspond-
ent opposite value). These values are summed and scaled (the scaling factor is Y4 in the case of three g-bits)
by the OPAMP (see Fig. 7), which constitutes the pre-interference step.

The differences among this sum and each one of the elements are performed by the Interference block,
whose structure is reported in Fig. 8.

OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn» Bobinyck Ne3, 2014 rog

Figure 3. Interference gate implementation Grover’s QSA

OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn» Bobinyck Ne3, 2014 rog

Figure 4. Grover’s QSA gate implementation (2-0-bits case)

=

ntangle

Figure 5. Circuit implementation for entanglement and interference operators in Grover’s OSA presented on
the Fig. 4

OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn» Bobinyck Ne3, 2014 rog

o T3]
LE1 LG4 Lce Lce
INt INd INt INd
W1 e Wo1 - NO4 v NS J)—r WO NO4 (W
COMI COWe COMI oM
ekt D N cé CCinatd Vot D N cé (VAT
o _\&01 Nw 9"»"+\ o i c1 HV-I- 9'&4\
GND NG X GND NG X
= v2) Nez N oty S Nez M < Cbua?
- btz C N bl C
W2 N0 MM M3 e N0 MO2 O
i Noz K2 I R Noz KO3 LS
WG WRCRH

Figure 6. Entanglement circuit

cio

—_—
Re in

11

—
Pre_int

06 3>

120
Rig

08 H——00——app]
130

Figure 7. Pre-interference circuit

1144

o o

ARE
e

Figure 8. Interference circuit

1.5. Modular system

In order to realize modular system, some devices have been introduced. First and more important is op-
erational amplifier (see Fig. 9). Labels M1, M2, M3 in Fig. 9 are joined with corresponding others of differ-
ent modules, performing parallel configuration. By this way output of two modules was summed and divided
by 2, which is the result we wish to obtain in order to realize Grover algorithm for n + 1 g-bits. In fact each
module performs three g-bits QSA and by adding a second module we can realize four g-bits QSA. Each
module must be unequivocally identified through his address (a selector assign this address on each one), so
the control module can send information to a specified module. The control module send bit stream contain-

OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn»

Bbinyck Ne3, 2014 roa

ing address and data to bus. On each module there is a device (74HC85A in Fig. 10) that compares address

sent by CPLD with the label of module and, if these are equal, allows it to process data.

Therefore these address indicate which modules must be in third state or which other must communicate

through D/A and A/D converters with CPLD (see Fig. 10).

RY
REF = iy
. 1800k
Pre int R%
po L —
1800k

i
REF

Figure 9. Modular interface, increasing g-bit

As previously reported the control module performs entropy evaluation, vector storing for iterations and

output visualization; however its main aim is to manage algorithm iterations.

Control module, that has been realized in digital way (CPLD programmable logic), is able to communi-
cate with Base Modules through addressing system previously described (see in Fig. 11 comparator
«T4HC85A») and D/A, A/D converters.

EE 34

Tt
[=] §_

5

5

o

~

GHD
2E7

"

WD o '
WREF(s) 2E4 L3 {3
(.

AL CXh

-t Aty B3

oo _"!_._..B...a..

5=
BEs=w

ECEGEERS

EHRPREPREEE
SBEEE

[

TN 84 AW

1l
L|

n;kiiiiiii s

.|]_

oo

0 L

I93g3ag

S

2§

g
ERR]

S

Figure 10. Modular interface, module selection and data conversion

In order to provide the target value (element to be finding) each base module has a latch able to store it

(see Fig. 11).

10

OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn» Bobinyck Ne3, 2014 rog

\:[U1p

LER— E :
05— 10710 H
1% 20 20 H—RH—
2 30 30
1255 40 40 Sr
T T1e8
L4 g 30 10 T
L5 50 60

C3T3
=

Figure 11. Modular interface, latch
General method design of QAGs is developed and is briefly described.

1.6. Simulation of a QA-computing on classical computer

Fig. 12 represents a general scheme of Grover's QSA. The Hadamard gates (Step 1) are the basic com-
ponents for the superposition operation, the operator U (Step 2) performs entanglement operation and D,

(Step 3) is the diffusion matrix related to the interference operation. Our purpose is to realize some classical
circuits (i.e. circuits composed of classical gates AND, NAND, XOR etc.) that simulate the quantum opera-
tions of Grover QSA. To this aim all quantum operators must be expressed in terms of functions easily and
efficiently described by classical components.

When we try to make the HW components that perform this basic operations according to the classical
scheme we encounter two main difficulties.

|
‘ i : I
|
0>— H [— ot
’ | | |
n : : : Dn :
|
h
I L JUg| l
o>—» H |- > 1Ly pit
| | | |
P
>—— H [F—> : tp bit
| | | |
| | | |
| | | |
INPUT ! STEP 1 : STEP 2 i STEP 3 :
| | |

Figure 12. General structure scheme of Grover QSA

Firstly, considering the output of Step 1, we can see that performing a linear number of operations (we
have applied the Hadamard matrix n times) we have generated a register state that contains an exponential

(2”) number of different terms. In contrast, in classical registers n elementary operations can only prepare

one state of the register representing one specific number. Thus, if we simulate a QA with classical HW, add-
ing one g-bit implies an exponential increase (2”) in the number of operations to be performed and in the

number of gates to be employed.

11

OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn» Bobinyck Ne3, 2014 rog

Secondly, the addition of only one g-bit implies that the matrices U. and D, ® I dimensions double

with respect to the previous configuration and the number of elements (and of products) increases exponen-
tially. Besides most of the computational cost is due to the iterations in the application of U. and D, ®1 .

1.6.1. High-level gate design of Grover’s QSA

In this section we present a new HW implementing the functional steps of Grover’s QSA from a high-
level gate design point of view. The proposed circuit architectures are modular in the sense that they can be
easily generalized by adding similar part according to the desired number of g-bits. By suitable changes in
the traditional matrices approach, a 3-g-bits hybrid structure is realized in order to prove the usefulness of
gates iterations, which provide a higher probability of finding the exact solution. A minimum-entropy based
method in Eq. (2.67) is adopted as a QSA-termination iteration criterion and realized by a digital circuit to-
gether with LED display output. The possibility of providing an external clock signal for iteration manage-
ment allows us to implement a very fast Grover’s QSA (many times faster than the corresponding software
realization, and less sensitive to g-bit’s increment.) A modular description of the final circuit is here intro-
duced. According to the high-level scheme introduced in Fig. 12, the proposed circuit can be divided into
two main parts.

Part I: (Analogue) Step-by-step calculation of output values. This part is divided into the following
subparts:

I-a: Superposition; I-c: Pre-Interference (for vector’s approach);
I-b: Entanglement; I-d: Interference

Part Il: (Digital) Entropy evaluation, vector storing for iterations and output visualization. This part al-
so provides initial superposition of basis vectors |0) and |1).

Fig. 13 shows a general structure scheme of the HW realization for the Grover’s QSA-circuits and itself
can be considered as a classical prototype of intelligent control quantum system.

Qutt P Ini2 Cutt QUTPUT

v

INPUT] int outt nt outt o int
out2 o In3

Supetposition Entanglemant Pre Interference Interfarence

outt In1

Termination condition

Figure 13. A general SW-scheme of the Grover’s QSA

Example. The most interesting novelty involves the structure of interference: in fact the generic element
v; (interference output) can be written in function of g, (entanglement output) as the following:

Zn
%Zgﬂl_gia for i odd,
=1

Vi = o)
%Z 9,;—0;, for i even.
j=1
Referring to Fig. 13, pre-interference operation evaluates a weighted sum of odd (even) output elements

of entanglement, while interference itself uses this contribution in order to provide (by means of difference
with g,) the respective v,. This simple (but powerful) result in Eq. (5) has several consequences.

Remark. Regarding to speed-up of computation, a great improvement has been provided due to the
smaller number of products (only one for each element of the output vector) and more precisely 2" against

12

OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn» Bobinyck Ne3, 2014 rog

4™ of the classical approach. Also additions are less than (2”(2n +1) instead of 4""). But the most im-
portant fact is that all these operation can be easily implemented in HW with few operational amplifiers

(2"+2).

Figs 14 (a), 14 (b) and 14 (c) show the Simulink schematic design and circuit realization of superposi-
tion, entanglement and interference operator’s blocks of the Grover’s QAG.

Fig. 14 (b) shows the Shannon entropy scheme estimation for solution of Grover’s QSA termination
problem.

Pre-interference sum blocks according to Eq. (5) in Fig. 14 (c) are also reported.

Remark. Fig. 14 shows the main board (n=3) for Grover’s QSA that realized the modular structure.
Fig. 15 below shows Pre-prototype board implementation of 3-g-bit version of Grover’s QSA. With this pre-
prototype successful experimental simulation results of Grover’s quantum gate Eq. (4) is achieved. Infor-

mation criteria as minimum Shannon entropy and X, :|01> =1 as searching element are used. Analysis of
these experimental results in detail is developed below.

L: Main bosrd

I-a: Superpeosition

I-b: Entanglement

I-¢: hiterference

I0: Sih evaluaticn and iteration board

Figure 14 (a). Simulink scheme of 3-g-bits Grover search system

MAT LAB
®1 Function Ly .
— n | 9]
Math Dot Produst GainZ | Interference Output?
Function
01 0.0 Shannon
P entropy
Constant estimation
Constanti? To Wodspace1
° Ny
L — I
M
Constant1g| 1 Switch17 gtop Simulation

Figure 14 (b). Example of the Shannon entropy calculation scheme (Board 1l of the Fig. 14 (a))

13

OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn» Bobinyck Ne3, 2014 rog

=

[Superposition | -
s } e - -

= o hem =L B =
S —— S from = s ow |=
secks - -t ot e, . . Zaumes Geom
Odd inputs Even inputs
block block
\——v—_)

Figure 14 (c). Pre prototype scheme circuit of Grover’s QAG

1.6.2. Experimental testing of Benchmark — Grover’s QAG

According to schematic design solution in Fig. 14 we present in Fig. 15 some photos of HW-
implementation and the outputs of the circuit (see Fig. 16) that perform Grover’s algorithm.

a) General board view b) Control unit with Shannon

d) Simulation of quantum search c) Starting position

Figure 15. HW-Implementation of Grover’s QSA circuit

We have realized a 3-g-bits accelerator structure for searching in a database constituted by eight ele-
ments; this is the reason why eight LED columns are presented in Fig. 16 below that represent the probability
of finding each of the database’s elements. We program the entanglement block to find the second element
of the database, and repeat four iterations of the algorithm.

Example. Figs 16 (a—d) show the experimental probability evolution of finding each of the database’s
elements (from Iteration #1 — to Iteration #4).

At this step (Iteration #2) the probabilities of finding one of the 8 elements of the database are compara-
ble. In the following Fig. 16 (c) the probability of finding the second element of the database begins to in-
crease with respect to the probabilities of finding the others elements. After some other iterations of the algo-
rithm, the difference between the probability of finding the second element and the probabilities to find the
others is increased. Finally the probability of extracting the second element of the database is grater than the
probabilities of finding any other elements.

Figs 16 (b), 16 (c) and 16 (d) show the evolution of quantum searching using Grover’s QAG. It is a
clear demonstration of how we can perform Grover’s algorithm by a classical computer. Similar approach
can be used for the realization of quantum fuzzy computing.

14

OnEeKTPOHHbIN XypHan «CUCTEMHbIA aHanM3 B Hayke 1 o6pa3oBaHMmny Bobinyck Ne3, 2014 rog

Figure 16. Experimental results of 3-g-bits HW-implementation of Grover’s QSA

Application of Grover’s QAG is a classical efficient simulation process for realization of quantum
search computation on classical computer.

Figs 17 and 18 show main 3-g-bits board with modular structure Pre-prototype of Grover’s QSA gate.

rerrey

.\ss.ﬁ ﬁ

TR

Figure 18. Pre-prototype of Grover’s QSA gate

15

OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn»

1.7. Software emulator of quantum algorithms

1.7.1. Structure of QA simulation system in MatLab

Fig. 19 shows the structure of a software system for QA simulation.

Bbinyck Ne3, 2014 roa

The software system is divided into two general sections. The first section involves common functions.
The second section involves algorithm-specific functions for realizing the concrete algorithms.

Common functions. The common functions include:

Superposition building blocks;
Interference building blocks;
Bra-Ket functions;
Measurement operators;
Entropy calculation operators;
Visualization functions;

State visualization functions;

Operator visualization functions.

o[Superposition building blocks I

0[Interference operators H

Diffusion

I

QFT

*[Bra-Ket functions]

*[Measurement operators }—0

o[Entropy calculations e——»

->[Visualization functions }—n

Common _ | Algarithm —
functions specific functions
L L]

a[Entanglement encoders]

--{ Problem transformers J

-| Result interpreters]

L Algorithm execution scripts]

Matlab slide show |

Li Deutsch]

Matlab console program

State visuzlizations

Operator visualizations]

Figure 19. Structure of QA simulation software

Algorithm-specific functions. Algorithmic specific functions include:

Entanglement encoders;

Problem transformers;

Result interpreters;

Algorithm execution scripts;
Deutsch algorithm execution script;

Deutsch Jozsa’s algorithm execution script;

16

OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn»

— Grover’s algorithm execution script;

— Shor’s algorithm execution script;

— Quantum control algorithms as scripts.

Bbinyck Ne3, 2014 rog

Visualization functions. Visualization functions are functions that provide the visualization display of
the quantum state vector amplitudes and of the structure of the quantum operators.

Algorithmic specific functions. Algorithmic specific functions provide a set of scripts for QA execution
in command line and tools for simulation of the QA, including quantum control algorithms. The functions of

section 2 prepare the appropriate operators of each algorithm, using as operands the common functions.

Command line simulation of the QAs. The example of the Grover’s algorithm script is presented in
Figs 20—25.

8 C:\Documents', YMC\,OC: algorithms',Grover'simplegrover.m

File Edt ‘iew Text Debug Breakpoints ‘Web ‘Window Help
DEEE| 2R @H 08 BRE BE| wxl=
1 5 gimplest simulation of Grower's algorichm
2|-| clear %clear memory
3|-| close all % close all figures
A= I=eye(2); % identity operator eye iz identity matrix built in matlab
fl=| C=[0 1;1 0]; %cancellation matrix
B|-| Z=zeros(2); %2x2 watrix of zeros
¥l=| H=l/sgrti(2)*hadaward(2); 3U-H transformation operator, hadamard iz a built in matlab operator
8| 9P=kron(kron(H,H),H); %superposition operator, kron is a direct product, built in matlab
9(-| ENT=[
10 CZZi
1|- ZIZZ
12(- ZEZIZ
13- 2121
14{-]:%entanglenent operator
18(=| INT=kronidifusion(2),I); % interference operator
16
17(-| G=INT*ENT*3F; %quantum gate, matrix product iz a built in matlab operator
18(-| in=ket([0 0 1]1); %input wector
19(-| out=G*in; %output wector
il
Figure 20. Example of Grover algorithm simulation script (coding of the algorithm)
7T
22 % Plot results of calculations
23-| figure(l)
2= aubplot(221)
25-| plotoperator3(3P); title('3F'] %plot superposition operator
2= | aubplot|222)
2T|=| plotoperator3(ENT); title('ENT') %plot entanglement operator
28-| aubplot(223)
29 -| plotoperator3(INT); title('INT') %plot interference operator
A|=| aubplot|224)
HN|=| plotoperator3(G); titlel'G=INT*ENT*3F'|4plot operator
32
3| figure(z)
|- aubplot(2ll)
J8-| plotsuperposition{in); $plot imgut superposition
3B-| title(['IN,entropy {3H)=' mwmlstr({entropy3H(in)) ' entropy {(VN}=' nuw2str|entropyWiintin'))])
M =| aubplot(2l2)
3 -| plotsuperposition{out); $plot output superposition
38-| title(['OUT, entropy {3H)=' rumastr(entropy3H{out)) ,' entropy (VNi=' mw2strientropyV{outfout'))])
40

Figure 21. Example of Grover algorithm simulation script (result visualization commands)

17

OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn» Bobinyck Ne3, 2014 rog

I8l

File

Edit

Wiew wWweb Window Help

| ﬁ‘ & B o | ﬁ | ? |Current Dlrectory:IC:lDo:umeMS\YMC\QC\aIgornhms\vaer

.

- A MATLAD > =
- Communications T || [*F ~
-\ Control System T 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536
E-of\Data Acquisition 0.3536 -0.3536 0.3536 -0.3536 0.3536 -0.3536 0.3536 -0.3536
0.3536 0.3536 -0.3535 -0.3536 0.3536 0.3536 -0.3536 -0.3536
- Dacabase Toolbox 0.3536 -0.3536 -0.3536 0.3536 0.3536 -0.3536 -0.3536 0.3536
EJ—{lDatafEed Toolbox 0.3536 0.3536 0.3536 0.3536 -0.3536 -0.3536 -0.3536 -0.3536
B\ Filter Design Tor 0.3536 -0.3536 0.3536 -0.3536 -0.3536 0.3536 -0.3536 0.3536
i Lo | 0.3536 0.3536 -0.3536 -0.3536 -0.3536 -0.3536 0.3536 0.3536
ipancial Berivs 0.3536 -0.3536 -0.3536 0.3536 -0.3536 0.3536 0.3536 -0.3536
[]—ﬂ Financial Time 5
[]—4\ Financial Toolbo:
ENT =
[]—ﬂ Fuzzy Logic Tooll
B o\ GARCH Taoolbox o 1 o] 0 o i i
bk _ILI 1]] 0 0]]]
L4 i i 1] 0 i i i
" il il il 1 i il il il
i i i] 1 i i i
i i i] i 1 i i
il il il il i il 1 il |
i i i] i i i 1
All files
@ buildcEnap.n INT =
h“%ldfmap'm —0. 5000 0 0.5000 o 0.5000 o 0.5000 i
@ ruilaus.n 0 -0.5000 [0.5000 0 0. 5000 0 0. 5000
@ difusion.n 0.5000 0 -0.5000 0 0.5000 0 0.5000 il
a 0 0.5000 0 -0.5000 0 0.5000 0 0.5000
[ger_vom
. 0.5000 0 0.5000 0 -0.5000 0 0.5000 i
B crover.n 0 0.5000 0 0.5000 0 -0.5000 0 0.5000
[GroverDynami cabena. 0.5000 0 0.5000 0 0.5000 0 -0.5000 i
) 0 0.5000 0 0.5000 0 0.5000 0 -0.5000
simplegrover.m
G =
KT | | 0.3536 0.7071 -0.3536 0 -0.3536 0 -0.3536 i |LI
4 | » | Current Directory |_ 41 I¥
Ready
start]|| e[30d B & E1H B || & & o =] [Co8% b [GHHIEADDT= 105

Figure 22. Example of Grover algorithm simulation script (superposition, entanglement and interference
operators)

lsix

File Edit Wiew Web ‘Window Help
O ﬁ."‘ & B o o | 3 | 2 |Currervt Directory. [€ DocumertsMCIGC aigorithms Grover

B 0.5000 0.5000 0.5000 -0. 5000 [-
- o\ Communications T 0 0.5000 o 0.5000 0 0.5000 0 -0.5000
E}ﬂ Control System Ti
b\ Data Acquisition G =
i Apavabase Toolbox 0.3536 0.7071 -0.3538 0 -0.3536 0 -0.3536 0
B4\ Datatesd Toolbox 0.3536 -0.7071 -0.3536 0 -0.3536 0 -0.3538]
B\ Filter Design Tor 0.3536 0 0.3536 0 -0.3836 -0.7071 0.3536 i
o i {al Derival 0.3536 0 0.3536 0 -0.3836 0.7071 0.3536 i
inancial Derivae 0.3536 0 -0.3536 -0.7071 0.3536 0 0.3536 i
s\ Financial Time § 0.3536 0 -0.3536 0.7071 0.3536 0 0.3536 i
-\ Financial Toolbo: 0.3536 0 0.3536 0 0.3536 0 -0.3536 -0.7071
[]—ﬂ}"uzzy Logic Tanll 0.3536 o 0.3536 o 0.3536 [u} -0.35356 0.7071
-\ GARCH Toolhax
-
_'l_I B
y il
1
i
i
0
0
All files a
buildcfmap.m a
[Eipwildfnap.
[@buildut.n out =
@ difusion.m
0.7071
- -0.7071
@ Grover.n o
GroverDynanicsDeno.m a
[@ sinplegrover.n g
o
o
JEN 3| e =
4 | » I Current Directory |_ k| [
Ready
dhstare||| e[30d =Y & E1H B |l & s o = _98% [| GHMEEETEEHE 1640

Figure 23. Example of Grover algorithm simulation script (quantum gate G, input vector and result of the

quantum gate application)

OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn» Bobinyck Ne3, 2014 rog

1 T T T T T T T T
e -
DB fmrraranranras AN r s mr e e T T A AR E R A EE AT T AR AR A EEEEE I ATEATI AN A EE AR A EEAEANTAATEANIIEAEEARSSIEAEEATIITE AN -
P -
T Y -

o L L . e . -

P N LIS N SN] . SN 4
T T) -
B 1 T g -
s canrme e -
a 1 1 1 1 1 I 1 1

L= L= 1] L= o Ll -3 Hod- Hioe LAAES

Figure 25. Example of Grover algorithm simulation script (visualization of the input and of the output quan-
tum states)

In Fig. 20, the algorithm-related script is presented. It prepares the superposition (SP), entanglement
(ENT) and interference (INT) operators of the Grover’s algorithm with 3 g-bits (including the measurement
g-bit). Then it assembles operators into the quantum gate G.

Then the script presented in Fig. 20 creates an input state |in> = |001> and calculates the output state
|out> = G|in>. The result of this algorithm in Matlab is an allocation of the operator matrices and of the state
vectors in the memory.

Allocated quantum operator matrices are presented in Fig. 22. Allocated input |in> and output |out>
state vectors as well as quantum gate G are presented in Fig. 23. In order to see the results, the visualization
functions are applied in Fig. 21. Code presented in Fig. 21 displays the operator matrices in Fig. 24 in 3D
visualization. In this case the vertical axis corresponds to the amplitudes of the corresponding matrix ele-
ments. Indexes of the elements are marked with the ket notation. Input |in> and the output |out> states are
demonstrated in Fig. 25. In this case, the vertical axis corresponds to the probability amplitudes of the state

19

OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn» Bobinyck Ne3, 2014 rog

vector components. The horizontal axis corresponds to the index of the state vector component, marked us-
ing the ket notation.

The title of the Fig. 25 contains the values of the Shannon and of the von Neumann entropies of the cor-
responding visualized states.

Other known QA can be formulated and executed using similar scripts, and by using the corresponding
equations taken from the previous section.

Simulation of the QAs as dynamic systems. In order to simulate behavior of the dynamic systems with
quantum effects, it is possible to represent the QA as a dynamic system in the form of a block diagram and
then simulate its behavior in time. Fig. 26 is an example of a Simulink diagram of the quantum circuit for
calculation of the fidelity <ala> of the quantum state and for the calculation of the density matrix [a><a| of
the quantum state. Bra and ket functions are taken from the common library. This example demonstrates the
usage of the common functions for the simulation of the QA dynamics.

In Fig. 26, input is provided to the ket function. The output of the ket function is provided to the first in-
put of the matrix multiplier and as a second input of the matrix multiplier. Input is also provided to the bra
function. The output of the bra function is provided to the second input of the matrix multiplier and as a first
input of the matrix multiplier. Output of the multiplier is a density matrix of the input state. Output of the

multiplier is the fidelity of the input state.
[01>
/ / Density

matrix

R

[

Sl LI} LN o)
o] L g []
g1 gL g1 [L]
L1 9] LI L]

e P >
L

Froduct

=]

LI 1 g1 7] I

<01| Fidelity

Figure 26. Simulink diagram for the simulation of the arbitrary quantum algorithm

Fig. 27 shows Simulink structure of an arbitrary QA. Such a structure can be used to simulate a number
of quantum algorithms in Matlab/Simulink environment.

Ot 1 In1 it

Termination condition

In1 Ot 1 - In1 Ot 1 | OUTPUT

Relational Switch

B Operatar Entanglement Interferenee

Constantt

INFUT In1 Cut 1

Superposition

Figure 27. Simulink diagram for the simulation of the arbitrary quantum algorithm

1.7.2. Dedicated QA emulator
Developed in algorithmic representation of QAs is applicable also for design of software emulators of

QAs. Key point is the reduction of the multiple matrix operations to vector operations, and following re-
placement of multiplication operations. This may increase dramatically emulation performance, especially on

20

OnEeKTPOHHbIN XypHan «CUCTEMHbIA aHanM3 B Hayke 1 o6pa3oBaHMmny Bobinyck Ne3, 2014 rog

the algorithms which do not require complex number operations, and when quantum state vector has rela-
tively simple structure (like Grover’s QSA for example).

Developed software can simulate 4 basic quantum algorithms, e.g. Deutsch-Jozsa’s, Shor’s, Simon’s
and Grover’s. System uses unified easy to understand interface for all algorithms, with options of 3D visuali-
zation of state vector dynamics and of quantum operators.

Startup window of the QA emulator is shown on the Fig. 28. Here one may choose creation of the new
QA model or to continue simulation of an existing one.

Quantum Yisualisator l_

Figure 28. Start-up window of the QA emulator software

If creation of the new model was chosen, then algorithm selection dialog (Fig. 29) will start. Here user
may chose QA and its dimensions.

Actually system may operate with up to 50 g-bits and more, but due to visualization problems, it is bet-
ter to limit number of g-bits to 10 — 11.

Quantum Yisualisator - New Mg x|

Select algonthm :

Select number of wariables : |1 E:
ol

Figure 29. Quantum algorithm creation dialog of the QA emulator software

Once algorithm initial parameters are set, system will draw initial state vector and selected algorithm
structure in system’s main window (Fig. 30).

Il Quantum Yisualisator ;IEIAI
File Model view Help

Uf

1 < | > | >>| 1 II[UllnDut

=

Wectar I Entropy | Wector 30 |

|

KN |

Figure 30. Main window of QA emulator software (3 g-bit Grover QSA)

21

OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn» Bobinyck Ne3, 2014 rog

Main window (Fig. 30) contains all information of the emulated quantum algorithm, and permits basic
operations and analysis. Form menu there is an access to involved quantum operators (Fig. 31), and it is pos-
sible to modify input functions (see below Fig. 32).

QAs have reversible nature, so by clicking on arrows it is possible to make forward and backward steps
of the algorithm, and currently applied algorithm step will be highlighted on the algorithm diagram.

Menu of the emulator consists of four components:
1. Item File provides basic operations like project save/load, and new model creation interface access.
2. Item Model permits an access to the input function editor (Fig. 32).

3. Item View provides an access to operator matrix visualizers, including Superposition, Entanglement and
Interference operators. It is possible to get also 3D preview of algorithm state dynamics (Fig. 34)

4. From Help menu there is an access to the program documentation.

Matrix ¥iew x|

P atrix bype: Matriz"n Structure ;

«| |H

CT T
. Sl ——

Figure 31. Plain representation of superposition operator

Tabbed interface in the lower part of the window permits an access to Shannon entropy chart and to 3D
representation of the state vector dynamics, as well as to usual, plain representation of the QA state. Size of
the tabbed area can be modified by dragging divider. Click on the middle point of divider hides tabbed area
form the screen.

Buttons in the middle part of the main window permit to make steps of the currently parameterized QA.
As it was mentioned above, system can make forward and backward steps.

If enough steps of the algorithm were done, click on the «!» button will extract an answer from the cur-
rent state vector.

Depending on QA an appropriate result interpretation routine will be called.
Quantum operator visualizer permits to display structure of involved quantum operator matrices in plain
(Fig. 31) and in 3D (Fig. 32 (a — c)) representations.

[ot st X

Figure 32 (a). 3D representation of superposition operator of 3-g-bit Grover’s QSA in quantum emulator
software

22

OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn» Bobinyck Ne3, 2014 rog

Bl Quantum Yisualisator 3 (=]

Figure 32 (b). 3D representation of entanglement operator of 3-g-bit Grover’s OSA in quantum emulator
software

Ml Quantum Yisualisator i _100 x|

Figure 32 (c). 3D representation of interference operator of 3-g-bit Grover’s QSA in quantum emulator
software

If operator consists of tensor product of smaller operators, the possibility to have an access to sub-
blocks of the tensor products is also available. 3D visuzlizer permits zoom and rotation of the charts.

Input function editor permits to automate process of the entanglement operator coding as it was de-

scribed in previous sections. For Grover’s QSA it is possible to code functions which have more than one
positive output (Fig. 33).

Input function

Ll ol Wl W ol o o

HRIOIOR|= OIS
(OO OIS
oojo|jojlolo|jo|o

C
-

Figure 33. Input function editor of QA emulator (3-Q-bit Grover’s QSA4)

Figs 34 — 36 show the results of Grover QSA simulation with entropy criteria termination.

23

OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn» Bobinyck Ne3, 2014 rog

El Quantum Yisualisator — =] =]

Figure 34. 3D View of 3-0-bit Grover’s QSA state vector after two algorithm iterations

Result__Ed

011

Figure 35. Answer window, case when Grover’s algorithm had performed sufficient number of steps

Bl Quantum Yisualisator -0l x|
File Model Wiew Help

[0> A H |— -
[0> { H = I
Uf
11> -‘l H u L -

£< | < | » | e | | | |[31].-’-'«fter interference

[itonnitonnrts

Wector Enbropy | Yector 30 I

1]

£1.37043

Figure 36. Shannon entropy dynamics after 31 steps of Grover’s QSA

Figs 37 and 38 demonstrate initial (Fig. 37) and final (Fig. 38) states of the developed software emulator
with Deutsch-Jozsa’s, Simon’s and Shor’s QAs.

Sample input functions coding and corresponding 3D representation of entanglement operators of
Deutsch-Jozsa’s, Simon and of Shor’s algorithms is presented on the Fig. 39.

24

OnEeKTPOHHbIN XypHan «CUCTEMHbIA aHanM3 B Hayke 1 o6pa3oBaHMmny Bobinyck Ne3, 2014 rog

Filo Model View Hep NQMMM

_«lt.l:'»‘.ll Wﬁ

= I

Vocto | Entogy| Vecion 30|

l

LN} L1 [KT LI 1 T |

(a) (b) (c)

QA (c)

3 I n]_ | | PiARe e
D £ I I [I | 2 R I I N | L T
Vactor | Enropy | Vector 30 | s — |
T Vector | Erony | Veetor 30 | Vector | Entiopy | Vo 30 |
l 1 T () ot
I
Ll | JCT1 [N ETIS] JCI [[ET S |

(a) (b) ()
Figure 38. Final state of QA emulator for simulation of Deutsch-Jozsa’s QA(a), Simon’s QA (b) and Shor’s

QA (c)

- 0K - 0K
: el —— T 7=
= T
[*] 1|0
1 0|1
[*] 1]0

e ol - — il

(b) (d)

25

OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn» Bobinyck Ne3, 2014 rog

Figure 39. Deutsch-Jozsa’s QA balanced input function (a) and corresponding entanglement operator (b);
Simon’s and Shor’s QAs input function (c) and corresponding entanglement operator (d)

Fig. 40 demonstrates Shannon entropy behavior of simulated quantum algorithms after several algo-
rithm iterations. It is clear that its minimum is reached on the states with minimum uncertainty, regardless
the simulated algorithm.

4 =%
10> H

03— "

03—

| | e] | Fm—m—— | el el [] o | B
e .

mrrr i T |
Vector Enkopy | Vecis 30 | Vecis Enbony |Vecion 30 | Vector Entiopy | Veotor 30|

' L] I

(a) (b) (c)
Figure 40. Shannon entropy dynamics. Deutsch-Jozsa’s QA (a), Simon QA(b), Shor QA (c)
Results of QA simulation of simulated QAs are presented on the Fig. 41, after result interpreter.

Result P
X
m E3l Collected vectors:
m X| Collected vectors: 0,4,1,2,3,5,6,7

0,1 ;
Function is balanced. ’ \lfalue of I

VYalue of s:

24,6 Period:

8

(a) (b) (c)

Figure 41. Result interpretation after QA is done. (a) Deutsch-Jozsa’s QA, (b) Simon QA and (c) Shor’s QA

1.8. Discussion

Efficient simulation of QAs on classical computer with large number of inputs is difficult problem. For
example, to operate only with 50 g-bits state vector directly, it is necessary to have at least 128TB of
memory (for the moment largest supercomputer has only 10TB). In present report, for concrete important
example as Grover’s QSA, it is demonstrated the possibility to override spatiotemporal complexity, and to
perform efficient simulations of QA on classical computers (see Fig. 42).

Design method and hardware implementation of modular system for realization of Grover’s Quantum
Search Algorithm are presented. Hardware design of main quantum operators for quantum algorithm gates
simulation on classical computer is developed. Hardware implementation for realization of information crite-
ria as minimum Shannon entropy for quantum algorithm termination is demonstrated.

These results are the background for efficient simulation on classical computer the quantum soft compu-
ting algorithms, robust fuzzy control based on quantum genetic (evolutionary) algorithms and quantum fuzzy

26

OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn» Bobinyck Ne3, 2014 rog

neural networks (that can realized as modified Grover’s QSA), Al-problems as quantum game’s gate simula-
tion approaches and quantum learning, qguantum associative memory, quantum optimization, etc.

Grover Search Algorithm Simulator vB.3
[ype "Grover.exe h' for more help

Drder? (1660 |

®X? 1800800 1000 qubit_Grove_r‘s algorithm
Number of iterations? (21000 s,'.'::,f:"os"in DB)
Buperposition: 0.000 sec
Entanglement: 14.652 sec
Interference: 81.478 sec
Total time:|96.130 sec|
Answer: YES | '

\ 100 000 000
Iterations

In less than
2 minutes

Figure 42. Simulation results of problem oriented Grover QSA according to approach 4 with 1000 g-bits

1.9. Comparison of different QA simulation approaches

Fig. 43 shows comparison of the developed approaches of QA simulation.

Matrix based approach Algorithmic approach Problem oriented approach (emulation, superposition is changed with
replication, entanglement is realized as element perturbation, interference as a
difference equation)

Entire state vector allocation Sparse state vector allocation

1 2 3 4

Simulation results (4 qubits, state with minimum of Shannon entropy, x,=011)

P

|

Maximum order reached (number of qubits, simulation on PC with single CPU)

11+1 19+1 25 qubit 1023+1
{Limited by spatial complexity, (Limited by temporal {Limited by spatial complexity without Shannon entropy calculation
matrix approach requires complexity, we need 6x108 required for state vector (Limited by floating point number
allocation of quantum gate seconds for one iteration with allocation) representation see Figure 3.XX)
matrix in memory. Gate matrix | 20 qubits, and 12x10° seconds 64+1
has a size is 2"x2") for 21 qubits). with Shannon entropy calculation

(Limited by temporal complexity of
calculations)

Time required for one iteration with maximum function order (qubit number) on Plll 1GHz (sec)

107 3x10% 10 ~0 (g-bit number independent)
Remarks

+Possible introduction of *Relatively high function order; +Practical application is impossible;
excitation; *Required specific R&D for +Can be used for state values estimation for high order functions;
*Generalized for all QA; each algorithm; «Impossible introduction of excitations (excitations will cause exponential
*High spatial and temporal *Applicable for hardware complexity and algorithm will vanish to 1% approach complexity) ;
complexity. realization; +Applicable only to few algorithms;

*No floating point operations +Simplest hardware realization.

(preparation and entropy

calculation only);

+Additional excitations may

double temporal complexity.

Figure 43 (a). Results from different approaches for simulation of Grover’s OSA

27

OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn» Bobinyck Ne3, 2014 rog

fdatrix bazed spproach Problem criented epproach (emulation, superposition is changed with
replication, sntanglernent is razlized as slemant parturbaticn, interferance as a

clifference equation)

Algorithmic approach

Entire state wecter sllocation Eparse state vector allocation

1 2 3 <

Maximum order reached (number of qubits, simulation an PC with single CPLW)

11+1
[Limited by spalial complexity,
matix approach reguires 194+
allocation of quantum gata
makrix in memery, Gate ratrix
has asize i 22

Reguiraz = 1000
rrore RED iLimitad by Aoating point
number representation)

iLimited by termporal
complexity)

Time required far ane iteratian with maximum Function order {qubit number) an PlIl 1GHz (sec)

108 107

~(1g-hit rumber independent)

Remarks

«Possible inroduction of
excitation;

=Ganeralized for all QA
=High cpatial and termporal
complexity.

~Relatively high function order;
rRequired specific RED For
eech algorithm;

~Applicable For hardware
raalization

«Practical application i imposzible;

=Can be used for state values estimation for high order functions:
«Impaossibla introduction of axeitaticns (excitations will cause sxponential
complexity and algarithm will vanish to 1--appreach complexity) ;
=Applicable only to faw algaorithms;

o Aoating point operations
(praparation and antropy
calculation anly);

~Agdditional excitations may
double temporal complaxity.

«Simple=zt hardware realizeticn.

Figure 43 (b). Results from different approaches for simulation of Deutsch-Jozsa’s QA

In case of Grover’s QSA Fig. 43 (a), shows results from four simulation methods. It is clear that simula-
tion results according with each method are same, but temporal complexity and size of the data base may
vary depending on the approach. Direct matrix based approach is more simple, but the g-bit number is lim-
ited to 12 g-bits, since operator matrices are allocated in PC memory. The second approach with algorithmic
replacement of the quantum gates permits an increase in the degree of the analyzed function (number of g-
bits) up to 20 or more. The problem-oriented approach permits quantum gate applications operating directly
with the state vector. This permits an exponential decrease in the number of multiplications, and as a result,
allows running of Grover’s algorithm on a PC.

Matrix based approach Algarithmic approach Problern oriented approach (emulation, superposition is changed with
replication, entanglernent is realizad as element perurbation, interference as e
difference equation)
Entire stata vector allocation Sparse state vactor allccation
1 2 3 4
Maximum arder reached (number of qubits, simulation an PC with single CPU)
5+1

(Limited ky spatial complaxity,

matrix approach reguires 1041 Reyuires Requires

allcl:nc?hon of quantum galel iLirnited by termnparal more a0 maore RED
matrix in memaory. Gate matrix complexity)

has a size is 27

Time required for ane iteration with maximum function erder {quiit number) on Pl 1GHz (sec)
102 107

Remarks

*Postikle introduction of *Relativaly high function order; Practicel application i impossible;

excitation;
«Generalized for all OA;

*High spatial and tamporal
complexity.

*Required specific R&D far
each algorithm;

«Applicable for hardware
realization;

-No floating point aperatians
{preparation and entrapy
caleulation only);
«Additional axcitations may
double temporal complexity.

iZan ke used for state values estimation for high arder functions;
iimpossible intraduction of excitations {excitations will cause exponantial
complexity and algarithm will vanish to 15 approach complexity) ;
*Applicable only to few algarithms;

1Simplest hardware realization.

Figure 43 (c). Results from different approaches for simulation of Simon and Shor’s QA

28

OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn» Bobinyck Ne3, 2014 rog

With this approach, it is possible to allocate in PC memory a state vector containing 25 — 26 g-bits. An
extreme version of the Grover’s QSA is an approach when the state vector is allocated as a sparse matrix,
taking in consideration that with an absence of decoherence, most of the values of the probability amplitudes
are equal, and as a result there is no need to store of all of the state vector, but only the different parts, which
is equal to number of the searched elements +1. Thus, excluding memory limitations, one can simulate up to
1024 g-bits or more, with only limitation caused by floating point number representations (with larger num-
ber of g-bits, probability amplitudes after superposition approach to machine zero).

In the case of Deutsch-Jozsa’s algorithm simulation, Fig. 43 (b) shows three simulation approaches. In
this case, the direct matrix based approach has the same limitations as in Grover’s algorithm, and a PC per-
mits an order up to 11 g-bits. With the algorithmic approach, up to 20 g-bits or more g-bits is possible. The
problem-oriented approach with compression gives the same result as in case of Grover’s algorithm.

In case of Simon and Shor’s quantum algorithms, Fig. 43 (c) shows different algorithm structure.

The matrix based approach and algorithmic approach are shown. The matrix based approach permits
simulation up to 10 g-bits, and the algorithmic approach permits simulation up to 20 g-bits, or more.

Fig. 44 shows analysis of the quantum algorithms dynamics from the Shannon information entropy
viewpoint.

Fig. 44 (a) shows the relation between Shannon information entropy of the state vector of the Grover’s
QSA for different parameters of the data base. This analysis permits estimation of the number of algorithm
iterations required for database search regarding database size.

The results of Shannon entropy behavior are presented in the Fig. 44 (b) for Deutsch-Jozsa’s algorithm,
in Fig. 44 (c) for Simon QA and in Fig. 44 (d) for Shor’s QA.

COiptimal number of iterations (T) for different qubit numbers () in Grover's Q34
and corresponding Shannon entropy behavior
18 . e AR

10 10 10
lterations (T)

Figure 44 (a). Optimal number of iterations for different g-bit numbers and corresponding Shannon entropy
behavior of Grover’s OSA simulation

29

OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn»

Shannon entropy

Shannon entropy behavior for different qubit numbers (1-8) in Deutsch-Jozsa QA

.

2 3
Quantum steps

Bbinyck Ne3, 2014 rog

Figure 44 (b). Results of Shannon entropy behavior for different g-bit numbers (1 — 8) in Deutsch-Jozsa’s

Shannon entropy

Shannon entropy behavior for gifferent qubit numbers (1-8) in Simon QA
’\\
N,
\
\
\\
5 .
\\
. \\. |
RN
_ 4
A
\
\
\
. A -
AU
- .\\ ' N \\
. "\
.
1 2 3

Quantum steps

Figure 44 (c). Results of Shannon entropy behavior for different g-bit numbers (1 — 8) in Simon’s QA

Shannon entropy

Shannon entropy behavior for different qubit numbers (1-8) in Shor QA

! A
£
/

Iterations

Figure 44 (d). Results of Shannon entropy behavior for different g-bit numbers (1 — 8) in Shor’s QA

30

OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn» Bobinyck Ne3, 2014 rog

Ogtimal number of
10 = —

1 T EEEE

memdmab kbbbl
] [l
1 o 1

memdmab bbbl
] [

-4
O
[}

-
[}
]
[}

XN
T
T
1

T
hdddd e mmmhm e d sl
[T

Mumber of elerments in database &

[b T]
A L _L_J_a1_vL1ir]
[]] L

]

Oplimal number of teralions (T)

Figure 45. Optimal number of iterations for different database sizes

Fig. 42 shows the screen shot of the Grover’s QSA problem oriented simulator with sparse allocation of

the state vector. The result of the simulation for 1000 g-bits is presented.

Fig. 43 summarizes the above approaches to QA simulation. The high level structure of the quantum al-

gorithms can be represented as a combination of different superposition entanglement and interference op-
erators. Then depending on algorithm, one can choose corresponding model and algorithm structure for sim-
ulation. Depending on the current problem, one can choose (if available) one of the simulation approaches,
and depending on approach one can simulate different orders of quantum systems.

This estimation is shown in Fig. 45.

References

1.

Ulyanov S.V., Litvintseva L.V., Ulyanov L.S. et al. Quantum information and quantum computational
intelligence: Classically efficient simulation of fast quantum algorithms (SW&HW implementations).
— Note del Polo Ricerca. Milano: Universita degli Studi di Milano Publ. — Vol. 79. — 2004. URL:
http://www.qcoptimizer.com.

Porto D. M., Ulyanov S.V. Hardware implementation of fast quantum searching algorithms and its
application in quantum soft computing and intelligent control // World Automation Congress — 5™ In-
ternational Symposium on Soft Computing for Industry, (WAC’2004 - ISSCI). — Seville, Spain. —
2004. — Vol. 17. — Pp. 117-122.

Ulyanov S.V., Rizzotto G.G. Kurawaki I. et al. Method and hardware architecture for controlling a
process or for processing data based on quantum soft computing: Patent US 7 383 235 B1. — 2008.

Ulyanov S.V., Rizzotto G.G. Takahashi K. et al. Methods and device for performing a quantum algo-
rithm to simulate a genetic algorithm: Patent US 208/0140749 Al. — 2008.

Ulyanov S.V., Rizzotto G.G. Takahashi K. et all. A method of performing a quantum algorithm for
simulating a genetic algorithm. — EP Application. — EP 1 672 569 Al. — 2003.

31

