OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn» Bobinyck Ne3, 2014 rog

YK 004.415.2, 004.588

QUANTUM ALGORITHMIC BENCHMARK'’S GATE DESIGN AND SIMULATION OF
QUANTUM SEARCH ALGORITHMS

Barchatova Irinal, Fukuda Toshio?, Ulyanov Sergey?

!PhD Student;

Dubna International University of Nature, Society and Man,
Institute of system analysis and management;

141980, Dubna, Moscow reg., Universitetskaya str., 19;
e-mail: i.a.barhatova@gmail.com.

2PhD, professor;

Dept. of Micro System, Dept. of Mechanics- Informatics, Nagoya University;
Furo-cho, Chikusa-ku, Nagoya, Japan;

e- mail: fukuda@mein.nagoya u.ac.jp.

3Doctor of Science in Physics and Mathematics, professor;
Dubna International University of Nature, Society and Man,
Institute of system analysis and management;

141980, Dubna, Moscow reg., Universitetskaya str., 19;
e-mail: ulyanovsv@mail.ru.

Main benchmark’s gate design of quantum algorithms is introduced. Simulation results of quantum
search algorithms on classical computers are described. Effective simulation methodology of quantum algo-
rithms on classical computers are demonstrated.

Keywords: quantum search algorithms, simulation on classical computers, quantum algorithmic gate de-
sign.

NMPUMEPbBLI MPOEKTUPOBAHUA KBAHTOBbBLIX AIITOPUTMUYECKUX AYEEK U
MOAEJNIMPBOAHUE KBAHTOBbIX MOUCKOBbIX AJTTOPUTMOB

Bapxarosa Upuna Asnexcanaposual, ®ykyna Tommo?, Yabsanos Cepreii Bukroposuy®

YAcnupanm;

I'BOY BO «Mesicoyrnapoonwiii Yuusepcumem npupoovl, obujecmesa u uenosexa «yonay,
Hremumym cucmemHo20 aHanusa u ynpagienus,;

141980, Mockosgckas 06x., 2. /[ybHa, yn. Yuueepcumemckas, 19;

e-mail: i.a.barhatova@gmail.com.

2[loxmop nayx, npogheccop;

@akyﬂbmem MUKpocucmem, Mexanuxku u uH¢0pmamuKu;
Haczos ynusepcumem;

Anonus, Hazosn, @ypo-uo;

e- mail: fukuda@mein.nagoya u.ac.jp.

3Joxmop @usuxo-wamemamuuecxkux Hayk, npogeccop;

I'BOY BO «Medcoynapoousiii Yuusepcumem npupoovl, obujecmea u ueiosexa «/Ayonay,
Hucmumym cucmemnozo ananuza u ynpaeienus,

141980, Mockoeckasi 00xa., 2. [[ybHa, yn. Yuusepcumemckas, 19;

e-mail: ulyanovsv@mail.ru.

Paccmompenvt ocHogHble npumepsl NPOEKMUPOBAHUS KEAHMOBHIX Aneopummuieckux aueex. Onucviea-
HOMCsl pe3yIbmamsl MOOEIUPOBAHUSL KEAHMOBBIX NOUCKOBBIX AN2OPUTIMOS, PEANUS0BAHMBIX HA KIACCUYECKOM
Komnwvromepe. 1Ipodemoncmpupogana memooonozus 3QPHexmusHo2co MoOeaUpoBanUsl KBAHMOBHIX AN20PUM-
MO8 HA KIACCUYECKOM KOMAbiomepe.

OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn» Bobinyck Ne3, 2014 rog

KaroueBblIe clioBa: KBAHTOBEIC IIOMCKOBEIC AJITOPUTMBI, MOACIINPOBAHNUC HA KIIACCUYCCKOM KOMIIBIOTEPE,
IIPOCKTUPOBAHUEC KBAHTOBBIX AJITOPUTMHUYCCKUX SAYCCK.

Simon’s algorithm

Let us now examine Simon's algorithm. Unlike the Deutsch-Jozsa algorithm, Simon’s algorithm has a
nonzero error probability, i.e., it is not 100% certain to give the correct answer. However, the probability that
it gives the correct answer is bigger than % if the conditions that we will state soon are satisfied, and the pro-
cess of running the algorithm with such guarantee a number of times, and taking the value that shows up in a
majority of the runs as your final output reduces the probability of ending up with a wrong result so dramati-
cally that computer scientists are reasonably happy when they find fast probabilistic algorithms for their
problems. (It does not make great sense to expect a fast zero-error run for almost any job from a quantum com-
puter anyway, as we will see later.)

Simon’s Problem: a black-box U, which computes a function is given

f:{0,1}" - {0,14" (m=n)

that is known either to be one to one or to satisfy the equation

(xzy)A(f(x)=f(y)) > y=x®s

for a non-trivial s, the problem is to determine if f is one to one, if it is not then to find s. (We denote the
functionality of Ur as a unitary transformation: U , (|x)®|d))=|x)®|d @ f (x))).

Algorithm: The «quantum part» of Simon’s algorithm consists of the following steps:
Step 0: Initialize two quantum registers of n and m g-bits in the states

n-1 m-1

®|0) and ®|0).

0 0

Step 1: Apply n-bit Hadamard gate H, to the first register of n bits. The overall state will look as shown
in the following equation.

Note that this step puts the first register into an equal superposition of the 2" basis states

(1,310 (510 - £ 2w o[&)

Step 2: Query the black-box for the state prepared in Step 1. Then the next state is

o[Em]e(30) |- Swel).

Step 3: Apply n-bit Hadamard gate H, to the first register again. The new state is

(o) = ZW el ()| E 0" livel 1))

Now, if f is one to one then both the domain and range (mirror of the domain under f) of f has the same
cardinality 2" . The state shown above is a superposition of the members of the Cartesian product of the do-
main and range of f. Therefore, 2"2" = 2" states of the form | j) ®| f (k)> are superposed, each with an am-

plitude equal to either 2i” or _Zi“' Then, if the state of the first register is measured after Step 3, the proba-

OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn» Bobinyck Ne3, 2014 rog

2

1
+—
2n

bilities for observing each of the 2" basis states are equal and given by 2"

1
ZF' Hence the outcome

of such a measurement would be a random value between 0 and 2" —1.

If f is not one to one, then by the guarantee given to us about s, each state of the form | j)®| f (k)) has
the amplitude given by

Zin((_l)j-k +(_1)J-(k@5)):2_1n((_1)j-k +(_1)(j.k)@(j_s))'

If j-s#0 then the amplitude for | j)®|f (k)) becomes zero. So if f is not one to one, then measuring
the state of the first register after Step 3, returns a value of j such that j-s=0.

Step 4: Measure the state t of the first register.

We run these four steps n-1 times to form a system of equations of the form
t-s=0,t,-s=0,.,t_,-s=0. If a nontrivial s exists, then these equations are linearly independent with
probability at least 4.

Why? Consider any (i —1)-member prefix of our sequence of observations, namely ti, to, ..., ti1, where 2
< i< n-1. At most 2" n-bit vectors are linear combinations of these. (Note that it is now useful to view the
t’s as vectors of bits, and the relevant operation among them is @.) Since the maximum number of n-bit vec-
tors t such that t-s = 0 is 2", the minimum number of vectors that are not the combinations of i—1 vectors is
212" As a result, the probability that the i vector t; is independent from the first i—1 vectors is at least

(2" — 22" = 1_%. Using this fact, and the constraint that the first observation should not be the all-

zero vector, we see that the probability that one obtains n—1 independent vectors is at least

(1—%)(1—2]—12} . -(1— %j that can be shown to be greater than %4 with a little bit of extra cleverness.
So, if the equations we obtained are really linearly independent, this system of n-1 linear equations in n
unknowns can be solved for n bits of s classically, using Gaussian elimination, in polynomial time (since the

unknowns are bits). If we get the value for s, we query the black-box twice to see if f (0)= f(s). If this is

the case, we conclude that f is two to one, and s has the value which has already been calculated. If not, (i.e.
if we fail to solve the equations, or if the solution does not survive the black-box check,) we repeat the entire

procedure. If we have not found an s which satisfies f(0)= f (S) by the end of the third iteration of this
outer loop, we claim that f is one to one, and stop.

If f is one to one, the algorithm says so with probability 1. Otherwise, it fails to find n-1 linearly inde-
pendent equations in all three iterations and gives an incorrect answer only with probability at most (3/4)3 <
(1/2). The runtime is clearly polynomial. The algorithm that solved this problem in exact polynomial time
(with zero probability of error) has been also discovered, and just might incorporate it in a later release of
these notes, so reloaded the problem once in a while.

The best classical probabilistic algorithm for the same task would require exponentially many queries of
the black-box in terms of n. To see why, put yourself in place of such an algorithm. All you can do is to que-
ry the black-box with input after input and to hope to obtain some information about s from the outputs.
(Let’s assume that we are guaranteed that the function is two to one, and we are just looking for the string s.)

Note that, even if you don’t get the same output to two different inputs, the outputs you get still say
something about what s looks like, or rather, what it doesn’t look like: If you have already made k queries
without hitting the jackpot by receiving the same output to two different inputs, then you have learned that s

k
is not one of the (Zj values that can be obtained by XORing any pair of the inputs that you have given. So

next time you prepare an input, you will not consider any string which can be obtained by XORing one of
those values by any previously entered input string. Even with all this sort of cleverness, the probability that

3

OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn» Bobinyck Ne3, 2014 rog

k.
)
2"-1-
2
are still possible after your previous queries, (the —1 comes from the guarantee that s is nonzero) only k
would let you solve the problem by examining the output of this query (by causing it to be the same as one of
the previous k outputs, by being obtainable by XORing that previous input with the input to this query,) and,

if the Universe is not trying to help or hinder you, the real s must be thought to be chosen uniformly at ran-
dom from the set of all candidates. The probability of success after m+1 queries is hot more than

N . . . k
your next query will hit the jackpot is at most since, among the 2" —1—(2j values for s that

i k

o1

[=

In order to be able to say that «this algorithm solves the problem with probability at least p», for a con-
stant p, (p shouldn’t decrease when n grows, as this makes the technique unusable for big n. If p is a nonzero
constant, even a very small one, one can use the algorithm by running it repeatedly for only a constant num-
ber of times to find s.) We clearly have to set m to a value around at least 2”2, which is exponential in terms
of n.

Therefore, Simon's algorithm is exponentially faster than the best possible classical algorithm for the
same task. Moreover, it is the first algorithm that depends on the idea of realizing the periodic properties of a
function in the relative phase factors of a quantum state and then transforming it into information by means
of probability distribution of the observed states. The ideas used in the period of finding algorithm turned out
to be useful for developing algorithms for many other problems.

The Bershtein-Vazirani algorithm

Consider the binary function f(x) defined from an n-bit domain space to a 1-bit range f : {0,1}" — {0,1}.
The function is considered to be of the form f (x)=a-x, where a is an n bit string of zeros and ones and
a-x denotes bitwise XOR (or scalar product modulo 2): f(x)=a,-x ®a, X, ®...0a,-X,.

The aim of the algorithm is to find the n-bit string a, given that we have access to an oracle which gives
us the values of the function f(x) when we supply it with an input x.

Classically at least n queries to the oracle are required in order to find the binary string a. The Bern-
stein-Vazirani algorithm solves this problem with a single query to a quantum oracle of the form

| X>n—qubit | y>1—qubit LA X>n—qubit | f (X) @ y>1—qubit (1)
where x e {O,. ‘e 2”*1} is a data register and | y> acts as a target register.

The algorithm works as follows: begin with an initial state with the first n-g-bits in |O> state and the last

g-bit in the state|1> . Apply a Hadamard transformation on all the n + 1 g-bits and then make a call to the ora-
cle giving the following results:

0“>|1>&>%§|x>%(|o>—|1>>#> () F(10)-I)
S ()1) =),
1SS () .

12"

1 2"-1 1
where we have used the fact that > > (—1(“))(—1(“)) =5
x=0 0

az *
=0 z=

OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn» Bobinyck Ne3, 2014 rog

A measurement in the computational basis immediately reveals the binary vector a. This algorithm
therefore achieves the discovery of the vector a in a single oracle call as opposed to n oracle calls required
classically. The oracle (1.5) has been queried on a superposition of states for this algorithm. However, if we

query the oracle on a state |x> with the function register set to |0> we will recover the value f(x) in the func-
tion register. This demonstrates that we can run the oracle in the classical mode when desired.

Oracle modification and implementation without entanglement. This unitary oracle (1.5) requires n + 1
g-bits and can be operated in two different ways. If we use eigenstates in the input and set y = 0, the algo-
rithm outputs f(x) for a given input x in a reversible manner (which the original classical algorithm would do

irreversibly). However, the algorithm can be performed on arbitrary quantum states (typically a uniform su-
perposition of input states in the Deutsch-Jozsa and Bernstein-Vazirani algorithms).

A careful perusal of Eq. (2) reveals two important facts about the Bernstein-Vazirani algorithm.

(a) The register g-bit does not play any role in the algorithm. It is used only in the function evaluation
step because the oracle (1) demands that we supply this extra g-bit. However, if we modify the oracle to

U f(x)
|X>n—bit ? (_1) |X>n—bit (3)
we can implement everything on n g-bits. Since the state of the last g-bit does not change, it can be consid-
ered redundant and we can remove the one-g-bit target register altogether.

Remark. Although this oracle suffices to execute the Bernstein-Vazirani algorithm, it cannot give us the
value of f(x) for a given x. Therefore, one can argue that the connection with the original classical problem is
lost and one is solving altogether different problem. We demonstrate that in the classical model based on po-
larization of light beams, this problem can be circumvented and we can obtain the value of f(x) from x via a
suitable modification of the circuit. We will come back to these subtle points again in the next section.

(b) It turns out that this version of the oracle is implementable without requiring any entanglement for
the case of the Bernstein-Vazirani algorithm. The modified oracle (1.7) can be implemented without intro-
ducing any entanglement because the unitary transformation U, can be decomposed as a direct product of
single g-bit operations

U, - U U < (o) 0(ct)” @--0(a)

a z

where o] is the Pauli operator acting on the j th g-bit. On an n-g-bit eigenstate |x)=|x,)|X,)--|x,) labeled
by the binary string x the action reduces to
U, = (0" () ()"

This simplified version of the Bernstein-Vazirani algorithm where only n g-bits are used and we have
separable states at all stages of the is depicted in Fig. 1.

Initially the g-bits are set to be all in the |0> state. Each box containing H represents a Hadamard trans-
formation and the box U, represents the oracle. By a single call to the oracle sandwiched between the Hada-
mard gates we arrive at the final state|a> which reveals the binary vector a on measurement.

All the implementations till date have been along the lines of this circuit.

OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn» Bobinyck Ne3, 2014 rog

|0) H H |a1)
|0) H U H |a2)
|0) H H |an)

Figure 1. Representation of the Bernstein-Vazirani algorithm using a modified oracle on n
unentangled g-bits

Grover’s quantum search algorithm

We will now examine Grover’s algorithm for function inversion that can be used, as example, to search

a phone book with N entries to find the name corresponding to a given phone number in O(«/W) steps (the
best classical algorithms can do this in O(N) steps).

Simple introduction

Assume that we are given a quantum oracle G for computing the Boolean function f which is known to
return 1 for exactly one possible input number, and 0 for all the remaining 2" —1 possible inputs. As in our
previous examples, the oracle operates on n+1 g-bits, such that the input |x) ®|d) is transformed to the out-

put|x)®|d @ f (x)).
Our task is to find which particular value of x makes f(x) = 1.
Here is Grover’s algorithm for an n + 1 g-bit register, where n > 2:

1. Initialize the register so that the first n g-bits are |0) , and the last one is [1).

2. Apply the H gate to each g-bit.

=)
|)

(b) Apply the program V that will be described below, to the first n g-bits.

3. Do the following r times, where r is the nearest integer to

(a) Apply G to the register.

4. Read (measure) the number written in the first n g-bits, and claim that this is the value that makes f 1.

n-1

The program V is defined as the 2" by 2" matrix that has the number —1_25

— inall its main diagonal

i d 1 h I
entries an o everywhere else.

Let us see why the algorithm works correctly:

1

"1

0)-1
At the end of stage 2 the state of the register is |x>®{|)| q We will now examine what

J2

each iteration of the loop does to the register.

OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn» Bobinyck Ne3, 2014 rog

At the end of the first execution of stage 3.a we have such a term of the state in the register for each x in
the summation:

L[0T
1o (|0>®f(x))—(|1>®f(x))] o >®{ N } £ (x)=0
’2n

>

_ L yoell0-
- e LR,

Now let us generalize this to an arbitrary execution of this stage where the amplitude of each |x> need

not be equal. It is easy to see that if the last g-bit is to start with the resulting amplitude of a

1 1
[0y ———|1

o)y
particular |x) remains the same if and only if f(x) = 0. For the one |x) value which makes f(x) = 1 the sign

of the amplitude is reversed. And the last g-bit remains unchanged ati|0

1
-1
5105
get” the last g-bit and view stage 3.a as the application of an n-g-bit program which flips the sign of the am-
plitude of the searched number |w> and leaves everything else unchanged in the first n g-bits.

. We can therefore “for-

Now let’s get to stage 3b. The best way of understanding the program V is to see it as the sum of the 2"

by 2" matrix which has the number % in all its entries and the 2" by 2" matrix which has -1 in all its

main diagonal entries and 0 everywhere else. Using the properties of matrix multiplication and addition we
can analyze the effect of this stage on our n g-bits by analyzing the results that would be obtained if these
two matrices are applied separately on the g-bits and then adding the two result vectors. Say that our n-g-bit

20
collection has the following state before the execution of this stage: :|. Multiplication with the 2" by
"1
2a
2" matrix which has the number % in all its entries yields the state| : | where a is the average of the
2a
amplitudes o in the original state.

0.’0
On the other hand, multiplying | : |with the 2" by 2" matrix which has -1 in all its main diagonal
aZ”—l
entries and 0 everywhere else just flips the signs of all the a; in the original state.
So what do we get when we add these two result vectors? Each basis state | x> which had the amplitude
a, before stage 3.b obtains the amplitude 2a—«, at the end of this stage. A useful way of interpreting this
stage is saying that each amplitude «, is mappedto a+(a—¢,), i.e. every amplitude that was u units above

(below) the average amplitude before the execution would be at u units below (above) the average amplitude
after the execution.

OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn» Bobinyck Ne3, 2014 rog

At this point we start seeing the logic of Grover’s algorithm: In the beginning all the 2" numbers in the

n-g-bit collection have the same amplitude, namely%. Stage 3.a flips the sign of the amplitude of the
2n

searched number |W> , S0 now the amplitudes of all the other numbers are very close to the average ampli-
tude a but the amplitude of |W> is approximately —a at a distance of nearly 2a from the average. Stage 3.b
restores the sign of |W> ’s amplitude to positive but during this process its value becomes approximately 3a.

It is clear that the amplitude of |w) and therefore the probability that |w) will be observed when we read the
first n g-bits will grow further and further as the iterations of the loop continue and this amplitude will reach

a value greater than L after a certain number of iterations.

NA

Note that if the amplitude of |W> grows so much that the average at the beginning of stage 3.b becomes

negative each iteration would start shrinking rather than growing the amplitude of |W> , SO it is important to
know exactly how many times this loop should be iterated.
We are now supposed to find what that required number of iterations that is also essential in the calcula-

tion of the time complexity of this algorithm is. To make this calculation let us adopt a geometric visualiza-
tion of the vectors we use to represent the states of our quantum registers. If we are talking about an n-g-bit

collection as in this case there are 2" basis states as it is already mentioned. An arbitrary state of our collec-
tion is then a vector with length one in the 2" -dimensional space where each of those basis states can be
viewed to be at an angle of n/2 radians from each other. An arbitrary state «,|0)+ 4 |1)+--+ .. 2”’1> is

just the vector sum of all the 2" component vectors in the expression for it. The length of each of these com-
ponent vectors is just the absolute value of the corresponding amplitude.

The application of a quantum program on an n-g-bit register has just the effect of rotating the unit vector
representing its state to a new alignment in this space. The probability of observation of a particular basis

value x when we are at an arbitrary state |y) =, [0)+;|1)+--+ . 2”‘1> can be viewed as the square of

the length of the projection of vector |l//> onto the Vect0r|X> . This projection’s length is just equal to the

cosine of the angle between |z//> and |x> (Do not worry about the amplitudes being complex numbers in

general; most what you already know about vectors is still valid here. By the way, in the particular example
of Grover’s algorithm the amplitudes have no imaginary components at any stage of the execution.)

With this visualization method in mind we will examine what a single iteration of stage 3 makes to the
n-g-bit state. We already know that stage 3.a flips the sign of the amplitude of the component vector corre-

sponding to searched number |W> and leaves everything else unchanged.

J—ZI X).

]. In particular the angle between |s) and |w) is

In the beginning of the first iteration, the state vector is | > So the angle between vector

|s) and each one of the basis state vectors is cos‘l[

\/Z_n

Cos” Think about the initial vector as the sum a|w)+ S| y) where the second term is just what you

(&)
o)
get if you subtract a|w) from —Z| x) and |y) is the unit vector in that direction.

T &

Since the job of stage 3.a is to flip the sign of the amplitude of |W> and leave everything else unchanged

. . . . -1 .
the resulting vector is —a|w)+ B|y). The angle between this new vector and |w) is cos™ (—] ,i.e. the

N

8

OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn» Bobinyck Ne3, 2014 rog

same as before. The vector rotated all right but it ended up at the same angle from all the basis state vectors.
Only its alignment changed with respect to |w}).

It is important to see that this is what any iteration of stage 3.a does: reflects the current state vector
around the | y) axis in the plane defined by the|w) and |y) axes. To have a deeper understanding of what is
going on let’s introduce more of the notation used in the quantum literature. For any column Vect0r|v> the
expression <v| denotes the row vector obtained by replacing each component a+b-i of |v> with the number
a—b-i and then writing these in a row. Note that the expression |v)(v| describes a square matrix. Now the

matrix of stage 3.a can be seen to equal | —2|w)(w| where I is the identity matrix of the appropriate size.

So we know that a program of the form | —2|w)(w| when applied to a register in state a|w)+ 3|y)
where the angle between the |w) and |y) vectors is n/2 reflects the state vector around the |y) axis in the
plane defined by the |w) and |y) axes. But here comes another surprise: It turns out that in quantum compu-

ting multiplying a program’s matrix with any number of the form e* where x is any real number (recall that

e™ =cosx+isinx) yields a program which is completely equivalent to the original one from the point of
view of the user. (This is because the measurement probabilities corresponding to the two amplitudes

a+b-iand eix(a+b-i) are identical as you can check using the formula for e™ given above.) This means
that | —2|w)(w| and 2|w)(w|—1 (which is just | —2|w)(w| multiplied by—1=e") can be interchanged
without changing the functionality of the program.

So we can replace the program of stage 3.a with the completely equivalent program 2|w)({w|—1 that
can be easily seen to transform the input a|w)+ |y) to a|w)—B|y), i.e. to reflect it around the |w) axis if
we prefer such an interpretation.

Now consider the program of stage 3.b: It is easy to see that this program equals 2|s)(s|—1 where |s)=

2"1
! > |x) is the state of the n-g-bit register at the end of stage 2. According to our earlier discussion

2 =

2|s)(s|-1 and 1-2|s)(s| can be interchanged and we can say that stage 3.b just reflects its input vector

around the |s) axis.

Now think about the plane defined by the |w) and |y) axes with |y) horizontal and |w) vertical. After

stage 2 our state is |s) :%|W>+«/%|y> , S0 it is a vector within the first quadrant of this plane. The
2n

angle between |s) and |y) can be seen as sin‘l(

&)

When stage 3.a acts our vector is reflected around the |y) axis. Since |s) itself was in the |w)-|y)

plane and we reflected it around|y) the resulting vector is still in the |w)-|y) plane, sin™ [—j radians

\/Z_n

away from the |y) axis in the fourth quadrant.

When stage 3.b acts this vector is reflected around the |s) axis. The resulting vector is in the |w)-|y)

plane, and it is now 3.sml[Tj radians from the |y> axis in the first quadrant once again. It is easy to see
2n

that the combined effect of stage 3 for any iteration in this algorithm is to rotate the vector that it finds for

OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn» Bobinyck Ne3, 2014 rog

J radians in the counterclockwise direction in the |w)-|y) plane. We want to iterate the loop

2.sin”*
=

until the state gets sufficiently close to the |w) axis so that the probability of observing |w) during a meas-
urement is greater than 2.

Recall that the state vector was cos‘l[] radians away from the |W> axis before the loop. It is clear

N3

i 1 1
r| 2sin™ =cos™| —
would be ideal. Since r has to be an integer this is not always possible so we settle for
cos™* LlJ
W)
Zsinl[!]
J2r

Note that if the loop iterates this many times the resulting vector can be at most sm‘l(fj radians
2n

away from the |w) axis, and the probability of observing |w) at stage 4 would be at least

that a number r of iterations where

r = round

cos’ Lsinl[\/l_j] what is greater than Y% for all n >2.
2n
So what is the time complexity of Grover’s algorithm? If we measure it in terms of N =2" which is the
cosl(lJ
N
. 1

2sint| ——
#

For big N the numerator approaches % whereas sin™* tends to near the value of its own argument when

size of the “database” being searched the loop iterates round times.

the argument is nearing zero, so we can see that the time complexity is indeed O(«/ﬁ). The reasoning men-
tioned above can be generalized easily to the case where the number of inputs for which f returns 1 is not one
but M < N/2.

Note that in all the algorithms stated above we analyzed only the number of required quantum oracle
calls and showed that they were better than the number of required classical oracle calls in the best possible
classical algorithms for that job. A complete analysis would also require quantifying the amount of resources
(for instance, in terms of the number of elementary quantum gates from a fixed set) that would be required to
implement the rest of the algorithms as the function of the size of the input. Although we do not give that
analysis here those algorithms turn out to have good (polynomial) complexities in that regard as well.

Grover’s QSA: models of quantum oracles and computational algorithm

Grover’s search algorithm provides an example of the speed-up that would be offered by quantum com-
puters (if and when they are built) and has the important application in solution of global optimization con-
trol problems. The problem solved by Grover’s algorithm is finding a sought-after («marked») element in an
unsorted database (DB) of size N .

10

OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn» Bobinyck Ne3, 2014 rog

. . N . .
To solve this problem a classical computer would need n database queries on average and in the worst

case it would do N —1 queries. Using Grover’s algorithm a quantum computer can find the marked state us-

ing only O(«/W) guantum data queries. In the case of M «marked» elements in an unsorted DB of size N

speed-up of quantum search process increases as O(f%} .

Remark. Related works and optimality of quantum searching Grover discovered a QA for identifying a

target element in an unstructured DB search universe of N items in approximately %«/ﬁ queries to a quan-

. . . L N .
tum oracle. For classical search using a classical oracle the search complexity is clearly of order > gueries

since half of the items must be searched on average. It has been proved that this square-root speeds-up the
best attainable performance gained by any QA. Its work preceding Grover’s, Bennett et al. (1997) showed

that no QA could solve the search problem in fewer than O(«/W) queries. Following Grover’s work, Boyer

et al. (1998) showed that Grover’s algorithm was optimal asymptotically and that square-root speed-up can-
not be improved even if one allows e.g., a 50% probability of error. Zalka (1999) strengthened these results
to show that Grover’s algorithm is an optimal algorithm exactly (not only asymptotically). In this corre-
spondence we will also present an information-theoretic analysis of Grover’s algorithm and discuss the op-
timality of Grover’s algorithm from a different point of view for application in design of robust intelligent
control.

Thus, Grover’s algorithm has optimal order of complexity. Here we present an information-theoretic
analysis of Grover’s algorithm and show that the square-root speed-up by Grover’s algorithm is the best pos-
sible by any algorithm using the same quantum oracle.

Search problem for an unstructured DB

Consider the problem of searching an unstructured DB of N =2" records for exactly one record that has
been specifically marked. This can be rephrased in mathematical terms as an oracle problem as follows. La-
bel the records of the DB with the integers 0,1,2,...,N —1 and denote the label of unknown marked record by

X,. We are given an oracle which computes the n-bit binary function f :{0,1}" —{0,1} defined by

{1, if x=x,
f(x) =

0, otherwise.

As a standard oracle idealization we have no access to the internal workings of the function f. It operates
simply as a black-box function, that we can query as many as we like. But with each such a query an associ-
ated computational cost comes.

Search problem for an unstructured DB: Find the record labeled as x, with the minimum
amount of computational work; i.e., with the minimum number of queries of the oracle f.

Remark. From the probability theory we know that if we examine k records, i.e. if we compute the ora-

- - . .k
cle f for k randomly chosen records then the probability of finding the record is labeled as X, is N Hence,
on a classical computer it takes O(N)=0(2") queries to find the record labeled x,. However, as Grover so
astutely observed on a quantum computer the search of an unstructured database can be accomplish in

O(\/ﬁ) steps or more precisely with the application of O(\/ng N) sufficiently local unitary transfor-
mations. Although this is not exponentially faster it is a significant speed-up.

11

OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn» Bobinyck Ne3, 2014 rog

Main steps of Grover’s QSA

We assume without loss of generality that N =2" where n is an integer. The algorithm requires of n g-
bits carrying the computation. When we say it is in a state|x> we mean that its g-bits are in states corre-
sponding to the binary representation of the number x.

Example. Consider the following Problem:

X, E{O,l},x2 IS {0,1},..., Xy € {0,1}

Input
such that exactly one x; is 1.

Output The i such thatx, =1.

Classically, one needs Q(N) queries to solve this problem and there is no better algorithm than the

locations one by one until we find x =1. Surprisingly, there is a better algorithm in the quantum case
(Grover, 1996): There is a QA that solves Problem with O(\/ﬁ) queries.

Qualitatively Grover’s original QSA consists of the following steps:

(2). Initialize the register to H |0> Reset all g-bits to 0 and apply the Hadamard transform to each of
them;

(2). Repeat the following operation (named the Grover iterate G) T = %\/ﬁ times:

(2.a) Rotate the marked state |k) by a phase of z radians(llj’) ;

(2.b) Apply the Hadamard transform to the register;
(2.c) Rotate the |0) state by a phase of 7 radians(17);

(2.d) Apply the Hadamard transform again;

(3). Measure the resulting state.

Remark. The original Grover’s iterate is Q =—HIJHI. It has been generalized to Q=-UI’U"I],
where U is an arbitrary unitary operator, s is an arbitrary state, variables S and y are arbitrary angles and
M includes any number of marked states. We have now observed that any unitary operation Q has a uni-

tary diagonalization. Therefore, it can be represented as Q =—UIfUTI(A . This is a further generalization of

Grover’s algorithm where the state s is replaced by a set of states S, each of which may have a different
rotation angle. Thus, every iterative algorithm is a generalized Grover’s algorithm.

According to abovementioned QSA in computation steps of this we shall:

N-1
(4). Apply a unitary transformation U mapping |0) to %Zh) ;

i=0

(5). Repeat for (%\/ﬁl times:

N-1
- Apply the query transformation O which maps > a;|i) to
i=0

12

OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn» Bobinyck Ne3, 2014 rog

N-1

Z:ai(_l)Xi i)

i=0
'

- Apply the following «diffusion operator D »

N2
N
2 N-2 2

D|1)= 1>+%|2>+...+%|N>

2 2 -
DIN) =2 1)+ < 2)+..-2N)

(6). Measure the state and output the result of the measurement.

Remark. We note that Grover’s QSA is efficient not just in the number of queries but also in the running
time. The reason for that is that the diffusion operator D can be implemented in O(IogN) time steps.

Therefore, the whole algorithm can be implemented in O(«/ﬁlogN) :

Example. Mathematical properties of quantum operations in QSA. Let H, be a 2 dimensional Hilbert

space with orthonormal basis {|0>|1>} and let the set {|0>|1>|N —1)} denote the induced orthonormal
N-1

basis in the Hilbert space H = (? H, . From the quantum mechanical perspective the oracle function f is giv-

en as a black-box transformation U, , i.e., by

Uy
HOH, >HOH,

X)®|y)—>[x) @[f () @Y),

where « @ » denotes exclusive OR — XOR, i.e. addition modulo 2.

Remark. Instead of U, we will use below the computationally equivalent unitary transformation

_ , if =X,
IX0>(|x>):(_1)f(x)|X>:{ %), if x=x

|x), otherwise

That I‘X0> is computationally equivalent to U, follows from the easily verifiable fact that
9)-11 [9) -2
U 1X)® =(1 X)) | ® ———
[l)1, 4)el
and also from the fact that U, can be constructed from a controlled I, , and two one g-bit Hadamard trans-
forms.

We now informally explain why this QSA work follows the «inversion against average» method. To
understand the algorithm plot the amplitudes of [1),...,[N) at each step. After the first step the state is

1 8. . 1
—— > _]i} and the amplitudes are —.
W

N

Fig. 2 (a) shows this result.

13

OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn» Bobinyck Ne3, 2014 rog

aj
A
| i
(@)
qj
A
| ‘ | >
(b)
a;
A
|
k Ll
(©)
Figure 2. Effects of D operation: (a) States before operation; (b) States after operation; (c) result of calcula-
tions

After the first query the amplitude of ||> with x, =1 becomes (—LJ Fig. 2 (b) shows this result.

)
N-1

Then the diffusion operator D is applied. Let [y/) = a|i) be the state before the action of D. Then the
i=0

N_Zai +Z£aj. We can rewrite this as

i)

N-1
state after the action of D is |y')=) a/[i) where a/=-
i=0

N N N
a =-g, +Z£aj and a'+a :Z%aj . Let A:Z%aj be the average of probability amplitudes a;.

j=1 j=1 j=1
Thus, we have a'+a =2A and if a = A+ A then a'= A—A . Therefore, the effect of the «diffusion trans-
form» is that every amplitude a; is replaced by its reflection against the average of all a,.

In particular, after the first query the amplitude of ||> with x, =1 is [—LJ and all the other ampli-

N

1] 1 2 . 1
tudes are | —— |. The average is | — — —— | that is almost —.
(\/Nj g (\/N N\/Nj JN

14

OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn» Bobinyck Ne3, 2014 rog

Therefore, after applying D the amplitude of ||> with x, =1 becomes almost 3 and the amplitudes

JN

of all other basis states | j) do slightly less than L

N

Fig. 2 (c) shows this result of calculations. The next query makes the amplitude of ||> with x, =1 ap-

proximately (—i
JIN)

The average of all amplitudes is slightly less than L and reflecting against it makes the amplitudes of

N

|i) with x, =1 approximately [LJ

N

Thus, each step increases the amplitude of ||> with x, =1 by O(ij and decreases the other ampli-

IN
tudes. A precise calculation shows that after %\/ﬁ steps the amplitude of ||> with x, =1 is 1—0(1). There-

fore, the measurement gives the correct answer with probability of 1-0(1).

Remark. Boyer et all (1998) have extended Grover’s QSA to the case when there can be more than one
i with x, =1. The simplest case if the number of x, =1 is known. If there are k such values we can run the

same algorithm with {%\/gw iterations instead of (%\/ﬁw An analysis similar to one above shows that

this gives a random i such that x, =1 with high probability.

Example. A more difficult case is if k is not known in advance. The problem is that after reaching the
maximum the amplitudes of i with x =1 start to decrease. Therefore, if we do too many iterations we may
not get the right answer. This problem can be handled in two ways. The first one is running the algorithm
above several times with a different number of steps. The second one is invoking a different algorithm called
«quantum counting» to estimate the number of X, =1 and then choose the number of steps for the search al-

gorithm based on that. Either of those approaches gives us solution to:

Problem x €{0,1},%, €{0,1},...,x, €{0,1}
Output I with x, =1 if there is one «noney if x; =0 for all i
Theorem (Boyer, 1998) There is an algorithm that solves the problem with O(«/ﬁ)

Remark. Many problems can be solved by reductions to both Problems mentioned above. For example,
consider the satisfiability that is the canonical NP-compete problem. We have a Boolean formula

F(al,...,an) and we have to find whether there exists a satisfying assignment
(a, €{0,1},a,{0,1},...,a, €{0,1}) for which F(a,,...,a,)=1. We can reduce the satisfiability to above-
mentioned Problem by setting N =2" and defining (x;,...,Xy) to be F(a,,...,a,) for N=2" possible as-
signments (a, €{0,1},a, €{0,1},...,a, €{0,1}). This means that we construct an algorithm that takes

a,...,a, and checks if F(a,,...,a,)=1. Then if we replace the black-box in the Grover’s QSA by this algo-

rithm we get an algorithm that finds a satisfying assignment in the time of O(\/Z_”) times needed to check

one assignment. A similar reduction applies to any other problem that can be solved by checking all possibil-
ities in some search space.
15

OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn» Bobinyck Ne3, 2014 rog
Computational steps and physical interpretation of Grover’s QSA

Let us suppose that we have an unstructured DB with N elements. Without loss of generality suppose
that the elements are numbers from 0 to N —1. The elements are not ordered. Classically, we would test each

. . . . N .
element at a time until we hit the one searched for. This takes an average of N attempts and N in the worst

case, therefore the complexity is O(N). As we will see, using quantum mechanics only O(\/ﬁ) trials are

needed. For simplicity let’s assume that N =2" for some integer n. Grover’s QSA has two registers: n g-
bits in the first one and one g-bit in the second one.

The first step is to create a superposition of all 2" computational basis states {|0>

2" —1>} of the

first register. This is to be achieved in the following way. Initialize the first register in the state |OO...O> and
apply the operator H®" :

lw) = H®"|00...0)

- (M |0>)®"®n
i

- =2

N

B

|1//> is a superposition of all basis states with equal amplitudes of probability given by % :
The second register can begin with a state |1> and after a Hadamard gate applied it will be in state

|-) =%(|O> —|1>). Now define f:{0,...,N -1} —{,1} as a function that recognizes the solution:

. 1, if iis the searched element (io)
f(i)= .
0, otherwise

This function is used in the classical algorithm. In the QA let us assume that it is possible to build a lin-
ear unitary operator also dependent on f, U, such that U, (]i)| j))=]i)| j@ f (i)). Operator U, is called a
guantum oracle and its physical meaning is described below. In the above equation ||> stands for a state of
the first register, so 1 is in the set {0,...,2n —1}, |j> is a state of the second register, so j isin {0,1} and the
sum is modulo 2. It is easy to check that

U (01) = 5lu (o) -u ()]

In the last equation we used the fact that

16

OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn» Bobinyck Ne3, 2014 rog

0, fori=i
10 f (i) = o0
1, fori=i,
Now look at what happens when we apply oracle operator U, to the superposition state coming from
the first step |y/)|-) . The state of the second register does not change. Let us call |y,) the resulting state of
the first register:

)l = Yiw)lo)
-

1 & £() s
- wzY i)

|y/1> is a superposition of all basis elements but the probability amplitude of the searching element is nega-
tive while all others are positive.

Remark. The searched element has been marked with a minus sign. This result is obtained using a fea-
ture called quantum parallelism. At the quantum level it is possible «to see» all DB elements simultaneously.
The position of the searched element is known: it is the value of i of the term with negative amplitude in last
equation. This quantum information is not fully available at the classical level. The classical information of a
guantum state is obtained by practical measurements and at this point it does not help if we measure the state
of the first register because it is much more likely that we obtain a non-desired element instead of the
searched one. Before we can perform a measure the next step should be to increase the amplitude of the
searched element while decreasing the amplitude of the others. This is quite general: QA’s work by increas-
ing the amplitude of the states that carry the desired result. After that a measurement will hit the solution
with high probability.

Many QA’s can be analyzed in a query (oracle) model where input is given by a block-box (that an-
swers queries) and the complexity of the algorithm is measured by the number of queries to the black-box
that it uses.

Example: Query model. The majority of QA’s have operated in the so-called black-box setting (or DB—
guery model). In the black-box model the input of the function f what we want to compute can only be ac-

cessed by means of queries to a black-box. This returns the i—th bit of the input when queried on i. In the
query model the input X,..., X, is contained in a black-box and can be accessed by queries to the black-box.

In each query we give i to the black-box and the black-box outputs x, . The goal is to solve the problem with

the minimum number of queries. The classical version of this model is known as decision trees. There are
two ways to define the query box in the quantum model.

The first is an extension of the classical query.

Fig. 3 shows quantum black-box for this case.

It has two inputs i consisting of flog NW bits and b consisting of 1 bit. If the input to the query box is a
basis state |i)|b), the output is |i)|b@x). If the input is a superposition > a,,[i)|b) the output is
i,b

D a;,|i)|b®x) . Notice that this definition is applied both to the case when the values of x; are binary and to
i,b

the case when they are k —valued. In the k —valued case we just make b consisting of [Iog2 k} bits and
take b@ x. to be bit-wise XOR of b and x;.

17

OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn» Bobinyck Ne3, 2014 rog

In > | ‘ ?> ,Out

Figure 3. A black-box computing device
The second form of quantum query (which only applies to problem with {0,1}—valued X;) the black-
box has just one input i. If the input is a state > a, i) the output is > a; (~1)" [i}. While this form is less

intuitive it is very convenient to use it in QA’s including Grover’s QSA.

Remark. For this case we consider the first form as to be our main definition but we use the second one
when describing Grover’s QSA. This is possible to do because & the query of the second type can be simulat-
ed by a the query of the first type. Conversely, the oracle of the first type can be simulated by a generaliza-

tion of the sign oracle that receives > a,,|i)|b) as an input and outputs: ¥ a;(~1)" " [i)[b). A quantum

guery model algorithm with T queries is just a sequence of wunitary transforms
U, >0->U, >0—...U;, >0 U, on some finite-dimensional space C*, U,,U,,...U; ,,U; can be
any unitary transformations that do not depend on the bits x,...,X, inside the black-box. O -s are query
transformations that consist of applying the black-box to the first log N +1 bits of the state. It signifies that

we represent basis states of C* as |i,b,z). Then O maps [i,b,z) to |i,b®x,z). We use O, to denote the
guery transformation corresponding to an input X = (x1 o Xy)

The computation starts with the state |0> . Then we apply U,,0,,...,0,,U; and measure the final state.

The result of the computation is the right most bit of the state obtained by the measurement (or several bits if
we are considering a problem where the answer has more than 2 values). The QA computes a function

f(X,-.- Xy) if for every x=(x,,...,xy) for which f is defined the probability that the rightmost bit of
UTOXUH...OXUO|O> equals f(x,...,Xy) is at least 1—¢ for some fixed g<% . The query complexity of
f is the smallest number of queries used by a QA that computes f . We denote it by Q(f) :

Let us consider now the quantum oracle models that in quantum computation are used more in detail.

Quantum oracle model

The Grover’s QSA solves the unstructured search problem, under the assumption that there exists a
computational oracle that can decide whether a candidate solution is the true solution.

Types and relations between oracle models. The following oracles are defined in Table 1 for a general
function f :{0,1}" — {0,1}" .

Here x and b are strings of m and n bits respectively, |x) and |b) the corresponding computational

basis states and @ is addition modulo 2". The oracles P, and S, are equivalent in power: each of the ora-
cle can be constructed by a quantum circuit containing just one copy of the other.

If we take m=n and suppose we know f is a permutation on the set {0,1}n then M, is a simple in-
vertible quantum map associated to f .

Table 1. Oracles functions

Number Title of oracle Type Definition

18

OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn» Bobinyck Ne3, 2014 rog

1 The phase oracle P, | x)|b) — exp {%(nx)bh x)|b)
2 The standard oracle S, | X)|b) — | x>‘b@ f (x)>

3 The minimal oracle M, | %) —>‘ f (x)>

Example: Each oracle is simulating the other. One way round turns out to be simple. We can construct
S; from M, and (Mf)ilz M. as follows: |S; :(Mf,1 ®I)vo(Mf ®I) where «o» represents the

decomposition of operations (or concatenation of networks) and the modulo N adder A is defined by A:
|a)®|b) —>|a)®|a®b). Thus, a standard oracle can be simulated given a minimal oracle using just two

invocations, one of M, and one of (M ¢)71. However, the converse is not true: simulating a minimal oracle
M; requires exponentially many uses of the standard oracle S . First, consider the standard oracle S_,
which maps bits state |y)[b) to [y)|b@® f(y)). Since S, .:[y)|0)—|y)| f*(y)) stimulation of it allows
us to solve the search problem of identifying ‘f’l(y)> from a DB of N elements. It is known that using

Grover’s search algorithm one can simulate S - with O(\/ﬁ) invocations of S, .

Example. In the following example we explain one possible way of doing that. Prepare the state
|¥)[0)|0)|0) where first three registers consist of n g-bits and the last register is a single g-bit. Apply Hada-

mard transformations on the second register to get |®,)=|y) > |x)|0)|0). Invoking S, on the second and

XeZ,

third registers new one gives |y>{ DX f (x)>}|0> . Using CNOT gates compare the first and third registers

XeZy

and put the result in the fourth obtaining @ y) > [0|f (x)>|0>} +[| y>| f-l(y)>| y>|1>} :

xeZyx=f(y)

Now apply (S,)71 to the second and third registers obtaining

(|y> » |x>|o>|o>}+(|y>|f1<y>>|o>|1>)-

xeZy x#f(y)

Taken together these operations leave the first and third registers unchanged, while their action on the
second and fourth ones defines an oracle for the search problem. Applying Grover’s algorithm to this oracle

we obtain the state |y)| f(y)) after O(\/W) invocations.

Example: The oracle model. Suppose we are supplied with a model oracle — a black-box internal work-
ings of which we discuss later but that are not important at this stage — with the ability to recognize solutions
to the search problem. This recognition is signaled by making use of an oracle g-bit. More precisely the ora-

cle is a unitary operator O defined by its action on the computational basis: |x)|q)—>—|x)|q® f (x))
where |x) is the index register, @ denotes addition modulo 2 and the oracle g-bit |q) is a single g-bit that is
flipped if f(x)=1 and is being unchanged otherwise. We can check whether x is a solution to our search

problem by preparing |x)|0) applying the oracle and checking to see if the g-bit has been flipped to [1). In

the QSA it is useful to apply g-bit initially in the state %(|O>—|1>) just as it was done in the Deutsch —

19

OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn» Bobinyck Ne3, 2014 rog

Jozsa algorithm. If x is not a solution to the search problem applying the oracle to the state |x>%(|0> —|1>)
does not change the state.

On the other hand, if x is a solution to the search problem then |0) and |1) are interchanged by the ac-

tion of the oracle giving a final state {—| x)%ﬂo) —|1>)} . The action of the oracle is thus:

9 5(100-1) |- o 59 -1) .

Oracle qubit Oracle qubit
Remark. Notice that the state of the oracle g-bit is not changed. It turns out that this remains

%(|0>—|1>) throughout the QSA and therefore, it can be omitted from further discussion of the algorithm

simplifying the description. With this convention the action of the oracle may be written:
[x)—2=(-1)"|x).

We say that the oracle marks the solutions to the search problem by shifting the phase of the solution.
For any N item search problem with M solutions it turns out that we need only to apply the search oracle

O(/%J times in order to obtain a solution on a quantum computer.

Remark. It seems as though the oracle already knows the answer to the search problem. Question is
what possible use could it be to have a QSA based upon such oracle consultants? The answer is that there is a
distinction between knowing the solution to a search problem and being able to recognize the solution; the
crucial point is that it is possible to do the latter without necessarily being able to do the former.

When we say that one item in search space is marked it’s means is given a «black- box» or «oracle»
which has the ability to identify a solution to the search problem when it sees a solution. To say it more pre-
cisely, we have two registers in our possession. The first register stores the index x to an element in the
search space while the second register is a single state z. If supposing s is the marked item then the oracle

has the effect: |x)|z) >|x)|z®5,,).

Thus, the oracle «recognized» solutions to the search problem in the sense that it flips the second regis-
ter when it finds the solution to the problem in the first register. It means that the oracle does not know the
identity of the state it is searching for but rather can recognize the solution when sees it.

Before describing the steps of the algorithm it’s actually very useful to notice two things. First of all,
imagine that we prepare the first register in the state |x) and the second register in the superposition |0) —|1)
. Then the effect of the oracle will be as follows:

§sx
%)(10)=1) > (1) [x)(|0) (1)) -
Notice that the state of the second register is left alone by this operation; henceforth we will ignore the
state of the second register and will just write the action of the oracle as |x) — (~1)" |x).

In a similar way it’s useful for us to be able to perform an operation that leaves the state of our register
|x> alone unless it is in all zero state in that case a phase shift of (—1) is applied. The computational com-
plexity of the function f is measured by the required number of queries. In this setting we want QA that use
significantly fewer queries than the best classical algorithms.

20

OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn» Bobinyck Ne3, 2014 rog

Our purpose is to find the «target» y with the smallest possible number of the oracle evaluations called
the query complexity. It is remarkable that there is a QSA that enables this search method to be speed-up

substantial requiring only O(\/ﬁ) operations.

Remark. Elementary probability theory shows that classically if we examine k records then we have
probability k/N of finding the special one, so we need O (N) such trials to find it with any constant (inde-

pendent of N) level of probability. Grover’s quantum algorithm achieves this result with only O(y/N) steps

(or more precisely O(y/N) iterations of Grover’s operator G but O(\/ﬁlog N) steps, the logN term com-
ing from the implementation of H). It may be shown (Zalka, 1997) that the square root speedup of Grover’s
algorithm is optimal within the context of quantum computation.

In Grover’s QSA the N inputs are mapped onto the states of n g-bits. The Grover’s QSA is optimal
exactly and not only asymptotically, optimal for query complexity if quantum computation consists only of
unitary transformations with fixed structures and the final measurement.

Thus, the quantum problem becomes one of maximizing the overlap between the state of these n g-bits
and the target state |y> . This is equivalent to maximizing the probability of obtaining the desired state upon

measurement. The initial state of these g-bits is taken to be an equal superposition of all possible bit stings.
The Grover operator that is used repeatedly in the algorithm corresponds to a small rotation in the two-
dimensional subspace spanned by the initial and target states. Each such rotation requires a single evaluation

of f (x) . Thus, unlike a classical search the quantum search monotonically rotates the state towards the tar-
get.

The circuit for Grover’s QSA

Now we shall work out the details by introducing the circuit for Grover’s QSA and analyzing it step by
step.

Fig. 4 shows the circuit for Grover’s QSA.

CRGE
first
register : - :
(n qubits) G G G

]0|)L'" lEIM-} We) ey
second o ' VG Vo2
= | T : e 1n

Figure 4. Qutline of Grover’s algorithm

The unitary operator G is applied O(\/ﬁ) times. The exact number will be obtained later on. The cir-
cuit for one Grover iteration G is given in Fig. 5.

The states |y/) and |y,) are given above. The operator 2|y)(y|—1 is called inversion about the mean
for reasons that will be clear below. We will also show how each Grover operator raises the amplitude of the

—i|io
2

1

N

Let us calculate |y) in Fig. 5. Using the abovementioned approach and two last expressions for |y,)

searching element: |y,) can be rewritten as |y,) =|y)), where [i;) is the searching element. |i,) is

a state of computational basis. Note that (y| i,) =

and <y/‘ i0> , we obtain
21

OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn» Bobinyck Ne3, 2014 rog

0)+4|1
_2 Oracle
: u 219) (Pl -1
0) 4|1
1 1 1
[4) |%1) lve)
=¥ = [-)

Figure 5. One Grover iteration (G)
The states of the first register correspond to the first iteration
ve) = (@w)yl-1)lw)
2" -1 2 .
io)

= 202 |‘//>+\/2—n

This is the state of first register after one application of G ; the second register is in the state |—> This

allows a nice geometrical representation taking |i0> and |1//> as base vectors (non-orthogonal basis). Fig. 6
shows the vectors |i,) and |y/).

119 14) = 1)

0 |¥)

[¥1) = Uy |¥)

Figure 6. The state of the first register lives in the real vector space spanned by |i,) and |y/)

We take these states as a basis to describe what happens in Grover’s algorithm. They form an angle

smaller than 90° as can be seen from the relation <1//| io>:% ,since O<<y/‘ i0><1. If n is large, then the
2n

angle is nearly 90 °. We can think that |y/) is the initial state of the first register, and the steps of the compu-
tation are the applications of the unitary operators U, and 2|y)(yw|—1. Then |y) will rotate in the real
plane spanned by |y) and |i,), keeping the unit norm. This means that the tip of |y/) ’s vector lies in the unit

circle. From the expressions for |y,) and <1//‘ i0> we see that |y/) rotates & degrees clockwise, where

cosfd=1-

2n—1)
Fig. 6 shows the position of vector |1//1> in the unit circle. From the expressions similar to <1//‘ i0> we

see that the angle between |y) and |y/) is cos@'=<y/|y/e>=1—%. So, 0'=6 and |y,) rotates 26 de-
grees counterclockwise (in the direction of |i,)).

Fig. 7 explains also the placement of |y) .

22

OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn» Bobinyck Ne3, 2014 rog

Figure 7. A generic vector |i0> is reflected around the horizontal axis by the application of Us, yielding |0'1>
. Then, the reflection of |o;) about the mean |y/) gives G|o), whichis @ degrees closer to |i,) (vertical
axis)

Remark. This is remarkable result, since the resulting action of G =(2|y/)(w|—-1)U, rotates |y) to-
wards |i)) by & degrees. This means that the amplitudes of |i,) in |y) increased and the amplitudes of |i)
, i =iy, decreased with respect to their original values in |y). A measurement, at this point, will return |i,)
more likely than before. But it is not enough in general, since € is a small angle if n>1 while

1
cosezl—F . That is why we need to apply G repeatedly, ending up @ degrees closer to ||0> each time,
until the state of the first register be very close to |i0> , SO We can measure.

Example: Computation in Grover’s quantum gate and geometrical interpretation of simulation results
for N =8 . We will describe Grover’s QSA for search space of 8 elements for an unknown record with the

unknown label xo = 5. If N =8 then number of input qubit is n=3,2° =8 . There are 3 qubits in the first
register and 1 qubit in the second register. For N =8, the operator G will be applied two times as we will

see from estimation (%\/ﬁ—l . Fig. 8 shows the circuit in this case.

——

0 —s] Oracle | | ol : [}
10) —[w}—! o H 2w - 0';“ S]I RS {H . pry B
|0)_rE 1 1 I ! | 1| ’EI=

1 1

>

EX

G G

Figure 8. Grover’s algorithm for N = 8
Classically, an average of more than 4 queries are needed in order to have a probability of success of

1
more than E .

1. We are given a black-box computing device (see Fig. 3) that implements as an oracle the unknown
unitary transformation

23

OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn» Bobinyck Ne3, 2014 rog

O O o o

o o
© or 00 o o o

O B O 0O,0 O O O
m O O 0O O ©o o

O O O OO0 O O -

o O O OEO o - O

o O O O;O = O O

o O O O:H o O O
AN

Remark. We cannot open the black-box in Fig. 3 to see what is inside. So we do not know what I‘X0>

and x, are. The only way that we can glean some information about x, is to apply some chosen state |¢//> as

input, and then make use of the resulting output. Using of the black-box in Fig. 3 as a component device, we
construct a computing quantum gate, which implements the unitary operator

31 1 1!-1 1 1 1

1 31 1:-1 1 1 1

1 1 3 1i-1 1 1 1

11 1 1 3.1 1 1 1
Q=HlyHly =7 B T A T R R
1 1 1 1i-1 -3 1 1

1 1 1 1:i-1 1 -3 1

11 1 1;-1 1 1 -3

We do not know what unitary transformation Q is implemented by the quantum gate because the black-
box is one of its essential components. We can compute the state |5> in standard Grover’s QSA as following.

STEP 0: We begin by preparing the known state (superposition)
lwo)=H|0)= 1 (L1,1,2,2,1,1,7)rempos
J8

STEP 1: We proceed to loop K =round [* —E]—%) =2 times in STEP 1.

4sin*(1//8) 2

Iteration 1. On the first iteration, we obtain the unknown state (entanglement state)

1
— — = l,l,l,l, 51111,1 transpose
|w1)=Qlws) 205)

Iteration 2: On the second iteration, we obtain the unknown state (interference mode)

1
= [_1' _1’ _1’ _1, 11, _1, _1!) transpose
v,)=Qlw1) 4\/5()

and branch to STEP 2.
STEP 2: We measure the unknown state |y,) to obtain either |5) with probability

121

Prob,, ..., =sin’[(2K +1)/3]=@

success

=0.9453

or some other state with probability

24

OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn» Bobinyck Ne3, 2014 rog

— cos?[(2K +1)] = — =0.0547

IDr-Obfailure
128

and then exit.

2. Let us describe the quantum computation process state at each step shown in the circuit in Fig. 1.27
as following:

(|‘//o>_)|'//>_>|‘//1>_)|§”2>_>|l//3> and |V/f>)-
(1). The initial state is |y,) =[000);

7
(2). After Hadamard gates, | y) = H®*|000) = (H |0>)®3 = LZM ;

225

Suppose that we are searching for the element with index 5.

(3). Since |5) =|101),

U, (|101)|-))=—[101)|-), for i =5.
U ()l) = [0B[-).if i=5

Define |u> as

1 &, |000)+|001)+|010)+|0L1)+[100) +|110)+[111)

A 7

Then |z//>=%|u>+

1
——|101) .
22"
With this result we can see the direction of [/) .

Fig. 9 shows this direction of |y/).

Figure 9. Intermediate states in Grover’s algorithm for N = 8

The value of @ is

25

OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn» Bobinyck Ne3, 2014 rog

2
22

=i arccos| =
4

~ 41,4°

0= 2arccos(

Notice how close is ‘y/f> to |101>, indicating a high probability that a measurement will give the
searched element. The value of & is around 41.4°.
(4). The next step is

|000) +|001) +]010) +|011) +|100) —|101) +|110) + [111)

it = U= | " J

Note that [101) is the only with a minus sign. We can write |y,) as

)=l 509 or)=) o)

The form of last two equations is useful in the next step of calculation since we have to apply
(2|lw){(w|—1). The form in last equation is useful to draw the geometrical state |y,).

Fig. 9 shows the state |y,). |) is the reflection of |y/) with respect to |u).
Next step is the calculation |w,)=(2|y){(w|—1)|w,). Using the last expressions for |y,), we get

|1//2>=%|1//>+%|101> and, using the last expression for |y/),

|w2>:%|u>+%|101>.

Let us conform that the angle between |/) and |y,) is 6

3

cos0={ylws) = (Wly) + 5 (whon =7

which agrees with the above expression of . This completes one application of G .

(5). The second and last application of G is similar. |1//3> is given by

)= i) -5 hod).
Using |y)= \{/7_| uy+ J_|101> we have

) =3lv) 5 751100

|w,) is the reflection of |y,) with respect to |u}) .
(6). The last step is

26

OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn» Bobinyck Ne3, 2014 rog

wi)=(2lw)(w]-1)lws)-

N

Using |1//>=m|u> |101> and |y,) = 1|)— \/_|101> we have

7 11
=— ——=|101).
)=o)+ oy
It is easy to conform that |1//f> and |y,) form an angle 6. Note that the amplitude of the state |101) is

much bigger than the amplitude of any other state ||> (i ¢5) in last expression for |y/f > This is the way

most QA work. They increase the amplitude of the states that carry the desired information. A measurement
of the state |z//f > in the computational basis will project it into the state |101> in the computational basis with

probability p= ~0.9453 . The chance of getting the result |101> , Which reads as number 5, is around

‘ 11
8V2
94,5% .

Example: Generalization of computational process in QSA. The easiest way to calculate the output of
Grover’s QSA is to consider only the action of G instead of breaking the calculation into action of the oracle

U, and the inversion about the mean. To this end, we choose |i,) and |u) as the basis for the subspace

where |y/) rotates after successive applications of G . |i,) is the searched state and |u) is defined from the
above expression in general form as

- 3 =il

From the first expression above we easily see that (i;|u) =0, i.e., |i;) and |u) are orthogonal. From the

second equation we have |y)= 1——| u)

G |w) =cos(2k2+149j| u>+sm(

|—> all the time.

The state of the quantum computing at each step is

\/—|'>

s 9j| i0> , Where we have dropped the state of the second register it is

Fig. 10 shows effect of G on |y/).

The above last equation is obtained after analyzing the components of Gk|1//>. The value of & is ob-
tained substituting k for O in last expression and comparing it above with two last equations,

0 = 2arccos fl—% . The equation for G* |z,//> expresses the fact (we proved above), that each application of

G rotates the state of the first register by & degrees towards |i0> . Figure 1.29 shows successive applications
of G.

27

OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn» Bobinyck Ne3, 2014 rog

t0) G3 |y

Figure 10. Effect of G on |y/)

The number of times k, that G must be applied obeys the equation k00+§=% . Since k, must be in-

teger, we write k, = round (ﬁz—jj , Where @ is define from above equation @ = 2arccos fl—% JfF N>1,
by Teilor expanding this last equation, we get Qz% and from the expression for k, = round (”2—_99)

and we have k, = round (%«/ﬁ} After applying k, times the operator G , the probability p of finding the

desired element (after a measurements) is

p =Sin2£2k°2+1¢9j.

Example: Probability of successful result of quantum search. Fig. 11 shows the evolution value of prob-
ability p of finding the desired element (after a measurements) for n form 2 to 30.

i L] 3 e 90 0 © 0 0 O & O O O O O O O 0 OO0 O O O OO
® 0
0.98 1
0.96 *
p(n)
] °
0.94 4
0.924
097 5 10 15 20 25 30
n=iog N

Figure 11. Probability of succeeding as a function of n

28

OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn» Bobinyck Ne3, 2014 rog

Recall that N =2", so for n=30 the search space has around one billion elements. For n=2 the prob-
ability of getting the result is exactly 1. The reason for this case is that the equation for 6 is

0 = 2arccos fl—% and yields 0:% . And |y) makes an angle Hzg with |u).

2k, +1

Applying G one times rotates |y/) to |i)) exactly. For n=2, from p:sinz(9] yields

p =~ 0,9453 which is the result that described above.

Remark. The description of Shor’s quantum search algorithm is closed to the solution of quantum cryp-
tography problems and in part 2 of this book is considered.

Shor’s quantum algorithm for factoring

Shor’s algorithm is the most important algorithmic result in quantum computing. The algorithm is built
on ideas that already appear in Deutsch and Jozsa’s algorithm and in Simon’s algorithm, and like these algo-
rithms the basic ingredient of the algorithm is the Fourier Transform (FT) will be stated as follows:

Input: | Aninteger N

Output: | A non-trivial factor of N, if it exists

Remark. There is no proof that there is no polynomial classical factorization algorithm. The problem is
even not known to be NP-complete. However, factorization is regarded so hard because many works have
tried to solve it efficiently and failed. In 1994 Shor published a polynomial (in log(N)) QA for solving this
problem. In fact, Shor presented a QA not for factoring but for a different problem:
Order modulo N:

Input: | Aninteger N and Y are coprimes to N

Output: | The order of Y, i.e. the minimal positive integer r such that Y =1mod N .

In order to factor a number N it is enough to be able to find the order of x in Zx.

Let us consider theoretical aspects of Shor’ algorithm.

Reduction of factorization to order-finding

Let us describe Shor’s algorithm for finding the prime factors of a composite number N. Think of a
large number such as one with 300 digits in decimal notation, since such numbers are used in cryptography.
Though N is large the number of g-bits necessary to store is small. In general logzN is not an integer, so let us

define |_Iog2 N _| A quantum computer with n g-bits can store N or any other positive integer less than N.
With a little thought we see that the number of prime factors of N is at most n. If both the number of g-bits

and the number of factors are less than or equal to n, then it is natural to ask if there is an algorithm that fac-
tors N in a number of steps which is polynomial in n.

More technically, the question is: is there a factorization algorithm in the complexity class P?

Reduction of factorization of N to the problem of finding the order of an integer x less than N is as fol-
lows. If x and N have common factors, then gcd(x,N) gives a factor of N, therefore it suffices to investigate
the case when x is coprime to N. The order of x mod N is defined as the least positive integer r such that

X" =1mod N . If r is even, we can define y by x”? = ymod N .

Remark. The above notation means that y is the remainder of x"? divided by N and by definition 0 <y <
N. Note that y satisfies y2 =1 mod N or equivalently (y — 1)(y + 1) = 0 mod N, what means that N divides (y
—1)(y+1). If1<y<N-—1thefactorsy —1 andy +1 satisfy 0 <y —1 <y +1 < N, therefore N cannot divide y

29

OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn» Bobinyck Ne3, 2014 rog

—1 nor y +1 separately. The only alternative is that both y —1 and y +1 have factors of N (that yield N by mul-
tiplication) (see in details Appendix: Elements of Number Theory).

So, ged(y —1, N) and ged(y +1, N) yield non trivial factors of N (gcd stands for the greatest common di-
visor). If N has remaining factors they can be calculated applying the algorithm recursively.

Example. Consider N = 21 as an example. The sequence of equivalences

2*=16mod21, 2°=11mod21, 2°=11x2=1mod?21,
show that the order of 2 mod 21 is r = 6.
Therefore, y = 22 =8 mod 21, y — 1 yields the factor 7 and y + 1 yields the factor 3 of 21.

In summary, if we pick up at random a positive integer x less than N and calculate gcd(x, N) then either
we have a factor of N or we learn that x is coprime to N. In the latter case if x satisfies the conditions (1) its
orderrisevenand (2) 0<y—1<y+1<Nthengcd(y— 1, N) and gcd(y + 1, N) yield factors of N. If one of
the conditions is not true we start over until finding a proper candidate x. The method would not be useful if
these assumptions were too restrictive but fortunately that s was not the case. The method systematically
fails if N is a power of some odd prime but an alternative efficient classical algorithm for this case is known.
If N is even we can keep dividing by 2 until the result turns out to be odd. It remains to apply the method for
odd composite integers that are not a power of some prime number. It is cumbersome to prove that the prob-
ability of finding x coprime to N satisfying the conditions (1) and (2) is high; in fact this probability is
1-1/2" where k is the number of prime factors of N. In the worst case (N has 2 factors) the probability is
greater than or equal to '%.

At first sight, it seems that we have just described an efficient algorithm to find a factor of N. That is not
true, since it is not known an efficient classical algorithm to calculate the order of an integer x mod N. On the
other hand, there is (after Shor’s work) an efficient QA.

Let us describe it.

Theorem: If there is a polynomial (in log N) algorithm to solve order modulo N then there is a
polynomial algorithm to solve factorization.

Proof: We show a (classical probabilistic) reduction from FACTORING to ORDER. That is, we as-
sume we have a black box algorithm for finding the order of a given integer x (coprime to N), in Zy.

Lemma 1. A solution to the equation x> =1(mod N) with x = —1,+1 gives a factor of N.

This is true since this equality implies (x + 1)(x—1) = mN for some integer m, and both
1<x-1,x+1< N —1. This means that either gcd(x—1, N)=1,N or gcd(x—1,N)=1 N, as N divides
(x + 1)(x —1). This proves the lemma.

Now pick a random (nonzero) element of Zx. If gcd(x, N) > 1, then we have found a factor of N. If not,
find the order r of x in Zy. Assume we are lucky, and r is even and also vy = x"? % -1+1. Then y is a nontriv-
ial solution to the equation y*> =1(mod N) , which gives us a factorization of N by the previous lemma. What
is the probability that we are lucky?

Lemma 2. Let N = p;* - ps2...- p." , where p, are distinct primes, N is odd and not prime (i.e.
m>1, p,# 2). Choose x € Zyrandomly. Then

Prob (ORD, (x) iseven,and X" #-1,+1)>1-2">1/2

We shall not prove this lemma (proof can be found in Nielsen-Chuang (2000)). This shows that a ran-
domly chosen x will give a factor of x using the procedure described above with probability > '4. This can, as
usual, be amplified by repeating this process several times. We have thus proved theorem.

Example. Reduction to Period-Finding. Shor’s algorithm finds a factor by finding the period of some
sequence. We first show how efficient period-finding suffices for efficient factoring. Suppose we want to
find factors of the composite number N > 1. Randomly choose some integer xe{2,...,N —1}. Consider the

sequence
30

OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn» Bobinyck Ne3, 2014 rog

1=x"mod N, x*mod N, x* mod N, ...

This sequence will cycle after a while: there is a least 0<r <N such that x" =1mod N . This r is called

the period of the sequence. It can be shown that with probability > %, r is even and x"? +1 and x"? -1 are
not multiples of N. In that case:

r

ImodN | &

X =
(XT/Z)Z = | 1ImodN At
(X2 +)(x"-1) | =| OmodN | <
(Xr/2 +1)(Xr/2 _1) = kN for some k.

Not that k > 0 because both x”?+1>0and x”>—1 >0 (x > 1). Hence x"?+1 or x"? —1 will share a

factor with N. Because x"?+1 and x"?—1 are not multiples of N this factor will be <N, and in fact both
these numbers will share a non-trivial factor with N. Accordingly, if we have r then we can efficiently (in

O(logN) steps) compute the greatest common divisors ged (x"* +1,N) and ged (x"? —=1,N), and both of

these two numbers will be non-trivial factors of N. If we are unlucky we might have chosen an x that does
not give a factor (which we can detect efficiently), but trying a few different random x gives a high probabil-
ity of finding a factor.

Thus the problem of factoring reduces to finding r.
We will show below how the QFT enables us to do this.

Shor’s algorithm for finding the order

Given N choose a random (with the uniform distribution) m (1 <m < N). We assume that gcd(m, N) = 1,
otherwise we would already know a divisor of N. We want to find the order of m, i.e. the least integer r such
that

m" =1(mod N).

Fix some q of the form q=2° with N? <q < 2N?. The algorithm will use the Hilbert space

H=C'®[c"]|®ck

where C% and C™ are two quantum registers which hold integers represented in binary. Here N, is an inte-

ger of the form N, =2' for some | such that N < N,. There is also the work space C* to make arithmetical
operations.

We will not indicate it explicitly. If a=a,2°+2'a +2%a, +..+2%a_is the binary representation
. . 1 0) . .
(3, =0,1) of an integer a then we write |a)=|a,)®...®|a,) where |0>=[0J, |1>=(1] is the basis in the

two dimensional complex space C*. We have the data (N, m, q).

As abovementioned, the algorithm for finding the order r of m consists from 5 steps:
1. | Preparation of quantum state.

Modular exponentiation.

Quantum Fourier transform.

2
3
4. | Measurement.
5

Computation of the order at the classical computer.

31

OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn» Bobinyck Ne3, 2014 rog

Description of the algorithm

Step 1: Preparation of quantum state. Put the first register in the uniform superposition of states repre-

Ja

Step 2: Modular exponentiation. Compute m*(mod N) in the second register. This leaves the quantum
computer in the state

senting numbers a(modq) . The quantum computer will be in the state |1,//1 |a > ®|O >,

lw,) = *(modN)>.

Step 3: Quantum Fourier transform (QFT). Perform the QFT on the first register, mapping |a> to

q-1
L geeierq |c >. The quantum computer will be in the state
q c=0
1 SRS 2riac/q a
|1//3>=a > 7oe |c>®|m (modN)>.

Step 4: Measurement. Make the measurement on both registers |c> and ‘ma (mod N)>

Remark To find the period r we will need only the value of |c) in the first register but for clarity of

computations we made the measurement on the both registers. The probability P(c,m*(modN)) that the
guantum computing ends in a particular state

‘c;mk (mod N)> =|c>®‘mk(m0d(N)>

according to quantum mechanics law is

P(c,m*(modN)) = |< m*(mod N);cly, >|2

where we can assume 0 <k <.

We will use the following Theorem, which shows that the probability P(c,m*(mod N)) is large if the
residue of rc(modq) is small. Here r is the order of m in the group (Z / NZ)" of residues of modulo N.

Theorem: If there is an integer d such that —% <rc—dq g% and N is sufficiently large then

P(c,m* (mod N)) ziz
3r

Step 5: Computation of the order at the classical computer. We know N, ¢ and q and we want to find the
order r. Because g > N?, there is at most one fraction d/r with r < N that satisfies the inequality. We can ob-
tain the fraction d/r in lowest terms by rounding c/q to the nearest fraction having a denominator smaller than
N. To this end we can use the continued fraction expansion of ¢/q and Theorem 5.1.

We will introduce the following theorem which summarizes main results of the quantum algorithm for
finding the order.

Theorem: If the integer N is sufficiently large then by repeating the first four steps of the algorithm for
finding the order O(loglog N) times one can obtain the value of the order r with the probability » >0 where

the constant y does not depend on N.

32

OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn» Bobinyck Ne3, 2014 rog
The quantum algorithm for order finding: Circuit work analysis

Again we will work with two registers. The first will hold a number between 1 to Q. (Q will be fixed
later: it is much larger than N, but still polynomial in N.)The second register will carry numbers between 1 to
N. Hence the two registers will consist of O(log(N)) qubits.

Let us now understand how this algorithm works. In the second step of the algorithm, all numbers be-
tween 0 and Q — 1 are present in the superposition, with equal weights. In the third step of the algorithm,
they are separated to sets, each has periodicity r. This is done as follows: there are r possible values written

on the second register: a e {YO,Yl,....YH} . The third state can thus be written as:

Yr=1)|.

Note that the values I that give Y' =a have periodicity r: If the smallest such I is I, then I =I,+r,
l, +2r, ... will also give Y' =a. Hence each term in the brackets has periodicity r. Each set of /’s, with pe-

riodicity r, is attached to a different state of the second register. Before the computation of Y', all /’s ap-
peared equally in the superposition. Writing down the Y' on the second register can be thought of as giving
a different “color” to each periodic set in [0, Q — 1]. Visually, this can be viewed as follows:

\/— (3 Wepe(3 Mol 3 e

I= O‘Y' I= O‘Y' -y? I= O‘Y' =y'

A J

012 ool L 2 2, L O-1

The measurement of the second register picks randomly one of these sets, and the state collapses to a
superposition of /’s with periodicity r, with an arbitrary shift 1,. Now, how to obtain the periodicity? The

first idea that comes to mind is to measure the first register twice, in order to get two samples from the same
periodic set, and somehow deduce r from these samples.

However, the probability that the measurement of the second register yields the same shift in two runs
of the algorithm, i.e. that the same periodic set is chosen twice, is exponentially small.

How to gain information about the periodicity in the state without simply sampling it?

This is done by the FT. To understand the operation of the FT, we use a diagram again:

Step Shor’s algorithm
t | [o)elo)
’ Apply FT over Z,, on the first register ‘ >

(

3 | call subroutine which computes |1)|d) |—>|I>‘d ®Y'mod N>

1

ﬁZSm@Wl mod N>

4 | Measure second register

HeY*)= Jir+1)®|Y")

\/_ZI =ojv! Y'O \/_Z

33

OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn» Bobinyck Ne3, 2014 rog

S | Apply FT over Z, on the first register

FIO(FRZ e aly)

6 | Measure first register.

Let k, be the outcome. Approximate the fraction g by a fraction with denominator

smaller than N, using the (classical) method of continued fractions.
If the denominator d doesn’t satisfy Y¢ =1mod N , throw it away.

Else call the denominator r,.

9 | Repeat all previous steps poly(log(N)) timesto get r,, r,, ..

10 | Output the minimal r.

Each edge in the diagram indicates that there is some probability amplitude to transform from the bot-
tom basis state to the upper one.

0 1 2 .. d Pl e 20 ZFFl e 0-1

We now measure the first register, to obtain k. To find the probability to measure each k, we need to
sum up the Weights coming from all the s in the periodic set.

e

Hence, in order to compute the probability to measure each k, we need to evaluate a geometrical series.
Alternatively the geometric series is a sum over unit vectors in the complex plane.

27ik(jr+ly)/Q

Prob(k) =

ankr/Q)J

Exact periodicity. Let us assume for a second exact periodicity, i.e. that r divides Q exactly. Then A =

Q/r. In this case, the above geometrical series is equal to zero, unless e?™ "/ =1 Thus we measure with
probability 1 only &’s such that kr =0modQ . This is where destructive interference comes to play: only

“good” k’s, which satisfy kr =0modQ, remain, and all the others cancel out. Why are such k’s “good” ? We

can write kr = mQ, for some integer m, or k/Q = m/r. We know k since we have measured it. Therefore we
can reduce the fraction k/Q. If m and r are coprime the denominator will be exactly r which we are looking
for. The probability for all “good” k’s is the same, so m is chosen randomly between O to r — 1. By the prime
number theorem, there are approximately r/log(r) primes smaller than r. Repeating the experiment a large

enough number of times we will with very high probability eventually get m prime, i.e. coprime to r.
Example. r divides g (easy case). Assume we have picked a random x and we want to find the corre-

sponding period r. We can always efficiently pick some smooth g such that N* < q<2N? (for instance take

g a power of 2). The QFT for Z, can be implemented using O((log 0)*) =O((log N)*) elementary gates. We

will first assume that the unknown r divides g, in which case everything works out smoothly. It is known that
in O((logN)*) steps we can compute the transformation |a)|0) —|a)|x* mod N> using the Schonhage-

34

OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn» Bobinyck Ne3, 2014 rog

Strassen algorithm for fast multiplication. We now find r as follows. Start with |0)|0), two registers of
g-1

T2

[logq| and [logN | zeroes, respectively. Apply the QFT to the first register to build QFT :=

1 register |01> - |_Iogq_|

2 register |02> - flogN-|

Then compute x*modN in quantum parallel:

\/_ > Observing the second register

gives some x°*mod N , with s < r. Note that because r divides g, the a of the form a= jr+s(0< j<q/r) are

exactly the a for which x* mod N equals the observed value x* mod N . Thus the first register collapses to a
superposition of |s),[r+s),[2r +s),...|g—r+s) and the second register collapses to the classical state

q/r—l

x*mod N . We can now ignore the second register, and gave in the first: Z |jr+s). Apply the QFT
q7j

again gives
r qir-1g-1 I(Jr+s) g-1 stb qir-1 5, Ier
FOIDIC)= (=5 S e ™ o).
g =0 b=o Qb0 =
Using that Z:a" =(1-a")/(1—a) for a=1, we compute:
27ziE
gl/r ife 9=1
q/r-1 Zﬂiﬁ q/r-1 27zim J P rb alr
2e T=Xle *|=11-|e"0
i=0 j=0 1_ e27rib . 27zi%b
—% = 2”iLbzo if e #1
l-e ° l-e

Note that e**™9 =1 iff rb/q is an integer iff b is a multiple of g/r. Accordingly, we are left with a su-
perposition where only the multiples of g/r have non-zero amplitude. Observing this final superposition gives

some random multiple b = cg/r, with ¢ a random number 0 <c <r. Thus we get a b such that b _¢ , Where
q r

b and g are known and c and r are unknown. There are ¢(r) € Q(r / loglogr) numbers smaller than r which
are coprime to r, so ¢ will be coprime to r with probability (1/loglogr) . Accordingly, an expected number
of O(loglogN) repetitions of the procedure of this section suffices to obtain a b = cg/r with ¢ coprime to r.
Once we have such a b, we can obtain r as the denominator by writing b/q in lowest terms.

Example. r does not divide q (hard case). In case r does not divide g (which is actually quite likely), it
can be shown that applying exactly the same algorithm will still yield with high probability a b such that

b ¢ < Zi with b, g known and c, r unknown. Two distinct fractions, each with denominator <N, must be
q

q r
atleast 1/ N®>1/q apart.

Remark. Consider two fractions z = x/y and z'=x"/y"' with y,y'<N . If z=z' then |xy'—x'y|>1, and
hence |z—z1=|(xy'—x"y)/yy|=>1/N?.
Therefore c/r is the only fraction with denominator <N at distance <1/2q from b/q. Applying contin-

ued-fraction expansion to b/q efficiently gives us the fraction with denominator < N that is closest to b/g.

35

OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn» Bobinyck Ne3, 2014 rog

This fraction must be c/r. Again, with good probability ¢ and r will be coprime, in which case writing c/r in
lowest terms gives r. The whole algorithm finds a factor of N in expected time O((logN)?) .
Let us consider this case more in detail.

Example. Imperfect periodicity. In the general case, r does not divide Q, and this means that the picture
is less clear. «Bad» k’s do not completely cancel out. We distinguish between two types of k’s, for which the
geometrical series of vectors in the complex plain looks as follows:

—> ,

In the left case, all vectors point in different directions, and they tend to cancel each other. This will
cause destructive interference, which will cause the amplitude of such k’s to be small. In the right case, all
vectors point almost to the same direction. In this case there will be constructive interference of all the vec-

tors. This happens when e*™’? is close to one, or when krmodQ is close to zero.

This means that with high probability, we will measure only k’s which satisfy an approximate criterion
kr ~OmodQ . In particular, consider &’s which satisfy: —r/2<krmodQ<r /2. There are exactly r values
of k satisfying this requirement, because k runs from 0 to Q —1, therefore kr runs from 0 to (Q—21)r , and this
set of integers contains exactly r multiples of Q.

Note, that for such &’s all the complex vectors lie in the upper half of the complex plane, so they are in-
structively interfering. Now the probability to measure such a k is bounded below, by choosing the largest
exponent possible:

2

>

1 & 272k 1QN i
Ton D> (€*9)
N =0

1 Al .
ﬁ Z (emr/Q) j
j=0

_ (mAJZ
SiIn| ——
1 2Q
2 QA sin(”rJ 4
_ 2Q z°r

Quantum algorithm to calculate the order

Prob(k) | =

1 1_eﬂ'irA/Q
| QA

Q

Let us any practical examples of Shor’s algorithm application.

Example. Quantum circuit for finding the order of the positive integer x mod N. Consider the circuit of
Fig. 12. It calculates the order r of the positive integer x less than N, coprime to N.

36

OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn» Bobinyck Ne3, 2014 rog

(10 . pry .
first register : :] DFTJ{ :

(t qubits) ’) ’ :

k |0} f— ,f\ =
Va
(0) A
second register

(n qubits)

L B —— A

| 1 |]] |
|¥o) [Ur) |r2) |wa) |tha) |¥rs)

Figure 12. Quantum circuit for finding the order of the positive integer x mod N

Vy is the unitary linear operator
k k + X
V(| 3)1K9) =3+ x7) @

where |j> and |k> are the states of the first and second registers, respectively. The arithmetical operations

are performed mod N, so 0 <k + xI < N. DFT is the Discrete Fourier Transform operator which will be de-
scribed ahead.

The first register has t qubits, where t is generally chosen such that N> < 2' < 2N?, for reasons that will
become clear later. As an exception, if the order r is a power of 2, then it is enough to take t = n. In this sec-
tion we consider this very special case and leave the general case for next section. We will keep the variable t
in order to generalize the discussion later on.

The states of the quantum computer are indicated by |y,) to |) in Fig. 12. The initial state is

=900}

t n

The application of the Hadamard operator on each qubit of the first register yields

)= 2o} o

The first register is then in a superposition of all states of the computational basis with equal amplitudes

given by 1 . Now we call the reader’s attention to what happens when we apply Vx to |1//1> as:

\/Z_t

!

1 .
=V =—> V 0
va)=Valva) == 2 (13)]0))= Z Hx') ©
The state |y,) is a remarkable one. Because Vi is linear, it acts on all | j)|0) for 2' values of j, so this

generates all powers of x simultaneously. This feature is called quantum parallelism. Some of these powers

t
are 1, which correspond to the states |0)|1),|r)[1),|2r)[1),..., (27—1Jr>|1>. This explains the choice (4) for

Vy.
Classically, one would calculate successively x!, for j starting from 2 until reaching j =r.
Quantumly, one can calculate all powers of x with just one application of Vx.

At the quantum level, the values of j that yield x; = 1 mod N are “known”. But this quantum information
is not fully available at the classical level. Classical information of a quantum state is obtained by practical

37

OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn» Bobinyck Ne3, 2014 rog

measurements and, at this point, it does not help if we measure the first register, since all states in the super-
position (1.10) have equal amplitudes. The first part of the strategy to find r is to observe that the first regis-

ter of the states |0)[1),|r)[1),|2r)[1)... ‘Zt — r>|1> is periodic. So the information we want is a period. In order

to simplify the calculation, let us measure the second register. Before doing this, we will rewrite |§z/2> collect-

ing equal terms in the second register. Since x;is a periodic function with period r, substitute ar + b for j in
Eqg. (1.10), where 0 <a < (2Yr) -1 and 0 < b <r —1. Recall that we are supposing that t = n and r is a power
of 2, therefore r divides 2. Eq. (6) is converted to

)= i|ar+b>)

b=0| a=0
(7
In the second register, we have substituted x” for x***, since x" = 1 mod N. Now the second register is

measured. Any output X°, x%,..., X"~ ' can be obtained with equal probability. Suppose that the result is x™ .
The state of the quantum computer is how

M):E S lar+by) [[x*)
®)

Remark. Note that after the measurement, the constant is renormalized to /r /2" , since there are 2!/t

terms in the sum (8). Fig. 13 shows the probability of obtaining the states of the computational basis upon
measuring the first register.

A s T
Probability distribution

02
1

>

bo r+by 9 + by 3r + by Terms of it';\}
(1st register)

Figure 13. Probability distribution of |z//3> measured in the computational basis

(for the case bp =3 and r = 8)

The horizontal axis has 2' points. The number of peaks is 2'/r and the period is r. The probabilities form
a periodic function with period r. Their values are zero except for the states

o). |r+by),[2r +by),.. |2 =1 4Dy).

How can one find out the period of a function efficiently? The answer is in the Fourier transform (FT).
The FT of a periodic function with period r is a new periodic function with period proportional to 1/r. This
makes a difference for finding r.

The FT is the second and last part of the strategy. The whole method relies on an efficient QA for calcu-
lating the FT, which is not available classically. In next section, we show that the FT is calculated efficiently
in a quantum computer.

Example. The quantum discrete FT (DFT). The FT of the function F: {O N —1} — C is a new func-
tion F:{0,...,N -1} — C defined as

38

OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn» Bobinyck Ne3, 2014 rog

k 27zljk/NF
)= J_ e (©)

The FT can be applied either on a function or on the states of the computational basis. The FT applied to
the state |k) of the computational basis {|0),....|N —1)} is

1 o

DFT k =ly,)= e2m]k/N J
(1) =lw) =S) “
where the set {|y,):k =0,...,N -1} forms a new orthonormal basis, i.e., (. |y,) =3 . The FT is a unitary

linear operator. So, if we know how it acts on the states of the computational basis, we also know how it acts

N-1
on a generic state: [y/) =Y F(a)|a).
a=0

The FT of |1//> can be performed indistinctly using either (9) or (10).

Now we will continue the calculation process of the circuit of Fig. 12. We are ready to find out the next
state of the quantum computer — |1,//4> . Applying the inverse FT on the first register, using Eq. (10) and the
linearity of DFT, we obtain

t
2——1

)= DFT ()= [-5 rz()y |).

Inverting the summation order, we have

1|24 F 1 _Zzztijar _zmtjb0) .
V=T | % 520(6 2 J “ i) an
j= a=|

Using (10), we see that the expression in square brackets is not zero if and only if j = k2Yr, with k =0,...,
r — 1. When j takes such values, the expression in the square brackets is equal to 1. So we have
1 oqikp,

= S)) @2

In order to find r, the expression for |y,) has two advantages over the expression for |y} (Eq. (1.12)):

r is in the denominator of the ket label and the random parameter b, moved from the ket label to the expo-
nent occupying now a harmless place.

Fig. 13 shows the probability distribution of |1,//4> measured in the computational basis. Measuring the

first register, we get the value ko2'/r, where ko can be any number between 0 and r — 1 with equal probability
(the peaks in Fig. 1.32). If we obtain ko = 0, we have no clue at all about r, and the algorithm must be run
again. Ifk, =0, we divide ko2'/r by 2', obtaining ko/r. Neither ko nor r are known. If ko is coprime to r, we

simply select the denominator.
If ko and r have a common factor, the denominator of the reduced fraction ko/r is a factor of r but not r

itself. Suppose that the denominator is ry. Let r = rir.. Now the goal is to find r2, which is the order of x

We run again the quantum part of the algorithm to find the order of x". If we find r, in the first round, the
algorithm halts, otherwise we apply it recursively. The recursive process does not last, because the number of
iterations is less than or equal to loga .

Take N =15 as an example, which is the least nontrivial composite number.

The set of numbers less than 15, coprime to 15 is {1, 2, 4, 7, 8, 11, 13, 14}. The numbers in the set {4,
11, 14} have order 2 and the numbers in the set {2, 7, 8, 13} have order 4. Therefore, in any case r is a power

39

OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn» Bobinyck Ne3, 2014 rog

of 2 and the factors of N = 15 can be found in a 8-bit quantum computer (t +n=2[log,15 | =8). A 7-qubit
guantum computer is used, bypassing part of the algorithm.

We have considered a special case when the order r is a power of 2 and t = n (t is the number of qubits
in the first register — Fig. 1.31 —and n=|log, N |).
Now we consider the factorization of N = 21, that is the next nontrivial composite number.

Example. Generalization by means. We must choose t such that 2' is between N? and 2N?, which is al-
ways possible. For N = 21, the smallest value of t is 9. This is the simplest example allowed by the con-
straints, but enough to display all properties of Shor’s algorithm.

The first step is to pick up x at random such that 1 < x < N, and to test whether x is coprime to N. If not,
we easily find a factor of N by calculating gcd (x, N). If yes, the quantum part of the algorithm starts. Sup-
pose that x = 2 has been chosen. The goal is to find out that the order of x is r = 6. The quantum computer is

initialized in the state |y/,) =|0)|0), where the first register has t = 9 qubits and the second has n = 5 qubits.
Next step is the application of H®° on the first register yielding (see Eq. (5))

)= a5 21100

The next step is the application of Vy (defined in (6)), which yields

|2’modN>=

v2) = \/512 =
L [OR+[112)+[2)[4)+]3)[8) +[4)16) +[S)]LL) +
= 7oz 100 (70120 +[8)]4) +[9)[8) +[10)}26) + [1)j11) +
[12)|5)+

Notice that the above expression has the following pattern: the states of the second register of each
«columny are the same.

Therefore we can rearrange the terms in order to collect the second register:

|‘//2> =
(]0)+]6) +]12) +...+|504) +|510))|1) + (|1) + | 7) +[13) + ... +|505) +|511))| 2) +

ﬁ (12) +|8) +[14) +... +|506))|4) +(|3) +|9) +|15) + ... +|507))|8) +
|

(]4) +|10) +|16) +... +|508))|16) + (|5) +|11) +|17) + ...+ |509))|11)

(13)

This feature was made explicit in Eq. (7). Because the order is not a power of 2, here there is a small
difference: the first two lines of Eq. (13) have 86 terms, while the remaining ones have 85.

Now one measures the second registerl, yielding one of the following numbers equiprobably: {1, 2, 4,
8, 16, 11}. Suppose that the result of the measurement is 2, then

|n//3>=%(|1>+|7>+|13>+...+|505>+|511>)|2> : (14)

Notice that the state |y,) was renormalized in order to have unit norm. It does not matter what is the re-
sult of the measurement; what matters is the periodic pattern of (14).

The period of the states of the first register is the solution to the problem and the FT can reveal the value
of the period. So, the next step is the application of the inverse Fourier transform on the first register of |1//3> :

40

OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn» Bobinyck Ne3, 2014 rog

W)= DFT" () = DFT*(%imamjp)

1 u 1 8, ot ud
h 512 Zo[{ﬁzoe 512}9 512|J>J|2>
j= a=

where we have used Eq. (10) and have rearranged the sums. The last equation is similar to Eq. (11), but with
an important difference. We were assuming that r divides 2". This is not true in the present example (6 does
not divide 512), therefore we cannot use the identity to simplify the term in brackets in Eq. (11). This term
never vanishes, but its main contribution is still around j = 0, 85, 171, 256, 341, 427, which are obtained
rounding 512ke/6 for ko from O to 5.

To see this, let us plot the probability of getting the result j (in the interval 0 to 511) by measuring the
first register of the state |y/4> . From (15), we have that the probability is

(15)

.6 ja 2

1 —27mi——

Prob(j)z—‘Ze 512

(1.20)
512x86

The plot of Prob (j) is shown in Fig. 14.

We see the peaks around j = 0, 85, 171, 256, 341, 427, indicating a high probability of getting one of
these values, or some value very close to them. In between, the probability is almost zero. The sharpness of
the peaks depends on t (number of qubits in the first register). The lower limit 2' > N2 ensures a high proba-
bility in measuring a value of j carrying the desired information.

Let us analyze the possible measurement results. If we get j = 0 (first peak), the algorithm has failed in
this round. It must be run again. We keep x = 2 and rerun the quantum part of the algorithm. The probability
of getting j = 0 is low: from Eq. (1.24) we have that Prob(0) = 86/512 =~ 0.167. Now suppose we get j = 85
(or any value in the second peak). We divide by 512 yielding 85/512, which is a rational approximation of
ko/6, for ko =1.

0.1
Prob(j)

0.05

o- _JL U JL _JL

[1] 50 100 150 2060 250 300 350 abo 450 500
|

Figure 14. Plot of Prob(j) against j
Compare to the plot of Fig. 13, where peaks are not spread and have the same height

How can we obtain r from 85/512? The method of continued fraction approximation allows one to ex-
tract the desired information. A general continued fraction expansion of a rational number ji/j, has the form

I
JZ a1+ 1
1
ot

a,

usually represented as [ao, ai, ...,], Where ao is a non-negative integer and as, ..., @, are positive integers.
The g-th convergent (0 < q < p) is defined as the rational number [ao, ai, ..., a]. It is an approximation to ji/j»
and has a denominator smaller than j,. This method is easily applied by inversion of the fraction followed by

41

OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn» Bobinyck Ne3, 2014 rog

integer division with rational remainder. Inverting 85/512 yields 512/85, which is equal to 6+2/85. We repeat
the process with 2/85 until we get numerator 1. The result is

85 1

512 6+ 1

42+1
2

So, the convergents of 85/512 are 1/6, 42/253, and 85/512. We must select the convergents that have a
denominator smaller than N = 21 (since r < N). This method yields 1/6, and then r = 6. We check that 26 = 1
mod 21, and the quantum part of the algorithm ends with the correct answer. The order r = 6 is an even num-
ber, therefore gcd(2®? + 1, 21) gives two non trivial factors of 21. A straightforward calculation shows that
any measured result in the second peak (say 81 < j < 89) yields the convergent 1/6.

Consider now the third peak, which corresponds to ko/6, ko = 2. We apply again the method of continued
fraction approximation, which yields 1/3, for any j in the third peak (say 167 <j < 175). In this case, we have
obtained a factor of r (r; = 3), since 22 = 8 6= 1 mod 21. We run the quantum part of the algorithm again to
find the order of 8. We eventually obtain r, = 2, which yields r = rir, = 3 x 2 = 6. The fourth and fifth peaks
yield also factors of r. The last peak is similar to the second, yielding r directly.

The general account of the succeeding probability is as follows. The area under all peaks is approxi-
mately the same: = 0.167. The first and fourth peaks have a nature different from the others — they are not
spread. To calculate their contribution to the total probability, we take the basis equal to 1. The area under
the second, third, fifth, and last peaks are calculated by adding up Prob(j), for j running around the center of
each peak.

So, in approximately 17% cases, the algorithm fails (1% peak). In approximately 33% cases, the algo-
rithm returns r in the first round (2" and 6" peaks). In approximately 50% cases, the algorithm returns r in
the second round or more (3", 4", and 5" peaks).

Now we calculate the probability of finding r in the second round. For the 3@ and 5 peaks, the remain-
ing factor is r, = 2. The graph equivalent to Fig. 14 in this case has 2 peaks, then the algorithm returns r; in
50% cases. For the 4" peak, the remaining factor is r = 3 and the algorithm returns r in 66.6% cases. This

0 0
amounts to 2x50 /°3+ 66.6% of 50%, which is equal to around 22%. In summary, the success probability for

X = 2 is around 55%.

Remark. We have shown that Shor’s algorithm is an efficient probabilistic algorithm, assuming that the
FT could be implemented efficiently. The complete circuit for the QFT is given in Fig. 15.

Now we can calculate the complexity of the quantum Fourier circuit. Counting the number of elemen-
tary gates we get the leading term 5n2/2, which implies that the complexity is O(n?).

. 0 +c2"£ 1
lj1) — % J_)T_u
li2) —— |0>+ci;'24’11)

2
DFT with
reverse
output

;] P 0)4e " T-T |1
|7n-1)

Vi)

1 1042717 |1y
lin) — X M Tl

Figure 15. The complete circuit for the quantum Fourier Transform

By now one should be asking about the decomposition of Vy in terms of the elementary Fourier Trans-
form. Vy is the largest gate of Fig. 12. Actually, Shor stated in his 1997 paper that Vy is the «bottleneck of the

42

OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn» Bobinyck Ne3, 2014 rog

guantum factoring algorithmy due to the time and space consumed to perform the modular exponentiation.
The bottleneck is not so strict though since, by using the well known classical method of repeated squaring
and ordinary multiplication algorithms, the complexity to calculate modular exponentiation is O(n®). The
quantum circuit can be obtained from the classical circuit by replacing the irreversible classical gates by the
reversible quantum counterpart. Vx is a problem in recursive calls of the algorithm when x changes. For each
X, a new circuit must be built, what is troublesome at the present stage of hardware development.

References

1. Lo H.-K., Popescu S. and Spiller T. (Eds). Introduction to quantum computing and information. —
World Scientific Publ. Co. — 1998.

2. Gruska J. Quantum computing // Advanced Topics in Computer Science Series, McGraw-Hill Compa-
nies. — London, 1999.

3. Pittenberg A.O. An introduction to quantum computing and algorithms. — Progress in Computer Scienc-
es and Applied Logic. — Birkhauser. — 1999. — Vol. 19.

4. Berman G.P., Doolen G.D., Mainieri R. and Tsifrinovich V.I. Introduction to quantum computers //
World Scientific Publ. Co. — 1999.

5. Ulyanov S.V., Ghisi F., Kurawaki I. and Litvintseva L.V. Simulation of quantum algorithms on
classical computer. — Note del Polo Ricerca, Universita degli Studi di Milano (Polo Didattico e di
Ricerca di Crema). — Vol. 32. — Milan, 1999.

6. Nielsen M.A. and Chuang I.L. Quantum Computation and Quantum Information. — UK: Cambridge
Univ. Press, 2000.

7. Hirvensalo M. Quantum computing // Natural Computing Series, Springer-Verlag, Berlin, 2001.

8. Hardy Y. and Steeb W.-H. Classical and quantum computing with C++ and Java Simulations. — Birk-
hauser Verlag, Basel, 2001.

9. Calude C.S. and Paun G. Computing with cells and atoms: An introduction to quantum, DNA and
membrane computing. — N.Y.: Taylor&Francis, 2001.

10. Kitaev A.Yu., Shen A.H., Vyaly M.N. Classical and quantum computation. — N.Y.: AMS, 2002.

11. Brylinski F.K. and Chen G. (Eds). Mathematics of quantum computation. — Computational Mathematics
Series. — CRC Press Co, 2002.

12. Ulyanov S.V., Litvintseva L.V., Ulyanov L.S. and Ulyanov S.S. Quantum information and quantum
computational intelligence: Quantum decision making and search algorithms. — Note del Polo Ricerca,
Universita degli Studi di Milano (Polo Didattico e di Ricerca di Crema). — Milan, 2005. — VVol. 84-85.

13. Stenholm S. and Suominen K.-A. Quantum approach to informatics. — Wiley- Interscience. J.
Wiley&Sons, Inc. — 2005.

14. Marinescu D.C. and Marinescu G.M. Approaching quantum computing. — Pearson Prentice Hall, New
Jersey. — 2005.

15. Benenti G., Casati G., Strini G. Principles of quantum computation and information. — Singapore:
World Scientific. —2004, Vol. I.; — 2007. — Vol. II.

16. Janzing D. Computer science approach to quantum control. — Habilitation: Univ. Karlsruhe (TH) Publ.
Germany. — 2006.

17. Jaeger G. Quantum Information: An Overview. — N.Y.: Springer Verlag, 2007.

18. Kaye P., Laflamme R. and Mosca M. An introduction to quantum computing. — N.Y.: Oxford Universi-
ty Press, 2007.

19. McMahon D. Quantum computing explained // Wiley Interscience. A J. Wiley Sons, Inc. — 2008.

20. Lanzagorta M. and Uhlmann J. Quantum computer science // Morgan & Claypool Publ. — Series: SYN-

THESIS LECTURES ON QUANTUM COMPUTING (Lecture #2). — 2009.
43

OnNeKTPOHHBIN XXypHan « CUCTEMHbI aHanu3 B Hayke n obpasoBaHUn» Bobinyck Ne3, 2014 rog

21.

22.

23.

24.

25.

26.

217.
28.

29.

30.

31.

32.

33.

34.

35.

Nakahara M. and Ohmi T. Quantum computing: From Linear Algebra to Physical Realizations // Taylor
& Francis. — 2008.

Chen G., Kauffman L., and Lomonaco S. J. Mathematics of Quantum Computation and Quantum Tech-
nology — N.Y.: Chapman Hall/CRC (Applied Mathematics and Nonlinear Science Series), 2008.

Chen G., Church D.A., Englert B.-G., Henkel C., Rohwedder B., Scully M.O. and Zubairy M.S. Quan-
tum Computing Devices: Principles, Designs, and Analysis. — N.Y.: Chapman Hall/CRC (Applied
Mathematics and Nonlinear Science Series), 2008.

McMahon D. Quantum computing explained. — N.J.: John Wiley & Sons. — 2008.

Yanofsky N.S. and Mannucci M.A. Quantum Computing for Computer Scientists. — Cambridge Univer-
sity Press. — 2008.

Chen G. and Diao. Mathematical Theory of Quantum Computation. — N.Y.: Chapman Hall/CRC (Ap-
plied Mathematics and Nonlinear Science Series), 2009.

Kholevo A.S. Quantum systems, channels, and information. — M.: MITHMO, 2010 (in Russian).

Lavor C., Manssur L.R.U. and Portugal R. Grover’s algorithm: Quantum database search // arXiv:quant-
ph/0301079v1 16 Jan 2003.

Lomonaco S.J. (Jr) A lecture on Grover’s quantum search algorithm (Version 1.1) // arXiv: quant-
ph/0010040v2 18 Oct 2000.

Lavor C., Manssur L.R.U. and Portugal R. Shor’s algorithm for factoring large integers // arXiv: quant-
ph/0303175v1 29 Mar 2003.

Galindo A. and Martin-Delgado M.A. Information and computation: Classical and quantum aspects //
Review of Modern Physics. —2002. — Vol. 74. — Ne 2. — Pp. 347-423.

Batty M., Braunstein S.L., Duncan A.J. and Rees S. Quantum algorithms in group theory // arXiv:
quant-ph/0310133v1, 21 Oct 2003. — P. 52.

Quantum Algorithms: Shor's algorithm, Grover's algorithm, Quantum logic, Quantum algorithm, Quan-
tum Fourier transform, Deutsch-Jozsa algorithms. — Books LLC. — 2010.

Rieffel E. G. and Polak W. H. Quantum Computing: A gentle introduction. — B.: The MIT Press. —
2011.

Ohya M. and Volovich I. Mathematical foundations of quantum information and computation and its
applications to nano- and bio-systems. — N.Y.: Springer Verlag, 2011.

44

