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The simplest technique for simulating a quantum algorithm (QA) is described and is based on the direct
matrix representation of the quantum operators. This approach is stable and precise, but it requires alloca-
tion of operator’s matrices in the computer’s memory. Since the size of the operators grows exponentially,
this approach is useful for simulation of QAs with a relatively small number of qubits (e.g., approximately 11
qubits on a typical desktop computer). Using this approach it is relatively simple to simulate the operation of
a QA and to perform fidelity analysis. Two special search algorithms: Shor’s and Grover’s QA are described.
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Onucana npocmas mexHuKa MOOeIUPOBAHUsL KEAHMOBO20 AN2OPUMMA, OCHOBAHHASL HA NPAMOM Mam-
PUYHOM NPeOCmABNeHUuU KEAHMOBbIX onepamopos. Taxkou nooxo0 AGIAemcs YCMOUdUGLIM U MOYHBIM, HO
mpebyem 02pOMHO20 00beMa ONepamueHoOU NAMAMu KOMNblomepa OJid GbIYUCACHUS MAMPUYHO2O Npeo-
Cmaenenusi K6anHmoeulx onepamopos. Taxk Kaxk npocmapHCmMeeHHO-8peMEHHAs PA3MEPHOCHb ONepamopos
803pacmaem IKNOHEHYUATLHO, MO MAKOU NOOX00 MOAICEM OblMb UCNONB308AH 01 MOOETUPOBAHUS KBAHMO-

1



ONeKTPOHHbIN XXypHan «CUCTEMHBIN aHanu3 B Hayke n obpa3oBaHnm» Beinyck Ne3, 2014 rog

8bIX ANICOPUMMOB C OMHOCUMENHHO MATBIM YUCTIOM BXOOHBIX KYOumog (m.e. npumepro 11 xybumoe ons mu-
nosotl konpueypayuu I1K). Hcnonwv3ys smom nooxoo, MOICHO MOOEIUPO8ams OMHOCUMENLHO NPOCTHO K-
HOBble aeOpUmMMbl U 00CMU2AMb 8bICOKO20 Kayecmea pe3yibmama. [lanvl npumepvl MoO0eauposanus 08yx
HOUCKOBbIX K8AHMOBLIX anzopummos. ancopumm Lllopa u aneopumm I posepa.

KittoueBpie cioBa: KBaHTOBBIE OTIEPATOPHI, OBICTPHIE KBAHTOBBIE aJTOPUTMBI, aITOPUTMHIYECKOE TPe-
CTaBIICHUE.

Introduction

In one embodiment, a more efficient fast QA simulation technique is based on computing all or part of
the operator matrices on an as needed current computational basis. Using this technique, it is possible to
avoid storing all or part of the operator matrices. In this case, the number of qubits that can be simulated
(e.g., the number of input qubits, or the number of qubits in the system state register) is affected by: (i) the
exponential growth in the number of operations required to calculate the result of the matrix products; and
(i) the size of the state vector that is allocated in computer memory.

In one embodiment, using this approach it is reasonable to simulate up to 19 or more qubits on typical
desktop computer, and even more on a system with vector architecture.

Due to particularities of the memory addressing and access processes in a typical desktop computer
(such as, for example, a Pentium-based Personal Computer), when the number of qubits is relatively small,
the compute-on-demand approach tends to be faster than the direct storage approach. The compute-on-
demand approach benefits from a study of the quantum operators, and their structure so that the matrix ele-
ments can be computed more efficiently.

The study portion of the compute-on-demand approach can, for some QAs lead to a problem-oriented
approach based on the QA structure and state vector behavior [1 — 3].

For example, in Grover’s quantum search algorithm (QSA), the state vector always has one of the two
different values: (i) one value corresponds to the probability amplitude of the answer; and (ii) the second
value corresponds to the probability amplitude of the rest of the state vector. Using this assumption, it is pos-
sible to configure the algorithm using these two different values, and to efficiently simulate Grover’s QSA.

In this case, the primary limit is a representation of the floating-point numbers used to simulate the ac-
tual values of the probability amplitudes. After the superposition operation, these probability amplitudes are

very small (Ln).

N'g

Thus, it is possible to simulate Grover’s QSA with this approach simulating 1024 qubits or more with-
out termination condition calculation and up to 64 qubits or more with termination condition estimation
based on Shannon entropy.

Other QAs do not necessarily reduce to just two values. For those algorithms that reduce to a finite
number of values, the techniques used to simplify the Gover’s QSA can be used, but the maximum number
of input qubits that can be simulated will tend to be smaller, because the probability amplitudes of other al-
gorithms have relatively more complicated distributions. Introduction of an external excitation can decrease
the possible number of qubits for some algorithms.

In some algorithms, the entanglement and interference operators can be bypassed (or simplified), and
the output computed based only on a superposition of the initial states (and deconstructive interference of the
final output patterns) representing the state of the designed schedule of control gains. For example, a particu-
lar case of Deutsch-Jozsa’s and Simon algorithms can be made entanglement free by using pseudo-pure
quantum states.

The disclosure that follows begins with a comparative analysis of the temporal complexity of several
representative QAs. That analysis is followed by an introduction of the generalized approach in QA simula-
tion and algorithmic representation of quantum operators. Subsequent portions describe the structure repre-
sentation of the QAs applicable to low level programming on classical computer (PC), generalizations of the
approaches and introduction of the general QA simulation tool based on fast problem-oriented QAs.

The simulation techniques are then applied to a quantum control algorithm.
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The matrix-based approach can be efficiently realized for a small humber of input qubits. The matrix
approach is used above as a useful tool to illustrate complexity issues associated with QA simulation on clas-
sical computer.

1. Structure of QA gate system design

As shown in Fig. 1 (a), a QA simulation can be represented as a generalized representation of a QA as a
set of sequentially-applied smaller quantum gates. From the structural point of view, each QA is based on a
particular set of quantum gates, but generally speaking each particular set can be divided into superposition
operators, entanglement operators, and interference operators.

This division into superposition operators, entanglement operators, and interference operators permits a
generalization of the design of a simulation and allows creation of a classical tool to simulate QAs. Moreo-
ver, local optimization of QA components according to specific hardware realization makes it possible to
develop appropriate hardware accelerators for QA simulation using classical gates.
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Figure 1. (a) Circuit representation of QA; (b) Quantum circuit of Grover’s QSA
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2. Generalized approach in QA simulation

In general, any QA can be represented as a circuit of smaller quantum gates as shown in Figs 1 (a, b).
The circuit shown in the Fig. 1 (a) is divided into five general layers: (i) input; (ii) superposition;
(iii) entanglement; (iv) interference; and (v) output.

Layer 1: Input. The guantum state vector is set up to an initial value for this concrete algorithm. For ex-
ample, input for Grover’s QSA is a quantum state |¢0> described as a tensor product

|#)=2a,]0)®--®|0)®|0) +a,|0)®-®|0)®|1) +8,|0) ®---®|1) ®|0)

+ota, 1) ®|1) ®|1) =1/0)®--®|0)®[1) = |0---01), 0

1 0 .
where [0)=| _|; [1)=| ' |; ® denotes Kronecker tensor product operation.
0 1

Such a quantum state can be presented as shown on the Fig. 2 (a).
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Figure 2. Dynamics of Grover’s OSA probability amplitudes of state vector on each algorithm step

The coefficients a, in the Eq. (1) are called probability amplitudes. Probability amplitudes can take
negative and/or complex values. However, the probability amplitudes must obey the following constraint:

D a’=1 (2)

The actual probability of the arbitrary quantum state a, ||> to be measured is calculated as a square of its
probability amplitude value p, =|a, [*.

Layer 2: Superposition. The state of the quantum state vector is transformed by the Walsh-Hadamard
operator so that probabilities are distributed uniformly among all basis states. The result of the superposition
layer of Grover’s QSA is shown in Fig. 2 (b) as a probability amplitude representation, and also in Fig. 3 (b)
as a probability representation.

Layer 3: Entanglement. Probability amplitudes of the basis vector corresponding to the current problem
are flipped while rest basis vectors left unchanged. Entanglement is typically provided by controlled-NOT
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(CNOT) operations. Figures 2 (c) and 3 (c) show results of entanglement from the application of the operator
to the state vector after superposition operation. An entanglement operation does not affect the probability of
the state vector to be measured. Rather, entanglement prepares a state, which cannot be represented as a ten-
sor product of simpler state vectors. For example, consider state ¢, shown in the Fig. 2 (b) and state ¢, pre-

sented on the Fig. 2 (c):

¢, =0.35355(/000) —[001) +|010) —|011) +|100) - [101) + [110) — [111}))
= 0.35355(|00) +|01) + [10) + [11))(|0) - |1))

¢, =0.35355(|000) —[001) —|010) +|011) +[100) —|101) +|110) — [111))
= 0.35355(|00) —|01) +|10) +11))|0) - 0.35355(|00) +|01) +|10) +|11))|1)
As shown above, the description of state ¢, can be presented as a tensor product of simpler states, while

state ¢, (in the measurement basis {|0),|1)} ) cannot.
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Figure 3. Dynamics of Grover’s OSA probabilities of state vector on each algorithm step

Layer 4: Interference. Probability amplitudes are inverted about the average value. As a result, the prob-
ability amplitude of states «marked» by entanglement operation will increase.

Figs 2 (d) and 3 (d) show the results of interference operator application.
Fig. 2 (d) shows probability amplitudes and Fig. 3 (d) shows probabilities.

Layer 5: Output. The output layer provides the measurement operation (extraction of the state with max-
imum probability), followed by interpretation of the result. For example, in the case of Grover’s QSA, the
required index is coded in the first n bits of the measured basis vector.

Since the various layer of the QA are realized by unitary quantum operators, simulation of quantum op-
erators depends on simulation of such unitary operators. Thus, in order to develop an efficient, simulation, it
is useful to understand the nature of the QAs basic quantum operators.

3. Basic QA operators

The superposition, entanglement and interference operators are now considered from the simulation
viewpoint. In this case, the superposition operators and the interference operators have more complicated
structure and differ from algorithm to algorithm. Thus, it is first useful to consider the entanglement opera-
tors, since they have a similar structure for all QAs, and differ only by the function being analyzed.
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In general, the superposition operator is based on the combination of the tensor products Hadamard
1

1 1 s 10
— with identity operator | : | = .
J2[1 -1 01

Remark. The simulation system of quantum computation is based on quantum algorithm gates (QAG).
The design process of QAG includes the matrix design form of three quantum operators: superposition (Sp),
entanglement (U ) and interference (Int). In general form, the structure of a QAG can be described as fol-
lows:

H operators: H =

QaG=[(nte"1)u.]" ["Hes],

where | is the identity operator; the symbol ® denotes the tensor product; S is equal to | or H and dependent
on the problem description. One portion of the design process in QAG is the type-choice of the entanglement
problem-dependent operator U that physically describes the qualitative properties of the function f .

The Hadamard Transform creates the superposition on classical states, and quantum operators such as
CNOT create robust entangled states. The Quantum Fast Fourier Transform (QFFT) produces interference.

For most QAs the superposition operator can be expressed as

sziéHjca(ésj, (3)

where n and m are the numbers of inputs and of outputs respectively. The operator S depends on the algo-
rithm and can be either the Hadamard operator H or the identity operator | . The numbers of outputs m as
well as structures of the corresponding superposition and interference operators are presented in Table 1 for
different QAs.

Table 1.Parameters of superposition and interference operators of main quantum algorithms

Algorithm Superposition | m Interference
Deutsch’s H®I 1 H®H
Deutsch-Jozsa’s "H®H 1 "H®I
Grover’s "H®H 1 D, ®lI
Simon’s "H® " n "H®"I
Shor’s "H® " n QFT, ®"l

Superposition and interference operators are often constructed as tensor powers of the Hadamard opera-
tor, which is called the Walsh-Hadamard operator. Elements of the Walsh-Hadamard operator can be ob-
tained as

. ) 1 (0D 0y
I:H]i,jZ(Zn/)z [ 1H:|:2r]7{(nl)H _(n1)Hj’ (4)

where i=0,1, j=0,1, H denotes Hadamard matrix of order 2.

The rule in Eq. (4) provides way to speed up of the classical simulation of the Walsh-Hadamard opera-
tors, because the elements of the operator can be obtained by the simple replication described in Eq. (4) from

the elements of the ""H order operator. For example, consider the superposition operator of Deutsch’s algo-
rithm n=1, m=1 S=1:

o _ ()7 o)1 (D ()™ _L{' '}
[Sp] b o2 ®I_\/§{(_1)1*0| (_1)1*1|j_\/§| -1 )
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As a further example, consider the superposition operator of Deutsch-Jozsa’s and of Grover’s algorithm,
forthecase n=2, m=1, S=H:

H H H H

o 2y 2 H -H H -H
[Sp] Deutsch—Jozsa's,Grover's — ZH ®H = i 3H — i H H = i . (6)
J8 J8l?2H —*H) B|H H -H -H

H -H -H H

For yet another example, the superposition operator of Simon’s and of Shor’s algorithms
n=2,m=2,S=1 can be expressed as:

__1\0*0 _1\*0
[Sp] Simon,Shor' ) :2 H ®2 | :1(( 1) H ( 1) H}® 2| —

b 2l (D"™H (-)™H
11 1 1 2 7
H H 1 -1 1 -1 ol D] I [
1 @ 1-1 ®1-1
2|H -H 211 1 -1 -1 2021 a1 = =2
1 -1 -1 1 G I [

Interference operators are calculated for each algorithm according to the parameters listed in Table 1.
The interference operator is based on the interference layer of the algorithm, which is different for various
algorithms, and from the measurement layer, which is the same or similar for most algorithms and includes
the m ™ -tensor power of the identity operator.

The interference operator of Deutsch’s algorithm includes the tensor product of two Hadamard trans-
formations, and can be calculated using Eq. (4) with n=2 as:

1 1 1 1
Deutsch 2 (_1) " 1 (_1)0*OH (—1)0*1H 1 1 -1 1 -1
[Int :Ii = H="Fp—=2 0 ™My | o 4
¥ 2 2l CD™H (-)™MH) 2[1 1 -1 -1
1 -1 -1 1

()

In Deutsch’s algorithm, the Walsh-Hadamard transformation in the interference operator is used also for
the measurement basis.

The interference operator of Deutsch-Jozsa’s algorithm includes the tensor product of the n™ power of
the Walsh-Hadamard operator with an identity operator. In general form, the block matrix of the interference
operator of Deutsch-Jozsa’s algorithm can be written as from the n-1 order matrix as:

| Dy Dy 1 1
Deutsch—Jozsa's n
[H’lt t :| "H®I = W((nl} oo Hj ®1, whereH= (1 _]J ) (8)

Interference operator of Deutsch-Jozsa’s algorithm n=2, m=1:

|
| H H T R
':Int Deutsch—Jozsas]ZZ H®I :1 R | :1
2\H -H 2l 11—
|

-1 -1 1
The interference operator of Grover’s algorithm can be written as a block matrix of the following form:

[Int®e] =D, ®I =(%—”|j®| =(—1+i,2)®|‘ ,
ij 2n 2n

i= ]
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1 1 [-li=]
ENNEN .

i+ ]
where i=0,...,2" -1,j=0,...,2" -1, D, refers to diffusion operator:

i)

(_1) 1 AND (i=j)
[Dn] i :T '

For example, the interference operator for Grover’s QSA, when n=2,m=1 is:

rover 1 1
[ Int® lsz@':(W_Z'j®':(_1+5j®"l ,

i=]

(—1+3)| 1 1 1
2 2 2
o
1 H (_1%)' 5! %' A O N
Gj@l o1 1 1 1 =30 1 o | WO
i#] = = —1+= 1 = -

2 2 ( 2) 2 T

1 1 1 (—1+3]|

2 2 2 2

As the number of qubits increases, the gain coefficient will become smaller. The dimension of the ma-

trix increases according to 2", but each element can be extracted using Eq. (9), without allocation of the en-
tire operator matrix.

Remark. Since D,D,” =1, D, is unitary and is therefore a possible quantum state transformation. While
the matrix D, is clearly unitary it can to have the decomposition form D, =—H R'H, where R [i, j]=0, if
i#j, R[L1]=-1and R[i,i]=+1,if 1<i<N.

In concrete form the operator D, (diffusion — inversion about average) in Grover algorithm is decom-
posed as

®n

10 0 0
5 _L(l 1J®”' 0100 .[1 1j®”
" Jorlr 1 00 .0 1 -1
0 00 1

and can be accomplished with O(n) =O(log(N)) quantum gates. It means that from the viewpoint of effi-
cient computation the form as in Eq. (9) is more preferable.

The interference operator of Simon’s algorithm is prepared in the same manner as the superposition (as
well as superposition operators of Shor’s algorithm) and can be described as follows from Eq. (3) and

Eqg. (6):

_ _1)*D 1 1
[Int smn] =" Hem | ={ 1),2 "DH®™, where H= .
() 2" 1 -1

In general, the interference operator of Simon’s algorithm coincides with the interference operator of
Deutsch-Jozsa’s algorithm Eq. (8), but for each block of the operator matrix includes ** tensor products of
the identity operator.

The interference operator of Shor’s algorithm uses the Quantum Fourier Transformation operator
(QFT), calculated as:
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-7
1 3G N

[QFT, ] TR : (11)

where J = +/-1,i=0,..,2" -1 and, j=0,..,2" -1.
When n=1 then:

1 eJ*(o*O)zmz1 eJ*(O*.I.)Z/r/21 1(1 1
QFTy| =7 1 v =H (12)
n= 5 eI w022 IwD2el2 \/E 1 -1
Eqg. (11) can also be presented in harmonic form using the Euler formula:
[QFTH]i J_ =271,2[cos[(i * j)zz—fj+ J sin((i* j)zz—fD (13)

For some applications, the harmonic form of Eg. (13) is preferable.
General case. For most algorithms, the superposition operator can be expressed as:

ke ky
Sp:(_®lHj®(_®lsj, wherek, and k, are the numbers of the inclusions of H and of S into the corre-

sponding tensor products. Values of k, k, depend on the concrete algorithm and can be obtained from Table
2.

Table 2. Parameters of superposition and of interference operators of QAs

Algorithm K, k, S Interference
Deutsch’s 1 1 I H®H
Deutsch-Jozsa’s | "1 1 H hH®I
Grover’s n-1 1 H D, ®I
Simon’s ni/2 n/2 I b @ |

Shor’s n/2 | n/2 | | | QFT &I

Operator S, depending on the algorithm, may be the Walsh-Hadamard operator H or the identity oper-
ator 1. It is convenient to automate the process of the calculation of the tensor power of the Walsh-
Hadamard operator as follows:

(<) 1 [1ifi*jiseven
"H] =12 = 14
[ ]i,j 22 2“’2{-1, ifi*jisodd (14)
where i=0,1,...,2", j=0,1,...,2". The tensor power of the identity operator can be calculated as

("], =1 Ok, (15)

where i=0,1,...,2", j=0,1,...,2". Then any superposition operator can be presented as a block matrix of the
following form:

_1 i+]
[Sp];; = ( zkl),z ®hs, (16)
where i=0,...,2% -1, j=0,..,2% -1 denote the blocks; *S is a k, tensor power of the corresponding oper-
ator. In this case n denotes the total number of qubits in the algorithm, including measurement qubits, and
qubits necessary for encoding of the function. The actual number of input bits in this case isk,. The actual
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number of output bits in this case is k,. Operators used as S are presented in the Table 2 for all typical
models of QAs.

Let us consider examples.

For the superposition operator of Deutsch’s algorithm: n=2,k =1k, =1,S=1:

Deutsch _(_1)i+j _i (—1)0*()' (—1)0*1| _i|:| |:|
(S =" ®I_J§ D1 (<)) 2l -l (17)

The superposition operator of Deutsch-Jozsa’s and of Grover’s algorithm is, n=3,k, =2,k, =1, S=H :

[Sp]Deutsch—Jozsa's,Grover‘S _ ﬂ ®H =

i 0212
(D™H (D™H (D™H (D™H) (H H H H 18)
21 -D"H (D"H (-D™H (-)™H 21 H -H H -H
2| (-D™H (-D™H (-D**H (-D*H| 2/H H -H -H
(-D™H (-D™H (DH (D™H) (H -H -H H
The superposition operator of Simon’s and of Shor’s algorithms are, n=4,k =2,k, =2,S=1:
Simon, Shor (_1)”]
[0, =" & 1,
(_1)0*0 (2 I) (_1)0*1(2 I) (_1)0*2 (2 I) (_1)0*3 (2 I) 2 | 2 | 2 | 2 | (19)

~ l (_1)1*0 (2 I) (_1)1*’.].(2 | ) (_1)1*2 (2 I) (_1)1*3(2 I) B 1 2 | 2 | 2 | 2 |
2 (_1)2*0 (2 I) (_1)2*1 (Z I) (_1)2*2 (2 I) (_1)2*3 (2 I) 2 2 I 2 I 2 I _2 I )
CD7CH CTCD DTN (yen) 2 e
The interference blocks implement the interference operator which, in general, is different for all algo-

rithms. By contrast, the measurement part tends to be the same for most of the algorithms. The interference
blocks compute the k, tensor power of the identity operator.

Interference operator of Deutsch’s algorithm. This interference operator of Deutsch’s algorithm is a
tensor product of two Walsh-Hadamard transformations, and can be calculated in general form using
Eq. (14) with n=2:

1 1 1 1

Deutsch _2 _ (_1)i*j _ 1 1 -1 1-1
[Int>s ] =" H = "5l 1 o1 | (20)

1 -1 -1 1

Note that in Deutsch’s algorithm, the Walsh-Hadamard transformation in interference operator is used
also for the measurement basis.

Interference operator of Deutsch-Jozsa’s algorithm. The interference operator of Deutsch-Jozsa’s algo-
rithm is a tensor product of k, power of the Walsh-Hadamard operator with an identity operator. In general
form, the block matrix of the interference operator of Deutsch-Jozsa’s algorithm can be written as:

[IntDeutsch—Jozsa's] — (_ : ®l, (21)

ij

where i =0,...,2" -1, j=0,...,2% 1.

Interference operator of Deutsch-Jozsa’s algorithm for n=3,k, =2, k, =1:

10
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22
(_1)0*0 | (_1)0*1 | (_1)0*2 | (_1)0*3 |
B G i O o el I G il IR GV
T20 ((DP01 (“DPU (“DPR1 (-D)F°
(_1)3*0 I (_1)3*1 I (_1)3*2 I (_1)3*3 I

[ I (22)
_1
[ T T R
I I I
Interference operator of Grover’s algorithm: The interference operator of Grover’s algorithm can be
written as a block matrix of the following form:

rover 1 k1 1 1
[ Int® L:Dkl®|:(2k1/2_ 'j®':(_l+_2kﬂ2j®" , [—zwj@
i=j

where i=0,...,2% -1,j=0,..,2% -1, D, refers to diffusion operator:

[Dk ] B (_1)1AND(i:j) |

ij - 2k171

=— , (23
o 2k1/2{|,i¢j ( )

Thus, the interference operator of Grover’s algorithm for n=3,k, =2, k, =1 is constructed as follows:

[thmvef]U =D,®I :(%—ZIJC@I :(—1+%)® I‘ ,(%j@l
i=]

i#]

(—1+1j| 1 1 L
2 2 2 2
B T T
1 (—1+1j| 1 1
1 2 2 2 2 il
=2)%" 7| . 1 1 1 200 0 o @
) 1 5 i L
2 2 ( 2) 2 L1 -
1 1 1 (—1+1j|
2 2 2 2

Note that as the number of qubits increases the gain coefficient becomes smaller and the dimension of

the matrix increases according to 2 . However, each element can be extracted using Eq. (23), without con-
structing the entire operator matrix.

Interference operator of Simon’s algorithm The interference operator of Simon’s algorithm is prepared
in the same manner as the superposition operators of Shor’s and of Simon’s algorithms and can be described
as follows (see Egs. (16), (19)):

[Intsimon}i’j _ le ®k2 | = (_1)I*J ® kzl

2k1/2

(=170 ke . (D%t (_1)0*(2k1'1) ke

1 . L o (25)
= ke (=D . ) ] (-1) k2|
(_1)(2k1‘1)*° el (_1)(2k1‘1)*j T (_1)(2k1‘1)*(2k1‘1) k)

11
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In general, the interference operator of Simon’s algorithm is similar to the interference operator of
Deutsch-Jozsa’s algorithm Eq. (21), but each block of the operator matrix Eq. (25) is a k, tensor product of

the identity operator.

Each odd block (when the product of the indexes is an odd number) of the Simon’s interference operator
Eqg. (25), has a negative sign. Actually if i =0,2,4,..2" =2 or j=0,2, 4,...2% —2 the block sign is posi-

tive, otherwise the block sign is negative. This rule is applicable also for Eq. (21) of the Deutsch-Jozsa’s al-
gorithm interference operator.

Then it is convenient to check if one of the indexes is an even number instead of calculating the product.
Thus Eq. (25) can be reduced as:
_ —1)"! 1 [ *1, ifiisoddorifj is odd
[nt= ] = le@kz':%@)kz':W o1 e AR (26)
i 24 2% | =", ifiisevenandj is even
Interference operator of Shor’s algorithm. The interference operator of Shor’s algorithm uses the Quan-
tum Fourier Transformation operator (QFT), calculated as:
iy 2T
M( J)E

[QFTkl]Lj :zk—%/ze , (27)

where: J — imaginary unit, i=0,..,2% —1, j=0,...,2 -1. With k, =1:

- ~ 1 eJ*(O*O)Zﬂ/21 eJ*(O*1)27r/21 ~ 1(1 1 y 28
Q k k=1 - 2_% e.]*(l*O)Z;rlzl ea*(m)z;r/z1 B E 1 -1 oo ( )
EQ. (27) can be also presented in harmonic form using Euler’s formula:
1 .\ 2T 27
[QFT, l‘j = W(COS[(I * j)ﬁj +Jsin ((I * j)FJJ. (29)

In general, entanglement operators are part of a QA when the information about the function being ana-
lyzed is coded as an input-output relation. Thus, it is useful to develop a general approach for coding binary
functions into corresponding entanglement gates.

Consider the arbitrary binary function: f :{0,1}" —{0,1}", such that:

F Xy X0 1) = (Yoreoes Vi) -
In order to create unitary quantum operator, which performs the same transformation first transform the
irreversible function f into a reversible function F , as follows: F:{0,1}"" —{0,1}""", such that:

m+n

F (Xoeres X0 Yoo Vs ) = (s Xogs T (01000 X 0) @ (Voo Yins))
where @ denotes addition modulo 2.
For the reversible function F , it is possible to design an entanglement operator matrix using the follow-
ing rule:
[Ue].e o =Liff F(j®)=i® i, je [O,..,O;l,..,l;},

where B denotes binary coding. The resulting entanglement operator is a block diagonal matrix, of the form:

M, 0
U = . (30)

0 M.,

21
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Each block M,,i=0,...,2" -1 includes m tensor products of | or of C operators, and can be obtained
as follows:
(31)

o

ml{l,iff F(@i,k)=0
® . . '
C,iff F(i,k) =1

01
whereC represents the NOT operator, defined as: C = [1 Oj'

The entanglement operator is a sparse matrix. Using sparse matrix operations it is possible to accelerate
the simulation of the entanglement. Each row or column of the entanglement operation has only one position
with non-zero value. This is a result of the reversibility of the function F . For example, consider the entan-

glement operator for a binary function with two inputs and one output: f :{0,1}° —{0,1}", such that:
f (X) =1|><:01 0|x¢01'

The reversible function F in this case is: F:{0,1}° —{0,1}°, such that:

(x.y) (x f(x)@y)
00,0 00,0©0=0
00,1 00,0®1=1
01,0 0L1®0=1
01,1 0L,1®1=0
10,0 10,0©0=0
10,1 10,1©0=1
11,0 1,0©0=0
111 111©0=1

The corresponding entanglement block matrix can be written as:

(00| (01| (10| (11]

ooy (1 0 0 0O
Ug=[01) | o 0 0
100 | o o 1 0
[11) o 0 0 |

Fig. 2 (c) shows the result of the application of this operator in Grover’s QSA. Entanglement operators
of Deutsch and of Deutsch-Jozsa’s algorithms have the general form shown in the above equation.

As a further example, consider the entanglement operator for a binary function with two inputs and two
outputs: f :{0,1}2 - {0,1}2, such that: f(x)=10| .. 00| and

=01,11 x#01,11

(0o| (01| (10| (11

|00> 1 ®I 0 0 0
U.=|o1) | 0 0 0
|10 0 0 I® 0

)
1D o 0 0 [cel

The entanglement operators of Shor’s and of Simon’s algorithms have the general form shown in the
above equation.

13
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4. Results of classical QA gate simulation

Analyzing the quantum operators leads to the following simplifications for increasing the performance
of classical QA simulations:

(@  All guantum operators are symmetrical around main diagonal matrices;

(b)  The state vector is a sparse matrix;

(c) Elements of the quantum operators need not be stored, but rather can be calculated when necessary
using Egs. (6), (12), (30) and (31);

(d) The termination condition can be based on the minimum of Shannon entropy of the quantum state,
calculated as:

om+n

H=->plogp,. (32)
i=0
Calculation of the Shannon entropy is applied to the quantum state after the interference operation. The
minimum of Shannon entropy in Eq. (32) corresponds to the state when there are few state vectors with high
probability (states with minimum uncertainty are intelligent states). Selection of an appropriate termination
condition is important since QAs are periodical.

Fig. 4 shows results of the Shannon information entropy calculation for the Grover’s algorithm with 5
inputs.

2 4 6 8 10 12 14 16 18 20
Iteration h

Figure 4. Shannon entropy simulation of Grover’s QSA dynamics with five inputs

Fig. 4 shows that for five inputs of the Grover’s QSA an optimal number of iterations, according to
minimum of the Shannon entropy criteria for successful result, is exactly four. With more iterations the
probability of obtaining a correct answer will decrease and the algorithm may fail to produce a correct
answer.

The theoretical estimation for 5 inputs gives Z+/2° =4.44 iterations. The Shannon entropy-based

termination condition provides the number of iterations. More detailed description of the information-based
termination condition is presented below.

Simulation results of a fast Grover QSA are summarized in Table 3.

The number of iterations for the fast algorithm is estimated according to the termination condition based
on minimum of Shannon entropy of the quantum intelligent state vector.

The following approaches were used in the simulations listed in Table 3.

In Approach 1, the quantum operators are applied as matrices, elements of quantum operator matrices
are calculated dynamically according to Egs. (6), (12), (4.30) and (31).

As shown in Fig. 5, the classical hardware limit of this approach to simulation on a desktop computer is
around 20 or more qubits, caused by an exponential temporal complexity.

14
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Table 3. Temporal complexity of Grover’s OSA simulation on 1.2 GHz computer with two CPUs

Temporal complexity, seconds
n Number of iterations h Approach 1 Approach 2
(one iteration) (h iterations)
10 25 0.28 ~0
12 50 44 ~0
14 100 99.42 ~0
15 142 489.05 ~0
16 201 2060.63 ~0
20 804 - ~0
30 2375 - 0.016
40 853.549 - 4.263
50 26.353.589 - 12.425

Memary allocated for state vectar, MB

Allocated memory, MB
=

10 1 1 | |
0 5 10 15 20 25

Clubit number

Figure 5. Spatial complexity of Grover QA simulation

In Approach 2, the quantum operators are replaced with classical gates. Product operations are removed
from the simulation as described above. The state vector of probability amplitudes is stored in compressed
form (only different probability amplitudes are allocated in memory).

Fig. 6 shows that with the second approach, it is possible to perform classical efficient simulation of
Grover’s QSA on a desktop computer with a relatively large number of inputs (50 qubits or more).

Fig. 6 shows also that with allocation of the state vector in computer memory, this approach permits
simulation 26 qubits on a conventional PC with 1GB of RAM. By contrast, Fig. 5 shows memory required
for Grover’s algorithm simulation when the entire state vector is stored in memory. Adding one qubit
doubles the computer memory needed for simulation of Grover's QSA when state vector is allocated
completely in memory.

15
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Time, sec

|
0 5 10 15 20 25
Qubit nurmber

Figure 6. Temporal complexity of Grover's QSA

5. Information criteria for solution of the QSA-termination problem

Quantum algorithms come in two general classes: algorithms that rely on a Fourier transform, and
algorithms that rely on amplitude amplification. Typically, the algorithms include a sequence of trials. After
each trial, a measurement of the system produces a desired state with some probability determined by the
amplitudes of the superposition created by the trial. Trials continue until the measurement gives a solution,
so that the number of trials and hence, the running time are random.

The number of iterations needed, and the nature of the termination problem (i.e., determining when to
stop the iterations) depends in art on the information dynamics of the algorithm. An examination of the
dynamics of Grover’s QSA algorithm starts by preparing all m qubits of the quantum computer in the

state  |s)=[0...0) . An elementary rotation in the direction of the sought state |x,) with property f(x,)=1
is achieved by the gate sequence:

Q=—(IH"™)-1, |-H®™, (33)
k ti
where the phase inversion I, with respect to the initial state |s> is defined by

I,|s)=—[s). I;|s)=|s) (x=s). The controlled phase inversion I, ~with respect to the sought state |x,) is

defined in an analogous way. Because the state |x0> is not known explicitly but only implicitly through the
property f (xo):l, this transformation is performed with the help of the quantum oracle. This task can be

achieved by preparing the ancillary of the quantum oracle in the state |a ) :%QO) —|1)) as the unitary and
Hermitian transformation: U, :|x,a) —|x, f (x)®@a).

Thus, |x) is an arbitrary element of the computational basis and |a) is the state of an additional
ancillary qubit. As a consequence, one obtains the required properties for the phase inversion 1, , namely:

X, f(x)@a,)=|x0®a,) = X,0)=|x1)]=|xa,), for x=Xx,

Elx0)

|xf @a>_|x1€r)a> _—|x,ao>, for x = X,.

Zx-1x0)]
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In order to rotate the initial state |s> into the state |x0> one can perform a sequence of n such rotations
and a final Hadamard transformation at the end, i.e., |sﬁn> =HQ"|s,,) - The optimal number n of repetitions
of the gate Q in Eq. (33) is approximately given by

1 m m
n:#—E ~ %\/2_,(2 >>1).

4arcsin[22j

The matrix D,, which is called the diffusion matrix of order n, is responsible for interference in this

algorithm. It plays the same role as QFT, (Quantum Fourier Transform) in Shor’s algorithm and of "H in
Deutsch-Jozsa’s and Simon’s algorithms. This matrix is defined as

(34)

(_1) 1AND (i=j)
[D"]i,jo’ (35)
where i=0,...,2" -1, j=0,..,2" -1 n is anumber of inputs.
The gate equation of Grover’s QSA circuit is the following:
GGrover:[(Dn® |) 'UF]h _(n+1H)' (36)

The diagonal matrix elements in Grover’s QSA-operators (as shown, for example, in Eq. (37) below)
are connected to a database state to itself and the off-diagonal matrix elements are connected to a database
state and to its neighbors in the database. The diagonal elements of the diffusion matrix have the opposite
sign from the off-diagonal elements.

The magnitudes of the off-diagonal elements are roughly equal, so it is possible to write the action of
the matrix on the initial state (see Table 4).

Table 4. Diffusion matrix definition

D, |0..0= 0..1= |i= I1..0= I1..1=

|0..0= -1+1/2w 1/2v! 1/2x-1 1/2w-1 1/2x!

|0..1= 1/2n1 -1+1/2w! 1/2w1 1/2w1 1/2x!

|i= 1/2x-1 1/2w-1 -1+1/2w! 1/2w-1 1/2x1

I1..0= 1/2w! 1/2v! 1/2w1 -1+1/2w! 1/2x!

I1..1= 1/2w1 1/2w! 1/2x! 1/2x! 1412wl

For example:
-a b b b b b)(1 —a+(N-3)b
b -a b b b b —-a+(N-3)b
b b -a b b||-1|1 |+a+(N-1)b| 1 @7
b b b -a b b JN | —a+(N=3)b [N’
b b b b -a b —-a+(N-3)b
b b b b b -a -a+ ( N —3)b
where a=1-b, b= 2%1 . If one of the states is marked, i.e., has its phase reversed with respect to that of the

others, the multimode interference conditions are appropriate for constructive interference to the marked
state, and destructive interference to the other states. That is, the population in the marked bit is amplified.
The form of this matrix is identical to that obtained through the inversion about the average procedure in
Grover’s QSA. This operator produces a contrast in the probability density of the final states of the database
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of %[a-ﬁ-(N ~1)b]" for the marked bit versus %[a—(N ~3)b]" for the unmarked bits; where N is the

number of bits in the data register.

Grover’s algorithm gate in Eq. (36) is optimal and it is, thus, an efficient search algorithm. Thus,
software based on the Grover algorithm can be used for search routines in a large database. Grover’s QSA
includes a number of trials that are repeated until a solution is found. Each trial has a predetermined number
of iterations, which determines the probability of finding a solution. A quantitative measure of success in the
database search problem is the reduction of the information entropy of the system following the search
algorithm.

Entropy S*'(PR) in this example of a single marked state is defined as

5% (R)=-).P logP, (39)

where P, is the probability that the marked bit resides in orbital i .

In general, the Von Neumann entropy is not a good measure for the usefulness of Grover’s algorithm.
For practically every value of entropy, there exist states that are good initializes and states that are not. For

example, S(p(n—l)—mix)= log, N —1:8(P[1]_purej, but when initialized in Paa)

log, N

e the Grover algorithm

is not good at guessing the market state.

Another example may be given using pure states H|0)(O|H and H|1)(1/H . With the first, Grover
finds the marked state with quadratic speed-up. The second is practically unchanged by the algorithm.

The information intelligent measure 3, (|w)) of the state ) with respect to the qubits in T and to the
basis B ={|i,)®---®i,)} is

st (1) =S (Iv)

(39)
7]

3 (jy))=1-

The intelligence of the QA state is maximal if the gap between the Shannon and the von Neumann
entropy in Eq. (39) for the chosen resultant qubit is minimal. Information QA-intelligent measure J; (|gz/>)

and interrelations between information measures S (|w))>S;" (Jy)) are used together with entropic
relations of the step-by-step natural majorization principle for solution of the QA-termination problem.

From Eq. (39) it can be seen that for pure states

S (|v) =S (1))
T|

max 3, (|)) 1—min[ ]Hminsfh(h//)), S"(w))=0.  (40)

From Eq. (39) the principle of Shannon entropy minimum is described as follows.

According to Eg. (40), the Shannon entropy shows the lower bound of quantum complexity of the QA.
It means that the criterion in Eq. (40) includes both metrics for design of an intelligent QSA: (i) minimal
guantum query complexity; and (ii) optimal termination of the QSA with a successful search solution.

The Shannon information entropy is used for optimization of the termination problem of Grover’s QSA.
A physical interpretation of the information criterion begins with an information analysis of Grover’s QSA
based on using of Eq. (4.39). Thus Eq (4.39) gives a lower bound on the amount of entanglement needed for
a successful search and of the computational time.

A QSA that uses the quantum oracle calls {O,} as 1-2|s)(s| calls the oracle at least

T 2[1; R + I ! N }/ﬁ times to achieve a probability of error P,. The information system includes the
z  rlog
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N — state data register. Physically, when the data register is loaded, the information is encoded as the phase
of each orbital. The orbital amplitudes carry no information. While state-selective measurement gives as
result only amplitudes, the information is hidden from view, and therefore, the entropy of the system is

maximum: Spi (P)=—log(1/N)=1logN .

init
The rules of quantum measurement ensure that only one state will be detected each time.

If the algorithm works perfectly, the marked state orbital is revealed with unit efficiency, and the
entropy drops to zero. Otherwise, unmarked orbitals may occasionally be detected by mistake. The entropy
reduction can be calculated from the probability distribution, using Eg. (38). The minimum Shannon entropy
criteria is used for successful termination of Grover’s QSA and realized in this case in digital circuit
implementation.

Fig. 7 shows the results of entropy analysis for Grover’s QSA according to Eq. (32), for the case where
n=7,f(x)=1

I I I I
5 10 15 20 25 30 i) 40
lteration h

Figure 7. Shannon entropy simulation of QSA with 7- inputs
Fig. 7 shows that minimum Shannon entropy is achieved on the 8" iteration (the minimum value of the

Shannon entropy is 1). A theoretical estimation for this case is %\/2_7 ~9 iterations. On the ninth iteration,

the probability of the correct answer already becomes smaller, and as a result, measurement of the wrong
basis vector may happen.

Application of the Shannon entropy termination condition is presented below for different input qubit
numbers of Grover’s QSA. For efficient termination of QAs that give the highest probability of successful
result, the Shannon entropy is minimal for the step m+1. This is the principle of minimum Shannon entropy
for termination of a QA with the successful result. This result also follows from the principle of QA
maximum intelligent state. For this case:

H (Jw)

1 mi T
max 7, (|y)) =1-min T

Thus, the principle of maximal intelligence of QAs includes as particular case the principle of minimum
Shannon entropy for QA-termination problem solution.

, S (|1//>) =0 (for pure quantum state).

6. Structure and acceleration method of quantum algorithm simulation

The analysis of the quantum operator matrices that was carried out in the previous sections forms the
basis for specifying the structural patterns giving the background for the algorithmic approach to QA
modeling on classical computers. The allocation in the computer memory of only a fixed set of tabulated
(pre-defined) constant values instead of allocation of huge matrices (even in sparse form) provides
computational efficiency. Various elements of the quantum operator matrix can be obtained by application of
an appropriate algorithm based on the structural patterns and particular properties of the equations that define
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the matrix elements. Each representation algorithm uses a set of table values for calculating the matrix
elements. The calculation of the tables of the predefined values can be done as part of the algorithm’s
initialization.

6.1. Algorithmic representation of the Grover’s QA

Figs 8 (a--c) are flowcharts showing realization of such an approach for simulation of superposition
(Fig. 8 (a)), entanglement (Fig. 8 (b)) and interference (Fig. 8 (c)) operators in Grover’s QSA.

«—[ INPUT: i, j ] | hc =202

O =t i =

T

No fi:=1iSHR 1
jj := jj SHR 1
k:=k+1

(ii AND jj AND 1) = 1

[ OUTPUT: h * hc ] h:=-h

Figure 8 (a). Superposition operator representation algorithm for Grover’s OSA

(

L INPUT: i, j ]

ii:=isHR 1
jji=jsHR 1
No
-
[ OUTPUT: O ] OUTPUT: U u:=NOTu
\. J

Figure 8 (b). Entanglement operator representation algorithm for Grover’s QSA

( . D odel=2""-1
t INPUT: 1, ] ] - dC2=21" ------ .
g . No L. No
(IXORJ)AND 1) =1 =]
Yes
[ OUTPUT: 0 ] [ OUTPUT: dcl ] [ OUTPUT: dc2 J

Figure 8 (¢). Interference operator representation algorithm for Grover’s OSA
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{ INPUT: i, j ] i hc=2"7 |

ii:=iisHrR 1
ji:=3jisHrR 1
k:=k+1

[ OUTPUT: h *hc J h:=-h

Figure 8 (d). Interference operator representation algorithm for Deutsch-Jozsa s QA4

Here n is a number of qubit, i and j are the indexes of a requested element, hc=2-("2 dc1 = 21" — 1
and dc2 = 21" are the table values.

In Fig. 8 (a), the i,j values are specified and provided to an initialization block with loops control varia-
bles ii:= i, jj:= 0, and k:= O are initialized, and calculation variable h:= 1 is initialized. The process then pro-
ceeds to a decision block. In the decision block, if k is less than or equal to n, then the process advances to
another decision block; otherwise, the process advances to an output block, where the output h*hc is com-

puted (where hc=2""""2) In the decision block, if (ii and jj and 1) = 1, then the process advances to a
block h:=-h; otherwise, the process advances to another block and passes to the next iteration without
probability amplitude inversion. Alternatively, the process sets h:= —h and proceeds to the next iteration. By
setting ii:= it SHR 1, jj:=Jj SHR 1, and k:= k + 1 (where SHR is a shift right operation), and then the process
continues until all probability amplitudes are assigned.

In Fig. 8 (b), the inputs i, j in an input block are initialized as ii:= i SHR 1, and jj:= SHR 1 and then are
passed to the end test.

If the end test is not succeeding, means the inputs i and j are pointing to the marked elements, the pro-
cess of the probability amplitude inversion of the marked states in this case is performed.

In Fig. 8 (¢), interference operator of Grover’s QSA can be substituted by a simple logic which outputs
0 if ((i XOR j) AND 1) = 1 then regarding nonzero elements, if i = j then the process outputs dcl, otherwise
the process outputs dc2, where dcl = 2¥"—1 and dc2 = 21",

As described above, the superposition and entanglement operators for Deutsch-Jozsa’s QA are the same
with superposition and entanglement operators for Grover’s QSA (Figs 8 (a), and 8 (b), respectively). The

interference operator representation algorithm for Deutsch-Jozsa’s QA is shown in Fig. 8 (d), where hc = 2°
n/2

The entanglement operator for the Simon QA is shown in Fig. 8 (e). Here m is an output dimension,
ecl=2™-1and ec2 = 2™ are the table values.

[ INPUT: 1, j ] L ue= (i)
__J|ii:=1AND ecl
l jj :=3j AND ec1
k := ec2
il :=iSHRmM
jj ;=3 SHRm

i 1= ii AND (k-1)
33 := 73 AND (k-1)
OUTPUT: O k = k SHR 1

Figure 8 (e). Entanglement operator representation algorithm for Simon’s and Shor’s QA
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Superposition and interference operators for the Simon QA are identical (see Table 1) and are shown by

flowchart in Fig. 8 (f).

ii:=iSHR 1
2y :; _]=S"1'R 1 I OUTPUT: O
k:=1
|
fi:=iisHR 1
§i i= jj SHR 1
k:i=k+1

[ OUTPUT: h+hc ] h:=-h

Figure 8 (f). Superposition and interference operator representation algorithm for Simon’s QA

Fig. 8 (g) is a flowchart showing calculation of the interference operator from the Shor QA.

e [ =2
[ INPUT: i, j ] 22
i:=isHRN f )
= = = n _ ;
§i=joHR N i XOR j) AND (2"-1) = 0 | OUTPUT: (0,0) |
) Yes ( h
OUTPUT: (a,b) OUTPUT: (c1,0)
J \ J
T No
a:=cl+cos(i+j*c2)| N . Yes

b:=cl+*sin(i*j*c2)

Figure 8 (9). An interference operator representation algorithm for Shor’s QA

The Shor interference operator is relatively more complex, as explained above. Superposition and
entanglement operators for the Shor algorithm are the same as the Simon’s QA operators shown in Fig. 8 (f)
and Fig. 8 (e). The Shor interference operator is based on the Quantum Fourier Transformation (QFT) with
table valuescl=2-n/2and c2 =n/2 n— 1.

The time required for calculating the elements of an operator’s matrix during a process of applying a
guantum operator is generally small in comparison to the total time of performing a quantum step. Thus, the
time burden created by exponentially increasing memory usage tends to be less, or at least similar to, the
time burden created by computing matrix elements as needed. Moreover, since the algorithms used to
compute the matrix elements tend to be based on fast bit-wise logic operations, the algorithms are amenable
to hardware acceleration.

Table 5 shows comparisons of the traditional and as-needed matrix calculation when the memory used
for the as-needed algorithm (Memory* denotes memory used for storing the quantum system state vector).

“The results shown in Table 5 are based on the results of testing the software realization of Grover QSA
simulator on a personal computer with Intel Pentium 111 1 GHz processor and 512 Mbytes of memory. Only
one iteration of the Grover QSA was performed.

Table 5 shows that significant speed-up is achieved by using the algorithmic approach as compared with
the prior art direct matrix approach. The use of algorithms for providing the matrix elements allows
considerable optimization of the software, including the ability to optimize at the machine instructions level.
However, as the number of qubits increases, there is an exponential increase in temporal complexity, which
manifests itself as an increase in time required for matrix product calculations.
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Table 5. Different approaches comparison: Standard (matrix based) and algorithmic based approach
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Qubits Standard Calculated Matrices
Memory, MB Time, s Memory* Time, s

1 1 0.03 ~0 ~0
8 18 4 0.008 0.0325
11 1048 1411 0.064 2.3
16 - - 2 4573
24 -- - 512 3*108
64 -- - - --

Use of the structural patterns in the quantum system state vector and use of a problem-oriented approach
for each particular algorithm can be used to offset this increase in temporal complexity. By way of
explanation, and not by way of limitation, the Grover algorithm is used below to explain the problem-
oriented approach to simulating a QA on a classical computer.

6.2. Problem-oriented approach based on structural pattern of QA state vector

Let n be the input number of qubits. In the Grover algorithm, half of all 2" elements of a vector
making up its even components always take values symmetrical to appropriate odd components and,
therefore, need not be computed.

Odd 2" elements can be classified into two categories:

— The set of m elements corresponding to truth points of input function (or oracle); and
— The remaining 2" —m elements.

The values of elements of the same category are always equal.

As discussed above, the Grover QA only requires two variables for storing values of the elements. Its
limitation in this sense depends only on a computer representation of the floating-point numbers used for the
state vector probability amplitudes. For a double-precision software realization of the state vector
representation algorithm, the upper reachable limit of g-bit number is approximately 1024.

Fig. 9 shows a state vector representation algorithm for the Grover QA.

INPUT: i

No
OUTPUT: v

Figure 9. State vector representation algorithm for Grover’ quantum search

In Fig. 9, i is an element index, f is an input function, vx and va corresponds to the elements’ category,
and v is a temporal variable. The number of variables used for representing the state variable is constant. A
constant number of variables for state vector representation allow reconsideration of the traditional schema
of quantum search simulation.

Classical gates are used not for the simulation of appropriate quantum operators with strict one-to-one
correspondence but for the simulation of a quantum step that changes the system state. Matrix product
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operations are replaced by arithmetic operations with a fixed number of parameters irrespective of qubit
number.

Fig. 10 shows a generalized schema for efficient simulation of the Grover QA built upon three blocks, a
superposition block H, a quantum step block UD and a termination block T.

Fig. 10 also shows an input block and an output block. The UD block includes a U block and a D block.
The input state from the input block is provided to the superposition block. A superposition of states from the
superposition block is provided to the U block. An output from the U block is provided to the D block. An
output from the D block is provided to the termination block. If the termination block terminates the
iterations, then the state is passed to the output block; otherwise, the state vector is returned to the U block
for iteration.

Figure 10. Generalized schema of simulation for Grover’ QSA

As shown in Fig. 11, the superposition block H for Grover QSA simulation changes the system state to
the state obtained traditionally by using n + 1 times the tensor product of Walsh-Hadamard transformations.
In the process shown in Fig. 10, vx:= hc, va:= hc, and vi:= 0, where hc = 2 - ™1 /2 js a table value.

vx := hc
va := hc
vi:=0
INPUT OUTPUT
hc = 2-(n+1)/2

Figure 11. Superposition block for Grover’s QSA

The quantum step block UD that emulates the entanglement and interference operators is shown on
Figs 12 (a—c).

INPUT VS 55 = OUTPUT
vii=vi+1

u

Figure 12 (a). Emulation of the entanglement operator application of Grover’s QSA
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v:=m*vX +dcl+va
v:=v/dc2
VX i=V-—VX

va:=v-va
INPUT OUTPUT

D ‘\ __________________________ S

Figure 12 (b). Emulation of interference operator application of Grover’s QSA

v:=dcl+va- m*vx
v:=Vv/dc2
VX =V + VX

va:.:=VvV-—-Vva
INPUT vii=vi+1 OUTPUT

oD L gt
7

Figure 12 (c). Quantum step block for Grover’ quantum search

The UD block reduces the temporal complexity of the quantum algorithm simulation to linear

dependence on the number of executed iterations. The UD block uses recalculated table values dcl =2" —m
and dc2 =2 "1,

In the U block shown in Fig. 12 (a), vx:= - vx and vi:=vi + 1.

In the D block shown in Fig. 12 (b), v:= m*vx+dcl*va, v:= v/dc2, vx:= v - vx, and va:= v - va in the UD
block shown in Fig. 12 (), v:= dcl*va = m*vx, vi=v/dc2, vx:=v + vx, va:= v - va, and vi:= vi + 1.

The termination block T is general for all QAs, independently of the operator matrix realization. Block
T provides intelligent termination condition for the search process. Thus, the block T controls the number of
iterations through the block UD by providing enough iteration to achieve a high probability of arriving at a
correct answer to the search problem. The block T uses a rule based on observing the changing of the vector
element values according to two classification categories. The T block during a number of iterations, watches
for values of elements of the same category monotonically increase or decrease while values of elements of
another category changed monotonically in reverse direction. If after some number of iteration the direction
is changed, it means that an extremum point corresponding to a state with maximum or minimum uncertainty
is passed. The process can using direct values of amplitudes instead of considering Shannon entropy value,
thus, significantly reducing the required number of calculations for determining the minimum uncertainty
state that guarantees the high probability of a correct answer.

The termination algorithm realized in the block T can be used one or more of five different termination
models:

Model 1: Stop after a predefined number of iterations;

Model 2: Stop on the first local entropy minimum;

Model 3: Stop on the lowest entropy within a predefined number of iterations;
Model 4: Stop on a predefined level of acceptable entropy; and/or

Model 5: Stop on the acceptable level or lowest reachable entropy within the predefined number of
iterations.
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Note that models 1 — 3 do not require the calculation of an entropy value.

Figs 13 — 15 show the structure of the termination condition blocks T.

OUTPUT: YES

OUTPUT: NO

No

Number
of iterations
is not

Yes exceeded

Figure 13. Termination block for method 1

Yes
OUTPUT: YES OUTPUT: NO

No

POP
B
7

Figure 14. Component B for the termination block

OUTPUT: NO

‘ OUTPUT:YES\

mvx = vX
mva ;= va
mvi := vi

PUSH
7

Figure 15 (a): Component PUSH for the termination block

INTPUT OUTPUT

VX ;= mvX
va:= mva
Vi := mvi

POP

Figure 15 (b). Component POP for the termination block
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Since time efficiency is one of the major demands on such termination condition algorithm, each part of
the termination algorithm is represented by a separate module, and before the termination algorithm starts,
links are built between the modules in correspondence to the selected termination model by initializing the
appropriate functions’ calls.

Table 6 shows components for the termination condition block T for the various models. Flow charts of
the termination condition building blocks are provided in Figs 13 — 15.

Table 6. Termination block construction

Model T B’ C
1 A -- -
2 B PUSH -
3 C A B
4 D -- --
5 C A E

The entries A, B, PUSH, C, D, E, and PUSH in Table 6 correspond to the flowcharts in Figs 13 — 18
respectively.

Level of
acceptable
entropy is not
attained

| OUTPUT: YES I OUTPUT: NO

Figure 18. Component E for the termination block
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In model 1, only one test after each application of quantum step block UD is needed. This test is
performed by block A. So, the initialization includes assuming A to be T, i.e., function calls to T are
addressed to block A. Block A is shown in Fig. 13.

As shown in Fig. 13, the A block checks to see if the maximum number of iterations has been reached, if
so, then the simulation is terminated, otherwise, the simulation continues.

In model 2, the simulation is stopped when the direction of modification of categories’ values are
changed. Model 2 uses the comparison of the current value of vx category with value mvx that represents this
category value obtained in previous iteration:

(i) If vx is greater than mv, its value is stored in mvx, the vi value is stored in mvi, and the termination
block proceeding to the next quantum step;

(i) If vx is less than mvx, it means that the vx maximum is passed and the process needs to set the
current (final) value of vx := mvx, vi := mvi, and stop the iteration process. So, the process stores the
maximum of vx in mvx and the appropriate iteration number vi in mvi. Here block B, shown in Fig. 14 is used
as the main block of the termination process.

The block PUSH, shown in the Fig. 15 (a) is used for performing the comparison and for storing the vx
value in mvx (case a). A POP block, shown in Fig. 15 (b) is used for restoring the mvx value (case b). In the
PUSH block of Fig. 15 (a), if [vx| > |mvx|, then mvx:= vx, mva:= va, mvi:= vi, and the block returns true;
otherwise, the block returns false.

In the POP block of Fig. 15 (b), if [vx| <= |mvx], then vx:= mvx, va:= mva, and vi:= mvi.

The model 3 termination block checks to see that a predefined number of iterations do not exceed (using
block A in Fig. 13):

— If the check is successful, then the termination block compares the current value of vx with mvx. If
mvx is less than, it sets the value of mvx equal to vx and the value of mvi equal to vi. If mvx is less us-
ing the PUSH block, then perform the next quantum step;

— If the check operation fails, then (if needed) the final value of vx equal to mvx, vi equal to mvi (using
the POP block) and the iterations are stopped.
— The model 4, the termination block uses a single component block D, shown in Fig. 17.

The D block compares the current Shannon entropy value with a predefined acceptable level. If the
current Shannon entropy is less than the acceptable level, then the iteration process is stopped; otherwise, the
iterations continue.

The model 5 termination block uses the A block to check that a predefined number of iterations do not
exceeded. If the maximum number is exceeded, then the iterations are stopped. Otherwise, the D block is
then used to compare the current value of the Shannon entropy with the predefined acceptable level. If
acceptable level is not attained, then the PUSH block is called and the iterations continue. If the last iteration
was performed, the POP block is called to restore the vx category maximum and appropriate vi number and
the iterations are ended.

Fig. 19 shows measurement of the final amplitudes in the output state to determine the success or failure
of the search.

[ INPUT: vX, va ]

[ OUTPUT: YES ] [ OUTPUT: NO ]

Figure 19. Final measurement emulation

If [vx| > |val, then the search was successful; otherwise, the search was not successful.
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Table 7 lists results of testing the optimized version of Grover QSA simulator on personal computer
with Pentium 4 processor at 2GHz.

Table 7. High probability answers for Grover QSA

Qbits Iterations Time
32 51471 0.007
36 205887 0.018
40 823549 0.077
44 3294198 0.367
48 13176794 1.385
52 52707178 267
56 210828712 20.308
60 843314834 81.529
64 3373259064 328.274

The theoretical boundary of this approach is not the number of qubits, but the representation of the
floating-point numbers. The practical bound is limited by the front side bus frequency of the personal
computer. Using the above algorithm, a simulation of a 1000 qubit Grover QSA requires only 96 seconds for
10° iterations (see below).

The above approach can be used for simulation of the Deutsch-Jozsa’s QA. The general schema of
Deutsch-Jozsa’s QA simulation is shown on Fig. 20, where an input state is provided to a quantum HUD
block, which generates an output state.

INPUT OUTPUT
STATE HUD STATE

Figure 20. Generalized schema of simulation for Deutsch-Jozsa’s QA

The structure of the HUD block is shown in Fig. 21, where the input is provided to an initialization
block.

boye=2" 0 i=i+1 vi=v+1
No

f ) Yes

INPUT vi=v-1
. J

Yes
i:=0 No
B OUTPUT: V := Vv *vC
v:=0

Figure 21. Quantum block HUD for Deutsch-Jozsa’s QA

The initialization block sets i:= 0 and v:= 0, and then the process advances to a decision block. In the
decision block, if i < 2", then the process advances to a decision block 3; otherwise, the process advances to

an output block which outputs v:= v*vc, where vc =2" "2,
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The quantum block HUD is applied only once to obtaining of the final state. Here v represents the
vector [0...00> amplitude, f is an input function of order n, vc = 2" *?is a table value.

After applying the block HUD, the value of v is considered in correspondence with Table 8.
Table 8. Possible answers for Deutsch-Jozsa'’s problem

Value of v Answer
0 f is balanced
i f is constant O
NP
- i fis constant 1
NA)
Otherwise f is something else
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