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Models of Grover’s search algorithm is reviewed to build the foundation for the other algorithms. 
Thereafter, some preliminary modifications of the original algorithms by others are stated, that increases the 
applicability of the search procedure. A general quantum computation on an isolated system can be repre-
sented by a unitary matrix. In order to execute such a computation on a quantum computer, it is common to 
decompose the unitary into a quantum circuit, i.e., a sequence of quantum gates that can be physically 
implemented on a given architecture. There are different universal gate sets for quantum computation. Here 
we choose the universal gate set consisting of CNOT and single-qubit gates. We measure the cost of a circuit 
by the number of CNOT gates as they are usually more difficult to implement than single qubit gates and 
since the number of single-qubit gates is bounded by about twice the number of CNOT’s.  

Keywords: quantum computation, Grover’s search algorithm, quantum search algorithm’s models. 

 
For citation:_______________________________________________________________________________________ 

Modelling of Grover’s quantum search algorithms: implementations of Simple quantum simulators on classical comput-

ers / S. Ulyanov, A. Reshetnikov, O. Tyatyushkina // System Analysis in Science and Education. – 2020. – № 3. – Pp. 

65–128. – URL: http://sanse.ru/download/407. 
 

МОДЕЛИРОВАНИЕ АЛГОРИТМОВ КВАНТОВОГО ПОИСКА ГРОВЕРА: РЕАЛИЗАЦИЯ 
ПРОСТЫХ КВАНТОВЫХ СИМУЛЯТОРОВ НА КЛАССИЧЕСКИХ КОМПЬЮТЕРАХ 

Ульянов Сергей Викторович1, Решетников Андрей Геннадьевич2,  

Тятюшкина Ольга Юрьевна3 

1Доктор физико-математических наук, профессор; 

ГБОУ ВО МО «Университет «Дубна», 

Институт системного анализа и управления; 

141980, Московская обл., г. Дубна, ул. Университетская, 19; 

e-mail: ulyanovsv@mail.ru. 

 
2Кандидат технических наук, доцент; 

ГБОУ ВО МО «Университет «Дубна», 

Институт системного анализа и управления; 

141980, Московская обл., г. Дубна, ул. Университетская, 19; 

e-mail: agreshetnikov@gmail.com. 



Электронный журнал «Системный анализ в науке и образовании»                        Выпуск №3, 2020 год 

66 

 
3Кандидат технических наук, доцент; 

ГБОУ ВО МО «Университет «Дубна», 

Институт системного анализа и управления; 

141980, Московская обл., г. Дубна, ул. Университетская, 19; 

e-mail: tyatyushkina@mail.ru. 

В данной статье рассматриваются модели алгоритма поиска Гровера, служащего основой для 
разработки моделей других поисковых алгоритмов. Приведены некоторые модификации исходных 
алгоритмов, что расширяет возможности применения процедуры поиска. Квантовые вычисления в 
изолированной системе могут быть представлены унитарной матрицей. Чтобы выполнить такое 
вычисление на квантовом компьютере, обычно разлагают унитарную систему на квантовую схему, 
то есть последовательность квантовых логических вентилей, которые могут быть физически 
реализованы на данной архитектуре. Существуют различные универсальные наборы вентилей для 
квантовых вычислений. В статье описан универсальный набор вентилей, состоящий из CNOT и 
однокубитовых вентилей. Сложность схемы определяется по количеству вентилей CNOT, поскольку 
их обычно сложнее реализовать, чем вентили с одним кубитом, поскольку количество вентилей с 
одним кубитом ограничено примерно вдвое большим количеством вентилей CNOT. 

Ключевые слова: квантовые вычисления, поисковый алгоритм Гровера, модели квантовых поис-

ковых алгоритмов. 
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Introduction 

In 1996 L. Grover devised an algorithm to search an unsorted database quadratically faster than any 

known classical algorithm can achieve. A common analogy for this algorithm is to search through a phone 

book for a person’s name knowing only their phone number. Without having the person’s name, the phone 

book becomes an unsorted database and a classical search could become very tedious. On average, one 

would have to make N queries, where N is the number of the entries in the phone book. However, if the 

correlation between the name and the phone number is encoded with quantum bits, the search is reduced to 

approximately N  queries instead of N/2 as in classical search. The field of quantum algorithm develop-

ment came into focus in the mid-1980s with the works of David Deutsch and others.  

A decade later, Peter Shor showed an advantage of quantum computing over classical computation in 

practical disciplines like cryptography leading to widespread research boost in this domain. Shor’s algorithm 

for factorization (see Appendix 1) is often partnered with Grover’s search algorithm as the two most popular 

quantum algorithms for demonstrating practical computational advantage. Many quantum algorithms have 

been developed since then. A curated directory can be found in the Quantum Algorithm Zoo, which categor-

ically describes the various quantum algorithm. The first category is Algebraic Number Theoretic. It includes 

problems like factoring, discrete-log, Pell’s equation, verifying matrix products, constraint satisfaction, etc. 

The Approximation and Simulation category includes problems like quantum simulation, adiabatic algo-

rithms, semi-definite programming, Zeta functions, simulated annealing, etc. However, the category that 

interests this thesis most are the Oracular algorithms. This includes many sub-categories like searching, 

Abelian Hidden Subgroup, non-Abelian Hidden Subgroup, Bernstein-Vazirani, Deutsch-Jozsa, structured 

search, pattern matching, welded tree, graph collision, matrix commutativity, counterfeit coins, search with 

wildcards, network flows, machine learning, and many more. Note, not all these algorithms provide a super-

polynomial speedup. New fields of quantum algorithms research employ applying the rules of quantum 

mechanics to game theory to model the situation of conflict between competing agents. The impact of quan-

tum information processing on classical scenarios can be studied. Quantum games can be also used to anal-

yses typical quantum situations like state estimation and cloning. Quantum walks also provide another prom-

ising method for developing new quantum algorithms. It was also shown that quantum walks can be used to 
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perform a universal quantum computation. The development of quantum algorithms is a very lively area of 

research. However, the focus is on a small part of this landscape.  

The core of the quantum algorithm is modeled as a kernel that would allow indexing a search string in 

the reference string. Since no pre-processing is done on the reference string, except slicing it to the search 

string size chunks, the database is essentially unsorted. L. Grover describes the quantum approach to solving 

the search problem in such an unstructured database. A closer look at Grover’s search is elucidated here. It is 

the foundation for the more specialized algorithms. In the original Grover’s algorithm, there is exactly one 

item which matches the search criteria. The artificial mathematical formalism of Grover’s search is to reduce 

the number of queries required to the database to find the answer by a polynomial (more specifically, quad-

ratic) factor. A one-to-one correlation between the classical worst-case time of 𝑂(𝑁) queries (N being equal 

to the number of database entries), and the quantum run-time of 𝑂(√𝑁) is not fully justified, as the quantum 

query itself works in a different technique, evolving the entire superposition of the database states. However, 

this is the inherent parallelism of quantum algorithms that we tend to harness. Zalka (1999) shown that 

Grover search is however provably optimal, thus no other algorithm, classical or quantum, can give a better 

runtime with the same initial conditions. However, it makes up for the lower (with respect to QFT) speed-up 

benefit in two ways: 1) Grover assumes an unstructured database search, which is rarely the case. We often 

have some idea of the data which can be exploited; 2) Searching is a very general problem in computer 

science and thus the impact factor of the time reduction is of great interest to researchers. 

Models of quantum search algorithms  

An alternate view of Grover’s algorithm can be” inverting a function” instead of” searching a database”. 

Given a function 𝑦 = 𝑓(𝑥) that can be evaluated on a quantum computer, Grover’s algorithm can calculate 𝑥. 

It can be used to efficiently determine the number of solutions to an N-item search problem, allowing it to 

perform exhaustive searches on solutions of NP-complete problems, reducing the required computational 

resource (see, Fig. 1). 

 

 

Fig. 1. Grover search steps and geometric interpretation of oracle and inversion operations 
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Grover’s search starts out with an equal superposition of states, i.e. each database entry has an equal 

probability of being the answer. The initial state can be described as: 
1

0

0

1 N

i

i
N


−

=

=  . It is an oracular 

algorithm, i.e. it assumes the existence of an Oracle function (a common algorithm construct), which can 

produce an “yes” or “no” answer for a query in constant time. In the search procedure, the Oracle is consult-

ed, which rotates the phase of the answer by 𝜋 radians. Thus, the Unitary matrix is a diagonal matrix with all 

diagonal elements being 1 except at the row/column where the search entry and can be described as: 

1 0 0

0,              if 

,     1,if  and 

1,         otherwise

jk

j k

O O j k j i 




= = −  =



. 

The next step is an inversion about the mean value of the states. This is known as the Grover gate, or the 

diffusion operator which is responsible for the amplitude amplification of the result. This operation can be 

described as: 
2 1 1 1,     2G G I   = = −  (the prototype of the Householder reflection). 

Remark. Let   be a state on n qubits. We say that a unitary state preparation (SPv) on n qubits imple-

ments state preparation for   if 0
n

SP = . We start by presenting a useful pivoting algorithm for 

permuting entries in a sparse state such that all nonzero entries are grouped together. The idea is to then 

perform a decomposition scheme for dense state preparation on the grouped entries, which correspond to the 

state of a subset of the n qubits. Although several decompositions are known for general isometries, here we 

focus on a method based on Householder reflections that adapts well in the case of sparse isometries. We 

consider the task of breaking down a quantum computation given as an isometry into C-nots and single-qubit 

gates, while keeping the number of C-not gates small. 

Generalized Householder reflections. Given a unit vector  , the standard Householder reflection 

with respect to   is defined as H I  = − . We call   the Householder vector associated with the 

reflection. The generalized Householder reflection of phase   with respect to   is defined as 

( )1iH I e 

  = + − . and coincides with the standard definition if   = π. On certain architectures 

generalized Householder reflections can be implemented directly and in a fault tolerant way. Standard 

Householder reflections can be approximated well using Clifford and T gates. In the circuit model a state 

preparation scheme can be used to perform a generalized Householder reflection. Let SPv denote a unitary 

implementing state preparation for the state   and 
0H 

 the Householder reflection with respect to 0 . 

Then 
†

0 0H SP H SP 

 =   . Given two states   and w we can construct a gate that maps   to 
ie w

 

for some real θ using a standard Householder reflection defined as .w uH H = , where 

i

i

e w
u

e w









−
=

−
, 

with ( )arg w  = − or θ = 0 if w  = 0. We also define the generalized Householder reflection  

,

1
,  ,  

1

i

w u

w w
H H u e

w w

 



 

 

− −
= = =

− −
, 

which has the property 
,wH w  = . Householder reflections provide a straightforward method for 

implementing arbitrary isometries. Let 
0 0V =  be the first column of V and consider 

0 ,0H , the House-

holder reflection mapping 
0  to 0  up to a phase. We can reduce the first column (and row by orthogo-

nality) of V by applying the Householder reflection to the isometry, i.e., the only entry in the first row and 

column of 
0 ,0H V  is that corresponding to 0 0 . Using the same idea, the isometry can be reduced column 

by column to a diagonal isometry. Applying a diagonal gate on m qubits then yields In,m. For a schematic 

representation of the decomposition see as following 
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It is the basic idea of the Householder decomposition for dense isometries. Here   represents an arbi-

trary complex entry. Each step reduces one column without affecting the previous columns. The rows are 

reduced automatically due to the orthogonality of the columns. The final diagonal gate sets the phases on the 

diagonal equal to one. Let V be an isometry. Let j V j = be the jth column of V and i be the target row 

index. For s i  and t j  we have  

, , ,0,   
j j j

i

i i ii H V t s H V j i H V j e 

  = = =
, 

and 

,
1j

i

i

s V j i V t
s H V t s V t e

i V j





−= +
+

. 

Grover search guarantees the probability of the solution state to reach near unity on iterating the last two 

steps N  times. 

Brief review of quantum search algorithm’s models 

Let us consider any particularities of Grover’s quantum search algorithm and its modification.  

Grover’s Algorithm. The quantum oracle Uf  flips the ancillary qubit, if the target state t  is fed in. 

The ancillary qubit can be prepared in the superposition state ( )1 0 1 / 2H = − . Then the oracle gives 

a sign flip acting on the target state:  

( ) ( )
( ) ( )2 2

1 1 1n n

f x

fU I H x I H x
−

  = −  
. 

For convenience, we denote the oracle Uf  as 
2

2ntU I t t= −  if the ancillary qubit 1H  is prepared. 

The general phase flip can be constructed as follows: ( ), 2
1n

i

tU I e t t



−= − − . The generalized oracle 

,tU   has applications in the sure success search algorithm (see below) and the fixed point search algorithm 

(for an unknown number of target states). Note that the operator ( ),tU     can be realized by two quan-

tum oracles Uf . Having seen two defining attributes, the fixed-point property and optimality, of the success 

probability (see below), let us now create it using the operators provided: the state preparation A and oracle 

U. This problem simplifies when interpreted in the two-dimensional subspace   spanned by s  and T  

rather than in the full 2n dimensional Hilbert space of all n qubits. First, define 
it e T−= and 

( ) / 1t s t s = − − , so that 
1

1s t t


 


 −
= − + =  

 
 

. The matrix notation comes from 

the definitions 
0

1
t

 
=  
 

 and 
1

0
t

 
=  
 

. The location of s  on the Bloch sphere is in the XZ-plane at an 

angle   from the north pole, where   ∈ [0,π] is defined by sin( /2) = √λ. We are given a unitary operator 

A that prepares the initial state 0
n

s A


= . From s , we would like to extract the target state T  with 

success probability PL ≥1−δ2, where the overlap 
iT s e =  is not zero and δ ∈ [0,1] is given. To do so, 
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it is provided with the oracle U which flips an ancilla qubit when fed the target state. That is, 

1U T b T b=   and U T b T b=  for 0T T = . Below, it is shown how to solve this problem 

and extract T  by performing on s  a quantum circuit L  consisting of A, A†, U, and efficiently imple-

mentable n-qubit gates, such that  

( )( )
22 2

1/1 1/ 1L L L LT s T T  = = − −
. 

Here TL(x) = cos(Lcos−1(x)) is the Lth Chebyshev polynomial of the first kind and L−1 is the query com-

plexity: the number of times U is applied in the circuit L . Furthermore, It is possible (see Fig. 2 below) 

construct L  for any odd integer L ≥ 1 and any δ.  

Some examples of PL and a comparison to the π/3-algorithm are shown in Fig. 2. 

 

Fig. 2. A comparison of search algorithms, plotting the overlap PL of the target state with the output state 

versus the overlap λ of the target state with the initial state 

[The fixed-point (FP) algorithm (thick solid) weigh against the π/3-algorithm (dashed) for the task of achiev-

ing output success probability PL greater than 1 − δ2 = 0.9 for all λ > λ0. The query complexity of the algo-

rithms varies based on λ0 (dotted vertical lines). For λ0 = 0.25 (blue), the algorithm makes 4 queries while 

the π/3-algorithm makes 8. For λ0 = 0.03 (red), the algorithm makes 12 queries while the π/3-algorithm 

makes 80. For comparison, also shown is Grover’s non-fixed-point (NFP) search with 8 queries (thin black). 

The width and error for the 4-query algorithm are labeled w and δ, respectively. (Inset) the query complexity 

is ploted against λ for the algorithm with δ2 = 0.1 (solid), the π/3-algorithm (dashed), and non-fixed-point 

Grover’s (dotted). While the FP-algorithm and Grover’s NFP algorithm scale as L ∼ 1/√λ, the π/3-algorithm 

scales as L ∼ 1/λ] 

Similarly, Grover’s reflection operators can be interpreted as SU(2) unitaries acting on  . Arbitrary 

phases added to the reflections to define generalized reflections.  

In Fig. 3 we show explicitly how to implement these generalized reflections using A, U, and efficiently 

implementable n-qubit operations.  
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Fig. 3. A circuit for performing the generalized Grover iterate G(α, β) up to a global phase 

[Here, Zθ := R0(θ) represents a rotation about the z-axis by angle θ. The first part of the circuit, before the 

dotted line, performs e−iβ/2St(β) and the second part performs Ss(α). One ancilla bit initialized as 0  is re-

quired for both parts, but can be reused. The multiply-controlled NOT gates in the Ss(α) circuit do not pose a 

substantial overhead – they can be implemented with O(n2) single qubit and CNOT gates or O(n) such gates 

and O(n) ancillas] 

Their SU(2) representations are: 

( ) ( )
( ) ( )

( ) ( )

1 1 1
1

1 1 1

i i

i

s
i i

e e
S I e s s

e e

 



 

 


 

− −

−

− −

 − − − −
 = − − =
 − − − −
 

. 

( ) ( )
1 0

1
0

i

t i
S I e t t

e






 
= − − =  

 
, where λ = 1 − λ. The product of the reflection operators is often 

called the Grover iterate G(α, β) = −Ss(α)St(β). The original Grover iterate used α = ±π and β = ±π. The 

generalized reflection operators are also expressible as rotations on the Bloch sphere. Defining 

( ) ( ) ( )( )
1

exp cos sin
2

R i Z X    
 

= − + 
 

 for Pauli operators X and Z, it is find that 

( ) ( ) ( ) ( )/2 /2

0,   i i

s tS r R S r R 

   −= =
. 

When α = ±π and β = ±π, these rotations map the XZ-plane to the XZ-plane, reproducing the O(1) rota-

tion picture of Grover’s original non-fixed-point (NFP)-algorithm. 

The goal of achieving the PL is equivalently expressed as constructing, up to a global phase, the Cheby-

shev state 
1

1
Li

L L L i

L

P
C P t P e t

P e





 −
 = − + =
 
 

 for some relative phase χ. For large enough λ, the 

Chebyshev state lies near the south pole of the Bloch sphere. 

An example run for the search is shown in Fig. 4. 
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Fig. 4. Grover search example for 3 qubits 

For the 3-qubit case, there are a total of 6 steps as the iteration requirement is 
32 2  for the Oracle 

and inversion about mean step. At each step, the internal real amplitude of the states is shown in green (left), 

and its squared value, the measurement probability is shown in blue (right). The initialization step erases 

each qubit’s state, resetting it to ∣0⟩. Then, the Hadamard gate on each qubit takes the state to an equal super-

position of every possible 3-qubit basis states (3-bit binary strings). The next step is the Oracle call, which is 

a black box for the algorithm. It marks one of the states by inverting it (rotating it by 𝜋). However, this 

negative sign has no effect on the measurement probability. The amplitude is amplified by the inversion 

about mean step. The first run gives a measurement probability of 78%. Repeating it for the optimal number 

of iterations increases it to 94.5%. 

For a detailed algebraic analysis, let the state at iteration j of the Grover search be: 

( )
0

0,j j j j

i i

k l k i l i


= + , where 0 0

1
k l

N
= = . 

The first step of the iteration marks 0i , to flip the state to 
0jk i− . The mean is thus given by: 

( )1 j j

j

N l k

N


− −
= . 

Each state gets transformed by the Grover gate from 
j i  to ( )2 j j i − .  

Thus, the recursive relation for the states can be expressed as:  

( )
( )

( ) ( )
1

1 2 2 1
2

j j

j j j j

N l k N N
k k k l

N N N
+

− − − −
= − − = + , 

( )
( )

( ) ( )
1

1 2 2
2

j j

j j j j j

N l k N
l l k k l

N N N
+

− − − −
= − − = + . 

The recurrence can be solved by taking 
21/ sinN = , to give the closed-form equation: 

( )sin 2 1jk j = +  and ( )
1

cos 2 1
1

jl j
N

= +
−

. 

Setting 
2 1tk = , where optj  is the optimal number of iterations, we get, 
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( ) ( ) ( )
( )

1

1

2 1 2sin 1/2 1 2

4 4sin 1/
opt

m Nm
j

N

 



−

−

+ −+ −
= = , where m . 

However, the equation is continuous while j + .  

Approximating the equation, if we iterate / 4N 
 

 times, the probability of failure is just 1 / N when 

N is large. 

Generalizing quantum search algorithms 

Grover’s search was enhanced by two subsequent research that will allow us to apply this search in the 

context. The improvements discussed in this section are: 

- Multiple known number of solutions;  

- Arbitrary distribution of initial amplitude; 

- Multiple unknown number of solutions by randomizing iterations over multiple runs;  

- Multiple unknown number of solutions by counting number of solutions. 

Multiple known solutions. The case for multiple known solutions is considered first. Let t be the num-

ber of solutions (known in advance), and S be the set of states considered as solutions. The transformation 

generalizes to: 

( )
( )

( )1 1

22 2 2
, , ,j j j j j j j j j j

i S i S

N tN t t N t
k l k i l i k l k l k l

N N N N
   + +

 

− − − −
= + + + = 

 
 

 

The modification involves taking 
2/ sint N = , to give the solutions as: 

( )
1

sin 2 1jk j
t

= +  and ( )
1

cos 2 1jl j
N t

= +
−

. 

The probability of measuring any one of the solution states is maximized when 
jl  is close to 0, which 

yields the relation: 

( ) ( ) ( )
( )

1

1

2 1 2sin /2 1 2

4 4sin /
opt

m t Nm
j

t N

 



−

−

+ −+ −
= = , where m , 

which can now be approximated for integer iteration as 
4

N

t

 
 
 

. The solution state probability upper-

bounded by 1 / t, can now be written wholly in terms of t  and N as: 

2 2 11
sin 2 1 sin

4
opt

N t
k

t t N

 −
   

= +        

. 

Arbitrary initial amplitude. The second improvement that is needed is to consider an arbitrary initial 

amplitude for multiple known solutions. Instead of working with the amplitudes directly, the mean and 

variance of the solution and non-solution states are considered. 

1
j j

i S

k k
t 

=   and 
2

2 1
k

i S

k k
t




= − ;   
1

j j

i S

l l
N t 

=
−
  and 

2
2 1
l

i S

l l
N t




= −
−
 . 

Note, the variance equations are time-independent. The mean over these states after the solution states 

are marked (Oracle called) is given by: 
( ) j j

j

N t l tk

N


− −
= . The dynamics dictated by Grover’s algorithm 

can be described by the time-dependence of this average, giving the recurrences as: 1 2j j jk k+ = +  and 
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1 2j j jl l+ = − . Since the 2𝜇j factors are added to every term in the set, the mean itself evolves as: 

1 2j j jk k+ = +  and 
1 2j j jl l+ = − . The solution to this recursion in closed-from is given by:  

( ) ( ) ( ) ( )0 0 0 0cos sin ,   and  cos sinj j

N t t
k k j l j l l j k j

t N t
   

−
= + = −

−
. 

where, 
1 2

cos 1
t

N
 −  
= − 

 
.  

The optimal number of iterations and probability of success is given by: 

( ) 1 0

20

max
1

2 1 2 tan
2

,     1
2

2cos 1
opt

i S

k t
m

l N t
j P l l

t

N

 −

− 

 
+ −  

− = = − −
 
− 

 

 . 

These two relations are very useful as 
optj  is used to calculate the number of iterations that the program 

needs, and thereby the number of gates that would be executed. The maxP  value helps in understanding the 

applicability of the search algorithm on a given set of data. 

Multiple unknown solutions (by randomizing iterations of multiple runs. The next modification 

that is needed is the case for multiple solutions when the number of solutions is not known in advance. There 

are two ways in which such a problem can be attacked. When the number of solutions is not known, the 

number of required iterations cannot be predicted in advance. Thus, if a random iteration limit is chosen over 

all possible values for iterations (from the value for 1 solution to all states being solution states), then with a 

finite probability, the right number of iterations will be chosen. If this probability is high, the solution state is 

amplified with a high probability. This is the intuition behind the first method. Using trigonometric formula 

for compound angles and summation trigonometric series expansions, for real numbers ,   and an arbi-

trary positive integer  , we can derive: ( )
( ) ( )( )

( )

1

0

sin cos 1
cos 2

sinj

j
    

 


−

=

+ −
+ =  for the case, 

 = , we have ( )( )
( )1

0

sin 2
cos 2 1

2sinj

j
 




−

=

+ = .  

Let t be the number of unknown solutions. The total probability of measuring a solution state after j iter-

ation (using previously derived relations and S t=  ) is, ( )( )2 2

ln sin 2 1so l

i S

P k j 


= = + . The average 

success probability when 0 j    (and simplified by the relation ( )22sin 1 cos 2 = − , is, 

( ) ( )( )( )
( )

( )

1 1
2

0 0

sin 41 1 1
sin 2 1 1 cos 2 2 1

2 2 4 sin 2j j

P j j
 




 

   

− −

= =

= + = − + = −  . 

To get a solnP  more than 1/4, the second term should be less than 1/4. Since can be chosen as, 

( ) ( )1

1 1 1

sin 2 2
2 1sin 2sin

N

t t N t tt

N NN




−

 = = =
  −

− 
 

. 

Thus, the value to be chosen for  , and thus the number of iterations to be performed, depends on the 

fraction of states that are solution. Now for the algorithm, an arbitrary value of   is chosen, and another 

increment factor 1 < 𝜆 < 4/3 is chosen. At each iteration, the Grover’s search is performed with 0 ≤ j <   If 

the measurement result after j iteration is not the solution,   is incremented to ( )min , N . The value of 

  on the rth such iteration is 𝜆r – 1 . Let ( )1/ sin 2c = . The critical stage is reached when 

logc cr  =    .  
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This happens with probability, ( )
( )

( )
1

1 1

sin 41
1 1

2 4 sin 2

c c

r

r r

r r

P




 
−

= =

 
− = − +  

 
  . The expected number of it-

eration when the critical state is reached (if at all it reaches, observed 
failP  for rounds before it is 1), is thus 

expanded (using geometric series expansion), 

 
( )

( )

( )
( )

( )

( ) ( )

log 1 log1

1

1 1 11

2 2 1 2 1 2 1 2 1

c c
cr

cr c
c

r

E r

 
       


   

  + −

=

− − −
= =   

− − − −
 . 

After the critical stage, further increase in   always succeeds with probability greater than 1/4. Thus, 

the limiting case is reached when 3/ 4failP =  and is upper bounded by, 

 
log

1 1

1 3 1 3 1

32 4 4 8 4 8 8 6
1

4

cc c

c

u ur r
u r

c

u u

E r
    


 

    
+

= =

 
    

= = = =    
−     −

 

  . 

The total expected number of iteration of the Grover algorithm (each time with different number of 

Grover iterations in them), when t ≤ 3N/4,   = 1 and 𝜆 = 6/5 can be derived as 

 
( ) ( )

3 9
3

2 1 8 6 2 4

c c
c cc

N N
E r E r O

tN t t

 


 
+

  
 +  + = + = =      − −   −  

. 

This is approximately 4 times the number of iterations had t been known in advance. The case for no so-

lution is handled with a time-out, while the case for t > 3/4 can be solved in constant time by classical sam-

pling. 

Multiple unknown solutions (by counting). The second method for multiple solutions is more intui-

tive. It divides the algorithm into two steps. In the first step, another quantum algorithm counts the number of 

solutions and then, the algorithm for known multiple solution is used to maximize the solution probability. 

Formally, counting is the cardinality of an inverse Boolean function  with input 1: ( )1 1t −= . There are 

different ways to do quantum counting. The first method is by using quantum Fourier transform (QFT) to 

find the period 𝜃 as 
jk  evolves, to find t. The number of iterations executed is encoded as part of the state, 

( )
2 1

0

1
, ,

2
j j j j

j i S i S

k l k i l i




  

−

=  

  
= +  

  
   . 

Now, if the original qubits in ∣i⟩ is observed, the state collapses to (within normalization factors), 
2 1

0

j

j

k i

 −

=

  or 
2 1

0

j

j

l i

 −

=

 . Running discreet QFT on this state, on measurement, with high probability the value f 

can be estimated. The number of solutions can be calculated as, ( )2sin / 2t f =  The value of   helps to 

balance the accuracy with run-time and needs to be typically increased gradually over multiple runs until f 

becomes large. 

Another conceptually simpler way to count is to determine the fraction of state marked by the Oracle. A 

state is created such that an extra qubit is ∣1⟩ if it is a solution, ∣0⟩ otherwise, 

( ), 1 0j j j

i S i S

k l k i l i
 

= +  . 

Now, measurement by state tomographic trials on this qubit gives the proportion of solution state to the 

total number of states with increasing degree of accuracy. 

An arbitrary amplitude and multiple solutions without counting is based on finding the number of times 

the original Grover algorithm is to be run. However, quantum counting involves states and procedures that 

are different from the qubit encoding of Grover. The second method is decomposed to the required Oracle 

unitary.  
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Let the Oracle is based on the Boolean function , such that it’s elements, 

  ( ) 0,1 ,  0 1ib i N  −  is marked when it is a solution state. The unitary matrix is formed such that 

the most-significant qubit is the count qubit. In terms of diagonal matrices and element-wise subtraction it 

can be written as, 
( ) ( )

( ) ( )

1

1
count

diag diag
O

diag diag

− − 
=  

− − 
. 

Remark. Grover’s algorithm (or the variants discussed in the previous section) cannot be directly used 

for pattern matching. In Grover’s search, the initial input state is an equal superposition of all the possible 

strings of the size of the search pattern. Thus, the number of states in the superposition is AM. The Oracle 

then marks the answer state so that the output is the search pattern. However, if the index of the pattern 

matching is the requirement, the state needs to be initialized such that it stores a superposition of indices in N 

– M + 1. The Oracle marks the index where the pattern matches. So, in a naive Grover’s search implementa-

tion, the entire pattern matching comparison is off-loaded to the Oracle, and the algorithm is not useful 

without a description of the Oracle construction. The Oracle, however, is a unitary matrix with the diagonal 

elements being – 1 for the answer index and 1 otherwise. Thus, the answer needs to be known for the Oracle 

construction, the exact problem that needs to be avoided to practically program a pattern matching applica-

tion. 

For matching a sub-string, only a sequential set needs to be considered.  

In Grover’s search, the Oracle function basically stores the relationship between the database and the 

search string. This relationship thus needs to change for each search string, making it impractical for imple-

mentation. The key idea in quantum pattern matching is to define a “compile once, run many” approach for 

the Oracle. The algorithm defines multiple Oracles, one for each character of the alphabet. The Boolean 

function that the Oracle encodes is – 1 for the indices where the reference string matches the Oracle’s defin-

ing character 𝜎 ∈ Σ:    
2

: 0,1 1,1
q

f



→ − . 

The Boolean function that maps to  0,1  is converted to  1,1−  by a phase-kickback process of 

( )
( )

1 af i
−  for implementing the gate level circuit for the Oracle function. The Oracle construction is inde-

pendent of the search string, giving this algorithm its usefulness. The Oracle circuit assembly, however, 

depends on the search pattern as shown in the algorithm anatomy in Fig. 5.  

 

Fig. 5. Algorithm anatomy 

At every iteration step, all the A Oracles exist in the circuit but only one of them is control activated by 

the step’s corresponding character of the search pattern. Since the model of quantum computer is based on 

in-memory computation, the exact circuit need not be pre-compiled if the underlying micro-architecture and 

classical control are fast enough to allow real-time circuit interpretation. 

The circuit for constructing an arbitrary Boolean function is not provided. The circuit is devised that al-

lows generating an Oracle automatically in a high-level programming language in the kernel. In the imple-

mentation, a sequential run through the Boolean function is performed. If the state of a particular index needs 

to be marked, the Boolean value of the index is taken and a CPhase gate is applied on all the qubits to the 

Oracle, with inverted control on qubits where the Boolean index encoding is 0. Continuing the example, the 
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Boolean function for 𝜎1 acting on 4q =  qubits is f1 = [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]. Thus, the 

positions of 0, 1, 2, or the qubit states of ∣0000⟩, ∣0001⟩, ∣0010⟩ are marked using 3 CPhase Gates over 4 

qubits. The first CPhase will have all the controls inverted, for the second CPhase 0 1 2, ,q q q    are inverted and 

for the third CPhase 0 1 3, ,q q q    are inverted. The inversion is carried out by wrapping Pauli-X gate on those 

qubits before and after the CPhase. The multi-qubit CPhase is converted to a multi-qubit CNOT by wrapping 

a Hadamard on one of the qubits and then decomposing. he third part of the circuit is the Grover amplifica-

tion process over the entire non-ancilla qubit set. In the initialization circuit, the Oracle as well as for the 

Grover gate, the circuit construction uses n-qubit Controlled-X gates. These need to be decomposed to 

Toffoli using ancillas for the purpose of simulating. 

The protocol for the algorithm is outlined in Fig. 6 for n qubits. 

   

Fig. 6. Schematic diagram of Grover’s quantum search algorithm over a space of n qubits (N = 2n). An 

example of the distributions of quantum amplitudes at each stage are depicted at the right. Inversion about 

the mean. (a) Initially all of the database elements start in an equal super-position and the mean line (dotted 

line) lies in the middle of the distribution. (b) Flipping the amplitude of one of the marked states shifts the 

mean line of the distribution down. (c) When the whole distribution is inverted about this mean line, the 

amplitude of the marked state gets larger while the amplitude of the other states decreases. (d) After this 

process is repeated for a set number of times the probability of measuring the marked state becomes much 

greater than any of the other database elements 

After initializing the system to the 0
n

 state a Hadamard gate is applied to put all the states in an 

equal superposition. This assures that the algorithm starts with each database entry being equally likely, as 

shown on the right-hand side of Fig A2.4(a). The next step is the heart of the algorithm known as the “oracle 

query”, it quickly checks if a proposed input “x” is a solution to the search problem. Quantum mechanically 

this step is a mathematical function that marks a particular state of a quantum superposition by flipping the 

sign of its amplitude as shown in Fig. A2.4b). Following the oracle, a number of quantum operations amplify 

the weighting of the marked state independent of which state is marked (see Fig. A2.1). After many itera-

tions of this query / amplification process, the marked state accumulates nearly all of the weight and is re-

vealed following a measurement. 

The required number of queries can be shown to be the integer closest to [π / (4sin−1(N−1/2)) − 1/2]. For 

N = 1, the marked element would thus appear with high probability after approximately π √N/4 iterations, 

and for the special case of N = 4 elements, a single query would provide the marked element with unit prob-

ability.  

Classically, a single query of a 4-element search space followed by a guess can only result in a success-

ful outcome with 50% probability. In the following we will track the states of two qubits as each step of the 

algorithm is performed. First each qubit is initialized to the 0  state and the state of the system is written 
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0 0 . This is similar to initializing a classical register. Next a Hadamard gate is applied to each qubit. This 

operation performs the transformation 0 0 1→ + . Directly following the Hadamard gate the state of the 

two-qubit system is  

( ) ( )
1 1

0 1 0 1 0 0 0 1 1 0 1 1
2 2
 +  + =  + + +    . 

This puts all of the database elements in an equal superposition. 

Next the oracle query is performed. This step takes some state x  and adds a minus sign to the ampli-

tude giving x− . The oracle will be explained in more detail later. For now, it is just a mathematical func-

tion that flips the phase of one of the database elements by 180◦. For this example, the state 0 1  will be 

marked (i.e. the amplitude of this state will be inverted), but in theory any of the four states could be marked. 

The state now becomes 
1

0 0 0 1 1 0 1 1
2
 − + +   . The next three operations in Fig. A2.1 per-

form a state amplification process. Here the amplitude of the marked state increases while the amplitude of 

the unmarked states decreases. The state amplification process is carried out by performing an inversion 

about the mean, as shown in Fig. A2.1.b. Here the amplitude of the marked state increases while the ampli-

tude of the unmarked states decreases. The state amplification process is carried out by performing an inver-

sion about the mean, as shown in Fig. A2.1. Since the marked state has an amplitude that is 180◦ out of phase 

with the other elements in the database, the average of the four amplitudes is slightly below the mid-point of 

the three positive states. When the whole distribution is inverted about the mean, the marked state grows in 

amplitude while the unmarked states decrease in amplitude. For the example shown here the state after the 

amplification process is ( )0 0 0 1 0 1 0 1 0 0 1 1+ + + . All of the population is transferred into the 

marked state and the probability of finding the amplitude in any of the other three states goes to zero. This is 

a special case of Grover’s algorithm where after a single cycle of the algorithm, the marked state can be 

found with 100% probability. For other cases of the algorithm the cycle is repeated for a set number of times 

before the measurement occurs. As mentioned above the ideal number of times to repeat the protocol is the 

integer closest to [π / (4sin−1(N−1/2)) − 1/2]. If the sequence is repeated too many times then the amplitude of 

the marked state begins to decrease and the amplitude of the unmarked states begins to increase. As men-

tioned before the oracle query is the cornerstone of the algorithm. In the above explanation this step was 

treated as a mathematical function that marks one of the database elements. In the algorithm outlined by 

Grover this oracle query is a quantum database in and of itself. The oracle does not know the solution to a 

question in advance but can recognize the solution when it is inputted. This is done by a parallel bit wise 

search of all of the oracle’s database elements. When the oracle matches the input bit string with a bit string 

in its database then the amplitude of that state is inverted. The rest of the algorithm is carried out as ex-

plained above. 

Example: Generalized Grover’s oracle and quantum partial search algorithm. One query to oracle Ut 

combined with the diffusion operator Dn is called the Grover iteration or Grover operator: 

n n tG D U= . See Fig. 7a for the quantum circuit diagram of nG . 
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Fig. 7. Quantum circuits of global Grover operator Gn defined and local Grover operator.  

[The diffusion operator Dn (Dm) is single-qubit-gate equivalent to the n-qubit Toffoli gate ( )1n X−  (m-qubit 

Toffoli gate ( )1m X− . Here X and Z are Pauli gates, and H is the Hadamard gate. The subspace where Dm 

acts can be chosen arbitrarily] 

The diffusion operator Dn reflects the average of the whole database. The operator Gn is also called the 

global Grover iteration (global Grover operator). One Grover operator Gn uses one query to oracle Uf . Ap-

plying Gn iteratively on the initial state 
ns , the amplitude of the target state will be amplified. After j 

Grover iterations, the success probability Pn(j) is ( ) ( )( )
2

2sin 2 1j

n n nP j t G s j = = + , with 

sin 1/ N = . When j reaches 
max / 4j N =

 
, the probability of finding the target state approaches 1. 

The maximal iteration number jmax is the square root of N. Clearly, Grover’s algorithm provides a quadratic 

speedup compared with the classical algorithm (in oracle complexity). The idea behind Grover’s algorithm 

can be generalized into the amplitude amplification algorithm. The success probability (finding the target 

state) does not scale linearly with the number of iterations. It suggests that Grover’s algorithm becomes less 

efficient when j approaches jmax. Previous works argued that the expected number of iterations j = Pn(j) has 

the minimum at 
exp 0.583j N =

 
, which is smaller than jmax. When j is jexp, the success probability is 

around 0.845. In practice, the iteration number jexp has a high probability to find the target state. The meas-

urement result can be verified in classical ways. If the result fails, one has to run the algorithm again. The 

expected number of oracles is minimized at jexp. 

Quantum Partial Search Algorithm (QPSA). The QPSA was introduced by Grover and Radhakrish-

nan. Since Grover’s algorithm is optimal (in oracle complexity), the QPSA trades accuracy for speed. A 

database of N items is divided into K blocks: N = bK. Here b is the number of items in each block. It is 

assumed that the number b is also a power of 2: b = 2m. And the number of blocks is K = 2n – m. The QPSA 

can find the block which has the target state. In other words, the QPSA finds the partial (n – m)-bit of the 

target state (which is n bits long). The optimized QPSA can win over Grover’s algorithm a number scaling as 

b . A larger block size (less accuracy) gives a faster algorithm. Suppose that the address of the target state 

t  is divided into 1 2t t t=  . Here 1t  is ( )n m−  bits long and 2t  is m bits long. The task is to find 1t  

instead of the whole t. Besides the diffusion operator Dn, the QPSA introduces a new diffusion operator Dn,m: 

, 2n mn mD I −= ( ), 2 2
2n m mn m m mD I s s I−=  − . The diffusion operator Dn,m reflects around the average in a 

block (simultaneously in each block). The diffusion operator Dn,m can be viewed as the rescaled version of 

Dn: the database with size 2n is rescaled into size 2m. It is possible define a new Grover operator as 

, ,n m n m tG D U= , See Fig. 1b for the quantum circuit diagram of Gn,m. The diffusion operator Dn,m reflects the 

average of block items. The operator Gn,m is also called the local Grover iteration (local Grover operator). 

The QPSA requires a smaller number of oracles (the saved oracle number scales as b ) than Grover’s 

algorithm. 
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Physical model implementation of quantum search algorithm  

By implementing the search function as a quantum operator acting on a superposition, the Grover algo-

rithm is able to somehow evaluate it in one single call for all possible input states. This so-called quantum 

parallelism provides the basis for the speed-up of the search in comparison to a classical algorithm. Howev-

er, being able to encode the result of the search function in the phase of a multi-qubit state does not directly 

translate to a speed advantage since it is usually very hard to extract this phase information from the quantum 

state. Indeed, to extract the values of all phases from an N-qubit state, it would be necessary to perform O(2N) 

measurements on an ensemble of such identically prepared quantum states. However, extracting the ampli-

tudes from such a state takes only O(N) measurements, that in addition can usually be carried out in parallel. 

It is for this reason that the Grover algorithm uses an operator that transforms the information encoded in the 

phases of the qubits to an information encoded in their amplitude. However, since the conversion between 

phase to amplitude information through the application of an unitary operator is limited by certain physical 

constraints, the algorithm needs to repeat the encode-and-transfer sequence described above O(√N) times. To 

analyze further the constraints and principles of the algorithm, we will discuss a more detailed derivation of 

it starting from the Schrödinger equation and we will also explain what limits the efficiency of the phase-to-

amplitude conversion in the algorithm. 

Deriving the Grover Algorithm from Schrödinger’s Equation  

An interesting derivation of the Grover algorithm starting from Schrödinger’s equation has been de-

tailed by Grover himself and shall be briefly re-discussed here since it sheds light on the basic principles on 

which the algorithm is based. The derivation begins by considering a quantum system governed by Schrö-

dinger’s equation, which can be written as (setting  = 1 for better readability) 

( ) ( ) ( ) ( )
2

2
, , ,i x t x t V x x t

t x
  

 
= − +

 
. 

Here ψ(x,t) describes the wave-function and V is a time-independent potential.  

Let us assume that the potential V(x) is shaped as in Fig. 8, i.e. possessing a global minimum of energy.  

 

Fig. 8. Wave function ψ(x) and potential V (x) defined on a grid of points x1, . . . , xN.  

[A minimum of the potential can encode a search value xi] 

When one initializes the system to a state ψ0(x,t0) and lets it evolve for a given time, ψ(x,t) will be at-

tracted by the minimum of potential energy and “fall into it” much like a classical particle in such a potential 

would. We might thus ask if we can encode the solution to a search problem as a point of minimum energy x0 

of a potential V (x), take an initial state ψ0(x, t0) and let it evolve into a state that has a high probability 

around x0, thereby solving the search problem.  

To answer this question, it is first necessary to discretize the wave function ψ(x, t) such that it can repre-

sent the search problem stated in the last section, and which is defined over a finite number of states. In the 

simplest case, we can use a regular grid of points xi with a spacing ∆x for this, as shown in Fig. A2.5.  
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Discretizing the time evolution in steps ∆t as well and defining   = ∆t/∆x2, we obtain a new equation of 

the form ( )1 1

2

2t t t t t t
ti x i i x

i iV x
t x

    


+

+ −− + −
− = −

 
, where we have written ψ(xi, t) = ψi

t. For a circular 

grid with N points we can write this equation in matrix form as 
t t t tS + =   with S being a state transi-

tion matrix of the form 

( )

( )

( )

1

2

1 2 0

1 2 0

0

0 1 2 N

i iV x t i i

i i iV x t i

S i

i i i iV x t

  

  



  

− −  
 

− −  
 =
 
 
 − −  

 

For infinitesimal times ∆t we can separate the effect of the potential V (x) on the wave function from the 

spatial dispersion ∝ i  by writing S∆t ≈ D·R with 

1 2 0

1 2 0

0

0 1 2

i i i

i i i

D i

i i i

  

  



  

− 
 

−
 
 =
 
 
 − 

,       

( )

( )

( )

1

2

0 0

0 0

0 0 N

iV x t

iV x t

iV x t

e

R e

e

− 

− 

− 

 
 

=  
 
 
 

. 

This approximation is correct to order ( )O  up to an irrelevant renormalization factor. 

Now, we can repeatedly apply the matrix product D·R to the wave function to obtain its state after a 

given finite time t by writing 0

/

1

t t
t t t

i

D R 


+

=

 
=   
 
 . This technique of splitting up the full evolution opera-

tor into a product of two or more non-commuting operators that are applied repeatedly to the wave function 

to obtain its state after a finite time is sometimes referred to as Trotterization – in reference to the so-called 

Lie-Trotter formula on which it is based – and on which digital quantum simulation relies. 

The evolution of the wave function at infinitesimal times is governed by two processes: The interaction 

with the potential V and a diffusion process that mixes different spatial parts of the wave function with each 

other. The operator D resembles a Markov diffusion process since each row and column of the matrix sums 

up to unity, whereas R changes the phase of each element of the wave function as a function of the local 

potential seen by it. If we apply R to a fully superposed initial state of the form ψi = 1 (omitting the normali-

zation factor for simplicity) and assume that Vi = 0 for i j  and Vj∆t = π/2 (the potential thus encoding a 

search function with C(j) = 1 and C(i) = 0 for i j ), the element ψj will get turned according to ψj → iψj, 

whereas all other elements ψi will remain unchanged. Applying the operator D to the resulting state will 

transform ψj according to ψj → ψj(i + 2 (1 + i)) with a corresponding amplitude ( )21 4 O + +  and the 

adjacent states ψj±1 according to ψj±1 → ψj±1(1 −   (1 + i)) with an amplitude ( )21 2 O − + . Hence there 

is a transfer of amplitude between the state whose phase has been turned and its neighboring states.  

If we reset the phases of all the ψi to zero afterwards, we can iterate the application of D·R until all of 

the amplitude has been transferred to the element ψj which corresponds to a solution to the search problem. 

This is, in essence, exactly what the Grover algorithm does, the only difference being that it replaces the 

matrix D with an unitary matrix that maximizes the amplitude transfer to the states solving the search prob-

lem, thereby speeding up the algorithm. As stated before, the efficiency with which the algorithm can trans-

fer amplitude between different states is limited by physical constraints. In the next section, we will therefore 

discuss exactly what limits this efficiency and which unitary diffusion matrix one should choose to maximize 

it. 

Remark. The unstructured search problem in constant time can be solve by computing with a physically 

motivated nonlinearity of the Gross–Pitaevskii type. This speedup comes, however, at the novel expense of 
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increasing the time-measurement precision. Jointly optimizing these resource requirements results in an 

overall scaling of N1/4. This is a significant, but not unreasonable, improvement over the N1/2 scaling of 

Grover’s algorithm. Since the Gross–Pitaevskii equation approximates the multi-particle (linear) Schrodinger 

equation, for which Grover’s algorithm is optimal, the result leads to a quantum information-theoretic lower 

bound on the number of particles needed for this approximation to hold, asymptotically. 

Efficiency of Quantum Searching. As discussed by L. Grover, it is interesting to ask what is the max-

imum amount of amplitude that can be transferred in a single step of the Grover search algorithm and which 

matrix D should be chosen to maximize this transfer. To answer this question and derive the ideal diffusion 

matrix, we will assume first that, without loss of generality, the matrix R which encodes the value of the 

search function C in the quantum state of the qubit register can be written as ( )
1

0

2
N

j

R C j j j
−

=

= −  . This 

operator will flip the sign of all states for which C(j) = 1. Now, the next step consists in finding a diffusion or 

state transfer matrix which will maximize the amplitude transfer to states tagged by the Oracle operator 

above and which will also reset the phases of the quantum register to zero afterwards, such that we might 

apply the Oracle operator to the resulting state again. In the most general case, such a state transfer matrix 

will have the form  

C

b a a a

a b a a
D

a a b

 
 
 =
 
 
 

. 

Here, we assume that all non-diagonal elements of the matrix are equal, which is well justified since we 

have no knowledge of the structure of the search space of the problem and therefore want to treat all basis 

states equally during the phase-to-amplitude conversion. Furthermore, since both the initial quantum state 

and the Oracle operator contain only real numbers and we demand that the quantum state after applying Dc 

may contain only positive real numbers as well it is easy to show that a, b must be real numbers. Finally, the 

unitarity of quantum operators demands that 
†

C CD D = , which for the matrix above is equivalent to the two 

conditions ( ) ( )2 2 21 1 ,   0 2 2b N a ab N a= + − = + − . Solving these two equations for a, b yields the trivial 

solution b = ±1, a = 0 and the more interesting one b = ± (1 − 2/N), a = ∓2/N. As can be checked easily, the 

solution b = 1 − 2/N, a = 2/N results in a maximum amplitude transfer from states i  for which C(i) = 0 to 

states j  for which C(j) = 1. Thus, the ideal diffusion matrix to be used in the Grover algorithm is given as 

1 2 / 2 / 2 / 2 /

2 / 1 2 / 2 / 2 /

2 / 2 / 2 / 1 2 /

N N N N

N N N N
D

N N N N

− + 
 

− + =
 
 

− + 

. 

This matrix, together with an Oracle operator R as given above will yield the maximum amplitude trans-

fer from states not solving the search problem to states that solve it. Repeating the application of D·R on an 

initially fully superposed quantum state for O(√N) times will transform the input state to a state containing 

only the solutions of the search problem. For the two-qubit case, the Oracle and diffusion operators R and D 

of the previous sections are 

( )
( )

( )
( )

( )
( )

( )
( )

00

01

10

11

1 0 0 0 1 1 1 1

0 1 0 0 1 1 1 1
,   

1 1 1 10 0 1 0

1 1 1 1
0 0 0 1

C

C

C

C

R D

 − −  
  − −
  = =
 − −
   −  − 

. 

Before discussing the experimental implementation of this algorithm, we will show how we can com-

pare its computational efficiency to that of an equivalent classical algorithm in order to assess the achieved 

quantum speed-up. 
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Transition Probabilities in Generalized Quantum Search Hamiltonian Evolutions. A relevant 

problem in quantum computing concerns how fast a source state can be driven into a target state according to 

Schrodinger’s quantum mechanical evolution specified by a suitable driving Hamiltonian. The computational 

aspects necessary to calculate the transition probability from a source state to a target state in a continuous 

time quantum search problem defined by a multi-parameter generalized time-independent Hamiltonian. In 

particular, quantifying the performance of a quantum search in terms of speed (minimum search time) and 

fidelity (maximum success probability), a variety of special cases that emerge from the generalized Hamilto-

nian. In the context of optimal quantum search considered, it is possible to outperform, in terms of minimum 

search time, the well-known Farhi-Gutmann analog quantum search algorithm find. In the context of nearly 

optimal quantum search, instead, it is possible to identify sub-optimal search algorithms capable of outper-

forming optimal search algorithms if only a sufficiently high success probability is sought. Finally, the rele-

vance of a tradeoff between speed and fidelity with emphasis on issues of both theoretical and practical 

importance to quantum information processing discussed. Grover’s algorithm was presented in terms of a 

discrete sequence of unitary logic gates (digital quantum computation). Specifically, the transition probabil-

ity from the source state 
s  to the target state 

w  after the k-times sequential application of the so-called 

Grover quantum search iterate G is given by, 

( ) ( )
2

2 1 1
, sin 2 1 tan

1

def
k

Grover w sk N G k
N

  −  
= = +  

−  
.  

In the limit of N approaching infinity, Grover  approaches one if ( )k O N= .  

Remark. We point out that the big O-notation f (x) = O(g (x)) means that there exist real constants c and 

x0 such that |f (x)| ≤ c|g (x)| for any x ≥ x0.  

The temporal evolution of the state vector ( )t  of a closed quantum system is characterized by the 

Schrodinger equation, ( ) ( ) ( )ti t t t  = . The Hamiltonian ( )t  encodes all relevant information 

about the time evolution of the quantum system. From a quantum computing standpoint, if the Hamiltonian 

( )t  is known and properly designed, the quantum mechanical motion is known and the initial state 

(source state, 
s  at t = 0 can potentially evolve to a given final state (target state, 

w  at t = T. In particu-

lar, for any instant 0 ≤ t ≤ T, the probability 
s w →

 that the system transitions from the state 
s  to the 

state 
w  under the working assumption of constant Hamiltonian is given by, 

2

2

s w

i
t

w s w se
 

   
−

→
= = . The unitary operator 

i
t

e
−

=  denotes the temporal evolu-

tion operator.  

Figure 9 displays a graphical depiction of the digital (discrete time) and analog (continuous time) quan-

tum search algorithms. 

 

Fig. 9. Gate-level schematic of the (a) digital and (b) analog quantum search algorithms 

Grover’s quantum search algorithm provides a quadratic speedup over the classical one and the compu-

tational complexity is based on the number of queries to the oracle. However, depth is a more modern metric 

for noisy intermediate-scale quantum computers. Grover’s algorithm is not optimal in depth. A new depth 

optimization method for quantum search algorithms was proposed and a quantum search algorithm devel-

oped, which can be divided into several stages. Each stage has a new initialization, which is are scaling of 



Электронный журнал «Системный анализ в науке и образовании»                        Выпуск №3, 2020 год 

84 

the database. This decrease errors. The multistage design is natural for parallel running of the quantum 

search algorithm. 

Remark. Recently, more studies focused on the resource estimation, such as width and depth, for 

Grover’s algorithm instead of the traditional oracle complexity. Grover’s algorithm is optimal in oracle 

complexity. However, no research addressed the depth of the quantum search algorithm. Surprisingly, the 

depth of the diffusion operator can be reduced to one. However, these algorithms have (1/2) maximal suc-

cessful probability, and the expected depth is not as efficient as the original Grover’s algorithm. Inspired by 

the quantum partial search algorithm (QPSA), a new depth optimization for the quantum search algorithm 

was introduced. The algorithm can have lower depth than Grover’s algorithm. To further lower the depth, a 

divide-and-conquer strategy (combined with depth optimization) can be applied. The divide-and-conquer 

strategy means that the search algorithm is realized by several stages. Each stage can find a partial address of 

the target state. The next-stage initial state is the rescaled version of the last-stage initial state. The divide-

and-conquer strategy naturally allows the parallel running of the quantum search algorithm. 

If the oracle takes much more depths than diffusion operator depth, then the oracle complexity will be 

approximately equivalent to the depth complexity. The ratio between oracle depth and diffusion operator 

depth was defined. Above a critical ratio, Grover’s algorithm is optimal in depth. Based on the depth optimi-

zation method the critical ratio defined as O(n−12n/2). If the algorithm divided into two stages, the critical 

ratio is a constant. 

Example. Still shallow-depth algorithms can be realized on real quantum computers (for the noisy in-

termediate scale quantum (NISQ) era). The width (the number of physical qubits) represents the size of 

quantum computers. The algorithm’s depth (the number of consecutive gate operations) represents the physi-

cal implementation time for the algorithm. Multiplying the width and depth we get the quantum volume, 

which gives a metric for NISQ computers. Coherence time is limited in NISQ computers. A set of gates 

which can approximate any unitary operation is called the universal quantum gate set (Solovay - Kitaev 

theorem). It is assumeв that the quantum computer is equipped with a universal quantum gate set. So, the 

depth is counted by universal quantum gate operations. The quantum oracle Uf is realized by quantum gates 

from the universal quantum gate set. It is assumed that the depth of the quantum oracle scales polynomially 

with n. The oracle complexity would be equivalent to the depth complexity if the quantum oracle would be 

the only operation realized in Grover’s algorithm. However, it is not true. Another unitary operation (diffu-

sion operator) is required for Grover’s algorithm. How to choose the diffusion operator is related to the 

initial state preparation. The unstructured population space  0,1
n
 (database) can be prepared in an equal 

superposition state on a quantum computer polynomial efficiently: 0
nn

ns H
=  with single-qubit 

Hadamard gate H. Note that the initial state 
ns  can be efficiently prepared with a depth of one circuit. The 

diffusion operator has the constraint that the state 
ns  is the eigenvector of the diffusion operator with 

eigenvalue 1.  

Working in a continuous time quantum computing framework, Farhi and Gutmann proposed an analog 

version of Grover's algorithm where the state of the quantum register evolves continuously in time under the 

action of a suitably chosen driving Hamiltonian (analog quantum computation). Specifically, the transition 

probability from the source state s  to the target state 
w  after the application of the unitary continuous 

time evolution operator 
FG

i
t

FG e
−

= for a closed quantum system described by a constant Hamiltonian 

FG  is given by, 

( )
2

2 2 2

Farhi-Gutmann , sin cos
FG

idef t

w s

Ex Ex
k N e t x t 

−    
= = +   

   
, 

where E is a energy-like positive and real constant coefficient. We point out that Farhi-Gutmann  approaches one 

if t approaches h/(4Ex). Ideally, one seeks to achieve unit success probability (that is, unit fidelity) in the 

shortest possible time in a quantum search problem. There are however, both practical and foundational 

issues that can justify the exploration of alternative circumstances. For instance, from a practical standpoint, 

one would desire to terminate a quantum information processing task in the minimum possible time so as to 
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mitigate decoherent effects that can appear while controlling (by means of an external magnetic field, for 

instance) the dynamics of a source state driven towards a target state. In addition, from a theoretical view-

point, it is known that no quantum measurement can perfectly discriminate between two nonorthogonal pure 

states. Moreover, it is equally notorious that suitably engineered quantum measurements can enhance the 

transition probability between two pure states. Therefore, minimizing the search time can be important from 

an experimental standpoint while seeking at any cost perfect overlap between the final state and the target 

state can be unnecessary from a purely foundational standpoint. Similar lines of reasoning have paved the 

way to the fascinating exploration of a possible tradeoff between fidelity and time optimal control of quan-

tum unitary transformations. 

Remark. Quantum search algorithm can be used search a target in a parallel way, compared with classi-

cal search algorithms, it achieves quadratic acceleration when searching a target in an unordered database. 

However, due to the property of quantum mechanics, it cannot work out an answer with certainty but with a 

probability. Grover’s algorithm is one of the most famous quantum search algorithms, nevertheless, there are 

still some imperfections with it. When the proportion of target is over 1/4, the success probability decreases 

rapidly, and when the proportion of target is over 1/2, the algorithm fails. To amend these deficiencies, many 

methods have been proposed from initial states, Hadamard-transform and phase factors. Based on four 

Grover-type algorithms, lots of extensive researches were proposed. F.M. Toyama put up with a multi-phase 

matching subject based on Li P C’s algorithm, he showed that a success probability between 99.8% and 

100% can be yielded for the proportion of target equals to 1/10 or larger with six iterations. On the basis of 

Long’s algorithm, Zhong et al. obtained a quantum search algorithm with the success probability larger than 

93.43% with the phase 1.018, Li T et al. proposed his quantum search algorithm based on multi-phase, of 

which success probability rises with the increases of the number of phases with just one iteration, and tends 

to be 100% when the proportion of target is over a limit. In 2017, Guo Y et al. proposed a Q-learning-based 

adjustable fixed-phase quantum Grover search algorithm, it avoids the optimal local situations, enabling 

success probabilities to approach one. Mainly focus on phase factors in four Grover-type algorithms, and a 

phase-transform condition is also proposed. With this phase transform condition, if the initial states are the 

same, four Grover-type algorithms can be transformed to each other. When applying the four Grover-type 

algorithms to search the same unordered database, after the transform, the success searching probabilities of 

the four algorithms are identical even though the amplitudes are not same, so they can be defined to be 

equivalent. Based on this conclusion, many extensive researches from one scheme can be easily generated to 

other three schemes. For example, Li P.C et al. mentioned that when the proportion of target is over 1/3, the 

success probability is greater than 25/27 with only one iteration, this conclusion can be generated to other 

three algorithms through the phase-transform condition. 

Original Grover’s algorithm and four Grover-type algorithms. When searching through an N-

elements searching space {0,1,2···N − 1} (N =2 n), these elements can be stored in n bits, and there are M 

targets for searching, 1 ≤ M ≤ N. The initial state of the algorithm is the equal superposition state s : 

2 1 1

0 0

1 1
0

2

n N
nn

n
x x

s H x x
N

− −


= =

= = =  . Grover’s algorithm consists of repeated application of a 

quantum subroutine, called Grover iteration, denoted as G, which may be broken up into four steps: 

1. Apply the oracle It. The purpose of using oracle It is to reverse the amplitude of the target, which is 

( )
( )

1
f x

tI x x= −
, when 

( ), 1x t f x= =
, when 

( ), 0x t f x =
. 

t
 is the target state. 

Therefore, the It operator can be denoted as 
2tI I t t= −

; 

2. Perform the Hadamard-transform H⊗n. 

3. Apply a conditional phase shift, which performs a (−1) phase shift to all states except 
0

. This trans-

form can be expressed as 0 2 0 0I I= −
. 

4. Perform the Hadamard-transform H⊗n.   

It is useful to note that the combined effect of steps 2, 3 and 4 as 

( )2 0 0 2n n

sI H I H s s I = − = − . Thus, Grover iteration may be written as s tG I I= . 
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In fact, Grover iteration can be seen as a rotation in the two-dimensional space spanned by the vector 

  and  .   indicates the normalized states of the sum of all targets, and   indicates normalized 

states of the sum of non-targets. The initial state s  may be rewritten as 

sin coss    = + , 

where sin /M N = . Apply G to s  for k times, and use some simple algebra, 

( )( ) ( )( )sin 2 1 cos 2 1kG s k k   = + + + , 

when this occurs, a target will be searched with the success probability ( )( )2sin 2 1P k = +  set 

4

MN
k

 
=  
 

. The image of P is shown in Fig. 10. 

 

Fig. 10. The success probability as a function of the proportion of target in Grover's algorithm 

For simplicity, the proportion of target is denoted as ( )/M N  = . From Fig. A2.1, when 

1/ 4 1/ 2  , the success probability decreases rapidly, and when 1/ 2  , the algorithm fails. Thus, 

when   = 0:147; P = 0:854, when   = 0:5; P = 0:5. 

Then, four Grover-type algorithms will be introduced, all of them generate original Grover algorithm 

from phases. 

Long's algorithm (a1) 
( ) ( )
( ) ( )

1

1

1

1

i

s

i

t

I e s s I

I I e t t





 = − −


= − −

; 

Li D. F.'s algorithm (a2) 
( )

( )

2

1

2cos

2cos

i

s

i

t

I e s s I

I I e t t









 = −


= −

; 

Li C. M.'s algorithm (a3) 
( ) ( )
( ) ( )

1 2 2

2 1 2

3

3

i i i

s

i i i

t

I e e s s e I

I e I e e t t

  

  

 = − +


= − − −

; 
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Li P. C.'s algorithm (a4) 
( ) ( )

( ) ( )

4

4

1

1

i i

s

i

t

I e s s e I

I I e t t

 



 = − +


= − −

. 

Four Grover-type algorithms are just differed by a global phase. For simplicity, the four algorithms 

mentioned above are denoted as algorithm 1, 2, 3 and 4 respectively, and the Is and It operators are denoted 

as Is
(i), It

(i), i = 1, 2, 3, 4. 

Example. With the basis vectors   and  , the Grover iteration of algorithm 1 (a1) can be ex-

pressed as 
( )

( ) ( )

( ) ( )

2 2

1

2 2

sin cos sin cos 1

sin cos 1 cos sin

i i i

i i i

e e e
G

e e e

  

  

   

   

 − + −
 =
 − − +
 

 and the initial state s  can be writ-

ten as ( )
T

sin ,cos  . Apply G(1) to s  for k times, the state 
k  will be obtained 

( ) ( )
T

sin cos ,k

k k kG a b    = + =  

measure the state 
k , a target item will be searched with the probability 

2

kP a= . Set k=5, and with 

the phase-matching condition  = , the relationship among P, phase   and the proportion of target   is 

shown in Fig. 11.  

Using the same method, other three images are shown in Figs. 12-14. 

 
Fig. 11 

 
Fig. 12 

 
Fig. 13 

 
Fig. 14 

Fig. 11. When k=5, the success probability as a function of phase and proportion of target in algorithm 1 

Fig. 12. When k=5, the success probability as a function of phase and proportion of target in algorithm 2 

Fig. 13. When k=5, the success probability as a function of phase and proportion of target in algorithm 3 

Fig. 14. When k=5, the success probability as a function of phase and proportion of target in algorithm 4 
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From Fig. 11–14, when phases of algorithm 1, 2, 3 and 4 meet the condition   = 2τ + π = γ1 −γ2 = −β, 

the relationships among success probability, phase, and proportion of target are completely identical. 

Remark. A different improved scheme from phases and a different phase-matching condition was pro-

posed Li et al. In the algorithm, 
( )

( )

0 1 0 0 ,

1 ,

i i

i

t

I e e I

I I e t t

 



 = − +


= − −

 which obtains three changeable phases, and 

the phase matching condition is α = −β. Li et al. also mentioned that when λ ≥ 1/3, setting α = −β = −π/2, the 

success probability P ≥ 25/27 can be obtained after only one Grover iteration. 

Example. In this four-phase improved scheme, two operators are generally expressed as follows: 

( )

( )

0 1 0 0

1

i i

i i

t

I e e I

I e I e t t

 

 

 = − +


= − − −

. 

The four changeable phases α, β, ϕ and φ must keep α = β or α = π and ϕ = φ or ϕ = π. 

Remark. When α = π, ϕ = φ, it degenerates to Li’s scheme. When α = π, ϕ = π, it becomes Long’s algo-

rithm. When α = β = φ = ϕ = π, it becomes the original Grover’s algorithm. 

Set α = β and ϕ = φ, then operators Is and It can be written as 

( )

( )

1

1

i i

s

i i

t

I e s s e I

I e I e t t

 

 

 = − +


= − − −

. 

The performance of this four-phase scheme with one iteration is demonstrated. 

With the basic vectors |α⟩ and |β⟩, the four-phase Grover iteration can be expressed as 

11 12

21 22

G G
G

G G

 
=  
 

, 

where 
( ) ( ) ( )2

11 12 211 sin , 1 sin cos , 1 sin cosi i i i iG e e G e e G e         = − + − = − − = − −
  , and 

( )2 2

22 1 cosi i iG e e e    = − + −
  . The phase-matching condition α = φ is still used. Here |s⟩ can be re-

expressed as (sinθ, cosθ)T with the basis vectors |α⟩ and |β⟩. Using |s⟩ as the initial state, and applying the 

four phase Grover iteration to |s⟩ for k times 

( ) ( ) ( )
T T

sin ,cos ,
k k

k kG a b  = =
. 

A target will be searched with the probability P = |ak|2 after measuring |ψ(k)⟩. Here P is functions of α, 

θ and k. Set k = ⌊π/sinθ⌋, the relationship between the probability P, phase α and the proportion of target λ is 

shown in Fig. A2.12. 

From Fig. 15, the optimal phase of this four-phase scheme α = 6.0215 can be obtained, of which the al-

gorithm can succeed with a probability no less than 99.63%, which is relatively better than the conclusion 

from Younes. This outcome is shown clearly in Fig. 16. 

Thus, with this scheme, the probability of obtaining correct results is improved. When the proportion of 

target λ ≥ 1/3, using two different phases 1.3789 and 1.8025, the minimum of success probability is 97.82% 

with just one iteration. When the computational complexity is ( )/O M N  the algorithm can succeed with 

a probability no less than 99.63% with the phase 6.0215. 
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Fig. 15 

 
Fig. 16 

Fig. 15. The relationship between probability, phase, and proportion of target 

Fig. 16. The success probability as a function of the pro-portion of target in our scheme when the number of 

iterations k = ⌊π/sinθ⌋ and the phase α = 6.0215 

Comparison to Classical Algorithms. To be able to compare the Grover algorithm as outlined here to 

a classical version solving the same search problem, we will now discuss another variant of the algorithm 

that uses an ancilla qubit to encode the result of the search function. This implementation will make it possi-

ble to devise a classical algorithm that can be directly compared to the quantum algorithm. 

Ancilla-based Implementation of the Algorithm. The implementation of the Grover search algorithm 

as outlined above encodes the value of the search function C directly in the phase of the input state supplied 

to this function. This makes it hard to compare the algorithm to a classical search algorithm which operates 

on a binary input state and, in general, cannot encode the result of the search function directly in this state. It 

is therefore useful to formulate a version of the Grover algorithm where the Oracle function does not directly 

encode the tagged state in the input qubit register but rather uses an ancilla qubit to store the result of calling 

C. Such a representation of the algorithm, although of little practical relevance, is useful since it allows us to 

directly compare the quantum algorithm to a classical counterpart implemented using reversible logic gates, 

thus making it possible to benchmark the quantum algorithm and provide an estimation of the quantum 

speed-up that can be achieved. 

Exemplary implementations of ancilla-based search functions C implemented using reversible (quan-

tum) gates are shown in Fig. 17 for the two-qubit case. 

 

Fig. 17. a) Definition of the NOT logic gate used in the following diagrams. b) Ancilla-based implementa-

tions of the Oracle functions C for two qubits. The state of the third bit get flipped if the search function C(i) 

= 1 for the given input state i. c) Example of an ancilla-based search function returning a true value for the 

input state 00 

There, a three-qubit Tofolli gate in combination with several single-qubit NOT gates (that can be easily 

implemented as single-qubit Xπ rotations) are used to flip the state of an ancilla-qubit conditionally on the 

input state of the gate. Using a similar approach, any arbitrary classical search function C that can be imple-
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mented with a set of universal reversible logic gates (e.g. the Toffoli gate and the NOT gate) can be directly 

mapped to a corresponding quantum operator that works on quantum-mechanical input states and imple-

ments the classical search function. 

Now, to use the Grover algorithm with such an ancilla-based quantum Oracle, it is necessary to re-

encode the result of the Oracle in the qubit input state.  

Figure 18 shows a version of the two-qubit Grover algorithm that achieves exactly this by using a three-

qubit control-control-not (CCNOT) gate C of the form 
8 8 2 1 1

ij

С ij ij= −    

 

Fig. 18. Full version of an ancilla-based implementation of the two-qubit Grover search algorithm 

The algorithm flips the state of a (third) control qubit for one of the four possible input states in accord-

ance to an unknown Oracle function. It then applies a three-qubit control-phase operation of that maps 

1 1 ,  0 0xy xy xy xy→− →
 to encode the state of the control qubit directly in the two input qubits. 

Then, a diffusion operator is used to determine the state which has been tagged by the Oracle function. After 

the re-encoding of the result, the ancilla qubit is not needed during the remainder of the algorithm but must 

not be read out before the algorithm terminates. 

Comparison to a Classical Algorithm. In order to quantify the speed-up achieved by a quantum algo-

rithm, it is necessary to define an equivalent classical algorithm to which we can compare it. Using the 

reversible, ancilla-based implementation of the search function that was introduced in the last section, it is 

straightforward to formulate a classical algorithm that solves the same problem as the Grover algorithm and 

then compare the number of evaluations of the search function C of the two. In this work, we compare our 

quantum algorithm to two particular classical algorithms that we refer to as “query” and “query-and-guess”. 

The query algorithm evaluates C for n states, returning the searched state if it finds it among them and return-

ing no value at all otherwise. The query-and-guess algorithm also evaluates C for n states, but even if the 

searched state is not found, it returns a guess of it by e.g. picking one of the remaining states at random. A 

possible two-bit implementation of a classical reversible query-and-guess algorithm that evaluates C only 

once is shown in Fig. 19, achieving a success probability of 50 % by evaluating C for a randomly generated 

two-bit input value r and returning r if C(r) = 1 or r + 1(mod 4) otherwise. 

 

Fig. 19. Classical reversible implementation of a query-and-guess search algorithm on a two-bit input 

register 
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An exemplary Oracle function can be implemented using two single-bit NOT operations and a Toffoli 

gate. R designates the generation of a random binary value at the beginning of the algorithm. If the Oracle 

does not yield the correct answer, the test state is incremented. The average success probability of the algo-

rithm is 50 %. Allowing two or three evaluations of C will increase the success probability to 75 % or 100 %, 

respectively. The success probability of an equivalent two-qubit query algorithm would be 25 % for one 

evaluation of C, 50 % for two, 75 % for three and 100 % for four. In general, for a search space with N 

states, the success probabilities of the query and query-and-guess algorithms as a function of n are 

/q

sp n N= (for n ≤ N) and ( )1 /qq

sp n N= +  (for n ≤ N − 1), which become equivalent for N → ∞ but 

deviate significantly for small N. We now use Grover’s algorithm to show how the mutual information varies 

with time in a quantum search. The general sequence for Grover’s algorithm will be used.  

Figure 20 shows the circuit for Grover’s algorithm.  

 

Fig. 20. The circuit for Grover’s algorithm 

Remark. On Fig. 20 the register C is the computational register and M is the memory register. UB is the 

black box query transformation, H is a Hadamard transformation on every qubit of the C register and f0 is a 

phase flip in front of the 00 0
C

. The block consisting of H, UB, H and f0 is repeated a number of times. 

The algorithm consists of repeated blocks, each consisting of a Hadamard transform on each qubit of the 

C register, followed by a UB (the black box transformation), followed by another Hadamard transform on 

each qubit of the C register and finally a phase flip f0 of the 00 0
C

 state of the C register (see Fig. 20). 

This block can then be repeated as many times as is necessary to bring the mutual information to its maxi-

mum value of log N, which, as we have shown to be O(√N). Note that the only transformation correlating the 

M and C registers is the black box transformation UB and all the other transformations are done only on the C 

register and therefore do not change the mutual information between the two registers.  

In Fig. 21 the variation of mutual information between the M and the C registers (i.e. the communica-

tion capacity of the quantum computation) with the number of iterations of the block in Grover’s algorithm is 

plotted.  
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Fig. 21. The dependence of the mutual information between the M and the C registers as a function of the 

number of times the block in Grover’s algorithm is iterated for various values of initial mixedness of the C 

register 

Remark. Each qubit of the C register is initially in the state ( )0 0 1 1 1p p+ − , (b) p = 0.95 and (c) 

p = 0.7. The (a) and (b) computations achieve higher mutual information than classically allowed in the order 

of root N steps, while (c) does not. 

 

It is seen that the mutual information oscillates with the number of iterations. Figure 21 is plotted for a 

four-qubit computational register which can search a database of 16 entries. It is seen that the period is 

roughly 6, which means that the number of steps needed to achieve maximum mutual information is roughly 

3. This is well the bound for the minimum number of steps, which is 4/3 in this case. The three graphs (a), 

(b) and (c) in Fig. 21 are for different values of initial mixedness of the C register. The mutual information 

fails to rise to the maximum value of log N when the state of the computational register is mixed. The pre-

sented formalism thus allows us to calculate the performance of a quantum computation as a function of the 

mixedness (quantified by the von Neumann entropy) of the computational register. We can put a bound on 

the entropy of the second register after which the quantum search becomes as inefficient as the classical 

search. If the initial entropy ( )0

CS   of the C register exceeds 
1

log
2

N , then the change in mutual infor-

mation between the M and the C registers in the course of the entire quantum computation would be at most 

log N . This can be achieved by a classical database search in N  steps. So, there is no advantage in 

using quantum evolution when the initial state is too mixed. Note that the condition ( )0 1
log

2
CS N   for 

no quantum speedup in the search algorithm is only a sufficient condition and not a necessary condition. This 

is similar to the entropic conditions sufficient to ensure no quantum benefit from teleportation and dense 

coding. Analogous analysis can be applied to any other algorithm.  

Experimental Implementation of Grover’s Algorithm. Grover’s algorithm has been implemented 

with ensembles of molecules using nuclear magnetic resonance, with states of light using linear optical 

techniques, and with Rydberg states within individual atoms. None of these systems are scalable however, as 

they require exponential resources as the number of qubits grows. Let us consider the implementation the 

Grover search algorithm over a space of N = 4 elements using two trapped atomic ion qubits. The implemen-

tation of Grover’s algorithm reported in this case complements the repertoire of multi-qubit quantum algo-

rithms recently demonstrated in the scalable system of trapped atomic ions. Unlike these earlier ion trap 

demonstrations, we use magnetically-insensitive “clock state” qubits and particular entangling gates that are 

uniquely suited to such qubits while remaining insensitive to external phase drifts between gates.  
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A standard quantum circuit for the Grover search algorithm for N = 4 entries is shown in Fig. 22(a). 

This scheme uses a third ancilla bit which marks one of the database elements through a Toffoli gate that 

effectively flips the sign of the marked element if and only if the two bit input is a solution to the problem 

(shaded in yellow). The oracle scheme to mark each of the four possibilities is shown below the circuit. The 

remainder of the circuit (shaded in red) amplifies the weighting of the marked state, with the operations 

between the Hadamard gates flipping the sign of the amplitude of the 00  state. 

Figure 22(b) shows the experimental implementation of the algorithm for N = 4 search elements in the 

trapped ion system. 

 

Fig. 22. Quantum circuit to implement Grover’s searching algorithm for N = 4 entries. (a.) Theoretical 

circuit using a third ancilla bit and standard gates including the Hadamard gate (H), the generalized Toffoli 

gate, a bit flip, X, and a controlled-NOT gate. The Toffoli gate implements the oracle (shaded in light gray), 

where the scheme to mark each of the four possibilities is shown below the circuit. The remainder of the 

circuit (shaded in dark gray) amplifies the weighting of the marked state. (b.) The experimental circuit to 

implement the algorithm for n = 2 qubits, where R(θ, φ) is a rotation on the Bloch sphere, Rz(φ) is a phase 

rotation about the z-axis, and GMS is the Mølmer-Sørensen entangling gate 

Remark. The light gray shaded box identifies the oracle, where the value of the variables α and β (given 

in the table), determine which state is marked. The remainder of the circuit (shaded in dark gray) amplifies 

the weighting of the marked state. Before running the experiment, the phase of the entangling gate is syn-

chronized with the phase of the microwave / 2  pulses and the phases of the two entanging gates are syn-

chronized to each other through a Ramsey experiment. 

The ions are first prepared in the 0 0  state. Written in matrix form the initial state of each ion is 

1
0

0

 
= 

 
. Next a π/2 pulse is applied to the ions which creates and equal superposition. This is similar 

to the Hadamard gate discussed earlier in the chapter. After the π/2 pulse the state of the two-ion system 

becomes ( )

1

11 1
0 0 0 1 1 0 1 1

12 2

1

 
 
  = + + +
 
 
 

.  

This corresponds to the situation in Fig. 22(a).  

The next set of operations in the yellow shaded box comprises the oracle function. The oracle function 

flips the amplitude of one of the database elements. Experimentally we realize this by first making a con-

trolled-z gate from the M-S entangling gate by sandwiching the gate between the single qubit rotations 
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shown in the Fig. 22. The light blue shaded boxes yield the following controlled-z gate 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 
 
 
 
 

− 

. 

This will take the state 11  to 11− . But for the oracle to be effective we need to be able to mark any of 

the four database elements. To do this we add additional single qubit rotations denoted by the dark grey 

shaded boxes in Fig. A2.19(b). These are differential single qubit rotations. The angles α and β determine 

which state the controlled z gate is applied to. For example to mark the 01 state the rotations R(π, π) and 

R(0, 0) would be applied to qubit 1 and 2, respectively, before the controlled-z gate is applied. After applying 

the controlled-z gate the rotations R(π, 0) and R(0, 0) would be applied to the qubits 1 and 2, respectively. 

This sequence of rotations performs the operation 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 
 

− 
 
 
 

 and takes the state prior to entering the 

oracle, ( )
1

00 01 10 11
2

+ + + , to the state ( )
1

00 01 10 11
2

− + +  directly following the 

oracle. Any of the four states could be marked in a similar fashion. The remaining operations in the circuit 

(shaded in red) perform the state amplification process. During the state amplification process the amplitude 

of the marked state is increased while the amplitudes of the other database elements decrease. If for instance 

the 01  state was marked by the oracle then after the state amplification process the wavefunction would be 

( )0 00 1 01 0 10 0 11+ + + . All of the population is rotated into the 01  state and upon measurement 

this state would be measured with 100% probability, assuming all the operations were performed perfectly in 

the circuit. All of the population is rotated into the 01  state as a result of the quantum interference between 

the two entangling gates present in the oracle and state amplification processes. This is the process that 

Deutsch recognized in 1985.  

The results for the experimental implementation of the algorithm are shown in Fig. 23(a) where the 

marked state is on the left-hand side of the graphs and the measured state is shown in the graphs. 

 



Электронный журнал «Системный анализ в науке и образовании»                        Выпуск №3, 2020 год 

95 

 

Fig. 23. (a) Output of the algorithm. 

[The conditional probability of measuring each of four output states given one was marked is shown in 

sequence from top to bottom ( )00 , 01 , 10 , 11 . Each of the four data sets shows the distribution of 

measurements averaged over 500 trials. The marked state was recovered on average with 60%, compared to 

unit probability for the ideal quantum algorithm and 50% for the best possible classical algorithm] 

(b) Output of the algorithm without the final entangling gate. 

[This shows that the fidelity of the oracle is about 80%. Each of the four data sets was also averaged over 

500 trials. The experimental average to recover the marked state is 41% with the theoretical limit of 50%, 

both of which are less than the 60% from (a). The quoted errors are statistical] 

Experimentally we recovered the marked state with an average probabilty of 60%, not the unit probabil-

ity discussed above. This is due to the fact that not all the circuit elements were performed perfectly, there 

was some error in the operations. A large part of this infidelity is due to the Mølmer-Sørensen entangling 

gate. Each instance of the Mølmer-Sørensen gate has a fidelity of about 80%, and since there are two such 

gates in the algorithm, overall fidelities of approximately 60% are expected. The main sources of decoher-

ence during the gate are spontaneous emission from off-resonant coupling to the excited state and fluctuating 

AC Stark shifts from the Raman beams that drive the entangling gate. Both of these induced decoherence 

sources can be suppressed by increasing the detuning of the Raman beams from the excited state, at the 

expense of slowing the gate. We choose the detuning to strike a balance between these induced decoherence 

sources and other slowly varying noise sources, such as motional heating, fluctuating magnetic fields, and 

microwave oscillator phase drifts. Additional power in the Raman laser beams accompanied by larger detun-

ings could sup-press decoherence from spontaneous emission and AC Stark shifts while maintaining a rea-

sonable gate speed. 

Additionally, fluctuating AC Stark shifts during the differential single qubit rotations due to technical in-

tensity fluctuations and beam pointing instabilities add infidelities to the experiment on the order of 5-10%. 

The timescale for each operation in the algorithm is as follows: 10µs for a global microwave rotation, 20µs 

for a differential single qubit rotation, and 140µs for the Mølmer-Sørensen two qubit entangling gate, giving 

a total of ∼ 380µs to complete the 20 pulses that form the algorithm.  
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There are several approaches to gauging the performance of the algorithm implementation. One method 

is to compare the algorithm’s success at recovering the marked state with the best that can be achieved 

classically. The classical counterpart is a simple shell game: suppose a marble is hidden under one of four 

shells, and after a single query the location of the marble is guessed. Under these conditions, the best classi-

cal approach gives an average probability of success Pcl = 1/4 + 3/4(1/3) = 0.50, because 1/4 of the time the 

query will give the correct location of the marble while 3/4 of the time a guess must be made amongst the 

three remaining choices each with 1/3 probability of choosing the correct location. If Grover’s algorithm is 

used, the answer to the single query would result in a 100% success rate at ‘guessing’ the marble’s location. 

As can be seen in Fig. A2.9(a) the marked state is recovered with an averaged probability over the four 

markings of 60%, surpassing the classical limit of 50%.  

Remark. It is interesting to consider the output of the algorithm when the final entangling gate used for 

state amplification is omitted. This situation shows how well the algorithm can do with only single qubit 

rotations outside the oracle. This scenario lies between the classical and quantum searches described above 

since entanglement is not used outside the oracle but quantum superpositions are used to find the marked 

element. In this case it can be shown that quantum mechanics without entanglement can do no better than 

what can be achieved with classical means: both methods have the outcome of finding the marked state with 

only 50% probability, assuming a perfect oracle. In addition, this diagnostic allows the performance of the 

oracle itself to be characterized. The rotations following the oracle convert the marked state into one of four 

Bell states each of which yields a maximum probability of 50% to recover the marked state. Figure 23b 

shows that the marked state is recovered with an average of 42% probability, implying the oracle itself has a 

fidelity of roughly 80%.  

Information analysis. The above Figs A2.20 of merit focus on the mean success probability and neglect 

the information content inherent in the distributions of Fig. A2.9a. The mutual information between the 

marking of the state and the measurement can be used to characterize this correlation and hence is another 

measure of the algorithm’s success. The mutual information measures how much information two random 

variables, x, the measurement, and y, the marking, have in common. It is defined by: H(x : 

y)=H(x)+H(y)−H(x, y), where ( ) ( ) ( )2,
: , log ,

x y
H x y p x y p x y= −  is the joint Shannon entropy be-

tween the two distributions, p(x, y) = p(x)p(y|x) is the joint probability distribution of x and y, and p(y|x) is 

the conditional probability of y having been marked given that x was measured. Thus, 

( ) ( ) ( )2log
x

H x p x p x= −  and ( ) ( ) ( )2log
y

H y p y p y= −  are the Shannon entropies of the 

individual variables. Classically the mutual information acquired after a single query of the oracle is 

H(x:y)=0.25log2(0.25) - 0.75log2(0.75) = 0.81 bits, meaning, on average, 0.81 bits of information are gained 

upon measurement. The ideal quantum algorithm would yield two bits of information upon measurement. 

For the data in Fig. A2.20a the mutual information is 0.44, so on average only about a half a bit of infor-

mation is gained. Even though less information is gained per measurement than the classical case, the proba-

bility of finding the marked state in the experiment still exceeds the classical limit. 

For Grover’s algorithm to be useful it needs to extend beyond a few qubits. Using a quantum circuit 

similar to Fig. 23a, an n-qubit Grover algorithm can be implemented with n-qubit Toffoli gates, a series of 

two qubit gates, and single qubit rotations. It has been shown that an n-qubit Toffoli gate can be constructed 

with single qubit gates and controlled-NOT gates with order n basic operations. A controlled-NOT gate can 

be constructed from the M-S entangling gate through the following sequence: [R2(π/2, 0), R1(π/2, π), R2(π/2, 

π), GMS, R1(π/2, 0), R2(π/2, 0), Rz1(−π/2), Rz2(−π/2), R2(π/2, −π), Rz1(π)], where Ri = 1,2(θ, φ) is a rotation of ion 

i by angle θ and phase φ, Rzi(φ) is a z-rotation of ion i by angle φ, and GMS is the Mølmer-Sørensen entan-

gling gate. Since the ion system is scalable to a large number of qubits it is feasible to construct an efficient 

n-qubit Grover algorithm where each iteration scales polynomially with n. In this case, the isolation of indi-

vidual ions could be accomplished through tight focusing of laser beams or the shuttling of ions between 

separated trap zones. 

Example: Experimental Implementation 

The Grover algorithm has been implemented for two and three qubits using nuclear magnetic resonance 

(NMR) as well as for two qubits using trapped ions and recently NV centers in diamond. In 2009, L. DiCarlo 

et. al. implemented it using a superconducting two-qubit processor achieving > 80% output state fidelity, 

albeit without using a sufficiently efficient readout scheme of the qubit register and therefore not being able 
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to demonstrate quantum speed-up. The demonstration of quantum speed-up for the Grover search algorithm 

using a superconducting two-qubit processor with individual qubit readouts is one of the main goals of this 

item. We implement the compiled version of the two-qubit Grover algorithm, which encodes the result of 

calling the Oracle function C(x) with an input state x directly in the phase of x, as described above. 

The gate sequence of the algorithm is shown in Fig. 24 and consists of two iSWAP gates and six single-

qubit gates applied to an initial state 00 . 

The algorithm consists in generating a fully superposed input state, applying the Oracle function to it 

and analyzing the resulting state by applying the Diffusion transform and reading out the value of the qubit 

register afterwards. Here, the first iSWAP gate (which includes a 
I II

I IIZ Z   gate sequence to compensate 

the acquired phases of the qubits) together with the two single-qubit Z±π/2 rotations implements the Oracle 

function C(x) as given above, where the signs of the rotation operations determines the state which is tagged 

by the Oracle (−−, −+, +− and ++ for C00, C01, C10 and C11, respectively). This state can be either 00  (cor-

responding to a 
/2 /2

I IIZ Z − −  rotation), 01  (
/2 /2

I IIZ Z −  ), 10  (
/2 /2

I IIZ Z − ) or 11  (
/2 /2

I IIZ Z  ). 

 

Fig. 24. Schematic of our implementation of the Grover search algorithm 

After the encoding, the second iSWAP operation (which also includes Z compensation pulses) together 

with the following 
/2 /2

I IIX X   single-qubit operations implement the diffusion operator as given above. The 

final step of the algorithm consists in reading out the two-qubit register. 

Pulse Sequence. We implement the gate sequence described above using microwave and fast flux 

pulses. To minimize gate errors, we perform a series of calibration measurements before to tune-up the 

individual single- and two-qubit gates needed for the algorithm. In addition, we run individual parts of the 

algorithm successively and perform quantum state tomography to characterize the state of the quantum 

register after each step of the algorithm, optimizing the gate operations applied to the qubit in order to max-

imize the fidelity of the measured states in respect to the ideal ones. However, we optimize only the state 

preparation and Oracle operator itself on a per-state basis, whereas the diffusion operator D is optimized only 

once for all possible Oracles, as required for benchmarking a real quantum algorithm. cases do not optimize 

the Fig. 25 shows an experimental pulse sequence for the Grover algorithm with an Oracle operator C00. 
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Fig. 25. Pulse sequence used to realize the two-qubit Grover quantum search algorithm 

First, a Yπ/2 pulse is applied to each qubit to produce the fully superposed state 

( )1/ 2 00 01 10 11+ + + . Then, an iSWAP gate is applied, followed by a Z±π/2 gate on each qubit, 

which combined correspond to the application of the Oracle function. The resulting state is then analyzed 

using another iSWAP gate and two Xπ/2 gates to extract the state tagged by the Oracle. Optionally, a 
12Y  

pulse is applied to each qubit to increase the readout fidelity. 

 

Shown are the frequencies of the two qubits during the run time of the algorithm and the microwave 

drive and readout pulses applied to them. 

Results We now present the experimental results obtained with the implementation of the Grover algo-

rithm: Quantum state tomography is first used to determine the register density matrices during the algo-

rithm, and single-run results are then presented and discussed. 

State Tomography of the Quantum Register. Figure 26b shows the experimentally measured densi-

ty matrices of the two-qubit register when running the Grover search algorithm for the four possible Oracle 

functions. 
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Fig. 26. a) Schematic of the implemented algorithm, indicating the steps at which quantum state tomography 

has been performed. b) Experimental (filled circles) and theoretical (black outline) density matrices at 

different steps of the Grover search algorithm as indicated by the dotted lines, shown for four individual runs 

of the algorithm corresponding to different Oracle functions tagging the state 00 , 01 , 10 , or 11 . The 

trace fidelity between experimental and theoretical density matrices is indicated above each matrix 

For each of those four cases, quantum state tomography was performed after each step of the algorithm, 

as indicated in Fig. 26a. The fidelity diminishes during the algorithm due to dephasing and relaxation. The 

state fidelities for the final output states of the algorithm are 68% for the C00, 64% for the C01, 61% for the 

C10 and 65% for the C11 Oracle functions. 

Example. Running a Quantum Search Algorithm: Single Run Results. Using a two-qubit quan-

tum gate related to the one described above, we run a simple quantum algorithm on quantum processor, the 

so-called Grover search algorithm. As abovementioned the version of this algorithm that we implement 

operates on the two-qubit basis  00 , 01 10 11ix   and can distinguish between four different Oracle 

functions ( )jC x  with ix x  that give ( ) 1j iC x x= =  and ( ) 0j iC x x = . In the two-qubit case, this 

algorithm requires only one evaluation of the Oracle function Cj(x), implemented as a unitary operator, to 

determine which state among the four possible ones it tags. This case thus provides a simple benchmark of 

the operation of the quantum processor, and a simple and illustrative example of quantum speed-up in com-

parison with classical algorithms, as discussed above. The diagram of the Grover search algorithm imple-

mented in our processor is shown in Fig. 27a and involves two iSWAP gate operations and six single-qubit 

operations along with a single-shot qubit readout at the end of the algorithm. 
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Fig. 27. a) Two-qubit version of the Grover search algorithm implemented on the quantum processor. The 

algorithm consists in preparing a fully superposed state, applying a given Oracle operator to it only once, 

and analyzing the resulting output to determine the quantum state tagged by this Oracle operator. b) Meas-

ured density matrices when running the Grover search algorithm with a search oracle marking the state 

| 00 . 1) shows the state after the generalized Hadamard transform, 2) after applying the quantum oracle 

and 3) after the final analysis step of the algorithm 

We measure the success probability of the algorithm from the obtained outcomes, and complete the 

analysis of its operation by performing the tomography of the quantum state at different steps of the algo-

rithm. Let us first discuss this evolution that sheds light on how quantum speed-up is achieved. Figure 

A2.13b shows the density matrices determined experimentally when running the Grover search algorithm 

with the Oracle operator tagging the state | 00 . State tomography is first shown after preparation with a 

generalized Hadamard transform applied to the initial state 00 . It clearly corresponds to a superposition of 

all the computational basis states. The quantum state after having applied the quantum Oracle is 

00 01 10 11− + +  and the information on the tagged state is encoded in the phase of the state 00 . 

After extracting this phase information, the tomography displays a large peak on state |00^ at the end of the 

algorithm, just as expected. The fidelity of the final quantum state of the algorithm is 68%, 61%, 64% and 

65% for the four different Oracle operators, respectively. These fidelities, corrected for readout errors, do not 

quantify the quantum speed-up achieved when running the algorithm. For this, it is necessary to analyze the 

results obtained after a single run, which does not allow for any corrections of the readout outcomes. 

The main interest of running a quantum algorithm is to obtain an advantage in the run-time in compari-

son to a classical algorithm, the quantum speed-up. To characterize this speed-up as obtained with our pro-

cessor, we run the Grover algorithm for all four possible Oracle functions and directly read out the state of 

the qubit register after the last step of the algorithm instead of performing quantum state tomography, thus 

not correcting any readout errors. By averaging the outcomes of many such individual runs with different 

Oracle functions we obtain the single-run fidelities, which – for the four different Oracle functions– have 

been measured as 66%, 55%, 61% and 52%. The full probability distributions for the four possible cases are 

shown in Fig. 28.  
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Fig. 28. Single-run success probabilities of our implementation of the Grover search algorithm, for the four 

possible Oracle functions. Red bars correspond to measured values, whereas blue ones are calculated using 

the measured density matrices after the final step of the algorithm and the measured two-qubit readout 

matrix. Dashed lines indicate the average success probabilities of classical query and query-and-guess 

algorithms, for comparison 

The achieved success probability is always lower than the theoretically possible value of 100 %, mainly 

because of relaxation and decoherence of the qubit state during the run time of the algorithm and – to a small 

degree – errors in the pulse sequence. The measured success probabilities are however larger than the 50% 

success probability of a classical query-and-guess algorithm using the outcome of a single query.  

The algorithm thus demonstrates quantum speed-up. 

The experimental state tomographies presented above show that we can implement the Grover search 

algorithm with average output state fidelity of 64 % using our two-qubit processor. However, the analysis of 

the two-qubit register by quantum state tomography at the end of the algorithm does not prove that we can 

achieve real quantum speed-up with the processor. For this, it is necessary to directly read out the state of the 

qubit register at the end of the algorithm without performing any kind of error correction afterwards. By 

looking at this “raw” outcome data and generating statistics over many single runs of the processor, we 

quantify the success rate and the fidelity of the implemented algorithm. The results of such measurements, 

performed for the four possible Oracle functions, are shown in Fig. 28. 

Besides the single-run probabilities for all four Oracle functions, the diagram shows for comparison the 

expected outcome probabilities calculated based on the quantum state tomographies discussed above. As can 

be seen, the agreement between the measured and calculated probabilities is fairly good. Deviations between 

expected and measured outcome probabilities (such as for the |10^ state when using the C10 Oracle) might be 

explained by a drift of the experimental parameters between the measurement of the state tomographies and 

the single-run data. The dashed lines in the diagrams correspond to the success probabilities of classical 

single-evaluation query and query-and-guess algorithms, which are 25 % and 50 %, respectively, and which 

provide a benchmark against which we measure the quantum speed-up of the algorithm. The implementation 

of the Grover search algorithm outperforms such classical algorithms for all Oracle functions, if only by 2-17 

% for the “query-and-guess” algorithm. 

Comparison to a Classical Search Algorithm. As discussed above, we compare the implementation 

of the Grover algorithm to the classical query and query-and-guess algorithms in order to quantify the quan-

tum speed-up achieved. More precisely, we calculate the success probability of our algorithm to find the 

solution of the search problem after n runs as 

( ) ( )
1

0 0

1

1
n

i

s s s

i

p n p p
−

=

= − , 

where 
0

sp  is the single-run success probability of the algorithm. 

Figure 29 shows ps(n) for our implementation of the Grover algorithm as obtained for all four Oracle 

operators, together with the success probabilities of the query and query-and-guess classical algorithms.  
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Fig. 29. Comparison between the measured success probability of the implementation of the Grover algo-

rithm and the calculated success probabilities of the query and query-and-guess classical algorithms as a 

function of the number n of runs 

As can be seen, the implementation of the Grover algorithm beats the query algorithm for n ≤3 evalua-

tions of C and the classical query-and-guess algorithm for n ≤ 2. However, unlike the classical algorithms, it 

never converges to 100 % success probability due to always-present unitary and non-unitary errors in our 

system. 

Example. Realizing a Universal Two-Qubit Quantum Gate. The swapping evolution allows not on-

ly to prepare entangled two-qubit states but also to implement a universal two-qubit gate: When switching on 

the interaction for a time tπ/2 = π/4gqq one realizes the SWAPi  gate, represented by the evolution operator 

 

which forms together with single qubit gates a universal set of gates, on which any algorithm can be decom-

posed. We characterize the operation and errors of the implementation of this gate by performing quantum 

process tomography, obtaining a gate fidelity of 90 %. The 10 % error in gate fidelity is caused mainly by 

qubit relaxation and dephasing during the gate operation and only marginally by deterministic preparation 

errors. 

Figure 30 shows the measured χ matrix of the gate, that describes its effect in the Pauli basis of two-

qubit operators.  

 

Fig. 30. Measured χ-matrix of the implemented SWAPi  gate. 

[The row labels correspond to the indices of the Ei Pauli operators, the height of each bar to the absolute 

value of the corresponding matrix element, and the color and red arrow direction to the argument of the 

element. The ideal χ-matrix of the SWAPi  gate is given by the outlined black bars. The upper half of the 

positive-hermitian matrix is not shown] 
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The χ matrix provides the full information on the unitary and non-unitary action of the gate. The 

achieved fidelity of the gate operation is sufficient to allow the implementation of simple quantum algorithms 

with quantum processor. 

Example: Grover quantum search algorithm application in cryptography.  

The explicit construction of a quantum algorithm based on Grover’s search provides an exact 

quantification of the quantum resources which are needed for an actual implementation of a preimage attack. 

The main takeaway is that the number of gates and depth required to build the oracle and diffusor scales 

linearly with n, the number of qubits in the register, with large prefactors. This is relevant as large prefactors 

may make inaccurate naive predictions for the power of quantum computation. Quantum algorithms special-

ly designed to attack cryptographic protocols require extensive perusal and have presented an explicit quan-

tum code that performs a full Grover attack on two scaled ARX-based hash functions. The algorithm is 

simulated using the Qibo quantum simulation software, which is an open-source library for quantum compu-

tation. Cryptography is universally used to protect the security - confidentiality and integrity -of communica-

tions and stored data. As it is common in the information security world, the security of a cryptographic 

scheme is measured by the computational cost required to recover the secret or the plaintext of the communi-

cation. For many years, the computational complexity was evaluated in terms of computer instructions 

required to run an algorithm that solves this problem. However, this paradigm has totally changed due to the 

fact that the technology on the quantum computers side has evolved up to a point in which they could be a 

reality in the next years. The main threat that the existence of large enough quantum computers poses to 

cryptography is that, nowadays, all public key schemes that are standardized and massively used in our 

communications will be insecure due to Shor’s algorithm. An attacker could store the communications of 

today and decrypt them once he has a quantum computer with the required resources. In order to address this 

problem, the cryptographic community started designing quantum resistant schemes capable of sharing 

symmetric keys due to the robustness of these schemes against quantum attacks (i.e. so-called post-quantum 

cryptography). Symmetric cryptographic primitives, such as hash functions, are believed to be quantum 

resistant. The security of hash functions is measured in terms of resistance against collision finding, preimage 

and second preimage finding, and their multi-target variants.  

For an ideal cryptographic hash function providing n-bit security, the classical complexity of preimage 

and second preimage finding is 2n expected oracle calls, while for collision finding is 2n/2 due to the birthday 

paradox. For these, the parallel rho method can offer lower complexities if it is parallelized with a large 

number of processors. For multi-target preimage search, the cost is 2n−t hash outputs, where 2t is the number 

of targets. However, if the attacker had access to a quantum computer, the best algorithm for finding a 

preimage would be Grover’s algorithm with complexity 2n/2 quantum evaluations. Some more specific appli-

cations of this algorithm can be used in order to find collisions with complexity 2n/3 quantum evaluations. 

Finally, for multi-target preimage the cost is 2(n−t)/2 quantum evaluations and all of them can also be parallel-

ized. This improvement is relevant in terms of impact on the parameters for hash functions and symmetric 

encryption, but it is not as disruptive as Shor’s algorithm for prime factorization and discrete logarithms. 

Given that Grover’s algorithm only provides at most a quadratic speed-up, the generally accepted ap-

proach to make symmetric ciphers or hash functions quantum resistant is to double their classical security 

level. This only gives a rough idea of the security penalties that quantum computers cause on symmetric 

primitives, especially because the cost of evaluating Grover’s oracle is very often ignored. Both cryptosys-

tem designers and cryptanalysts may want to know the specific parameters that provide appropriate security, 

and to achieve that, further detailed studies are required to better understand the actual cost of quantum 

algorithms. Experimental implementation gives a different and complementary view than a pure theoretical 

analysis, on quantum attacks complexity, the implementation of Grover’s algorithm to find preimages of 

hash functions based on modular Addition, word Rotation, and exclusive OR (ARX) operations was studied. 

An implementation for both scaled hash functions, as well as Grover’s algorithm, which allows us to provide 

precise quantum security bounds for the equivalent non-scaled hash functions, in terms of qubits and quan-

tum gates required to find preimages. Moreover, the behaviour of the algorithm running on a simulated 

quantum computer in order to motivate different approaches in cryptanalysis using Grover’s algorithm was 

studied. 

Grover’s algorithm for finding preimages. Grover’s search algorithm can be adapted to find the 

preimage of a hash with 2n/2 evaluations of a quantum oracle plus a diffusion operator. The specific hash 
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function chosen must be coded onto the quantum oracle. The key idea behind the quantum advantage of this 

approach is that a quantum oracle can process calls of superposed states, hence exploiting the genuine quan-

tum properties of entanglement and interference. It may be argued that quantum mechanics allows to try all 

possible preimages in parallel at a time, but needs a way to single out the desired solution. This task is non-

trivial as the description of the states remains probabilistic. A high-level understanding of the workings of 

Grover’s algorithm comes down to the appreciation that probability amplitudes for each possible solution 

can add and subtract (in general, with arbitrary relative phases). It is the fact that probability amplitudes can 

cancel that allows for the suppression of undesired solutions while the probability of success is enhanced 

beyond classical means. Let us be more precise and specify the principal elements in Grover’s algorithm, 

namely the initialization, the oracle and the diffusion operator. 

We first need to initialize the quantum register with a quantum superposition of all possible states. This 

is a standard step for many quantum algorithms which is achieved by applying a Hadamard gate for each 

qubit in the quantum register. Note that this first step is genuinely quantum, as the register will then handle 

the equal superposition of all possible states. We then apply an oracle that encodes the action of the hash 

function. This oracle changes the sign of the states that satisfy a given condition. We here choose to change 

the sign of the hash preimage we want to unveil. Therefore, the oracle will receive all possible preimages on 

superposition, will compute their hash on a single go and then detect the one we want to invert. It will then 

be possible to change the sign of the correct preimage in the superposition and undo the hash by applying the 

circuit in reverse. This means the oracle will include the information of the particular output we are analyz-

ing. After the action of the oracle, a diffusion operator is applied. This final element is constructed so as to 

produce an inversion of all probability amplitudes with respect to their average. The effect of the oracle plus 

diffusion amplifies the probability of measuring one of the solution states by a small quantity. The oracle and 

diffusion steps must be iterated to bring the probability of finding the right preimage close to 1. 

The simplicity of Grover’s overall structure disappears when this algorithm is translated into a series of 

quantum gates to be run on a real device. Hence, the explicit coding of Grover’s recipe needs to be done 

efficiently in order not to hinder its promised quadratic performance improvement. A detailed discussion of 

the creation of the oracle to solve this toy model will now follow. 

We reiterate here the logic of the Grover attack on a hash function. Starting from equal probability am-

plitudes for all states, the action of an oracle, that we shall label here as "Sponge Oracle", inverts the sign for 

the preimage solution to Toy Sponge Hash. This still remains a small probability amplitude. In the diffusion 

step, the inverse about the average produces an amplification of the probability amplitude associated to the 

solutions we are after. If a series of two-step oracle plus diffusion actions are applied O(2n/2) times, a solution 

of the problem is found with near 1 probability. The approach we have just sketched can be applied to search 

for preimages of a hash function. A diagram of the structure of Grover’s algorithm to solve the Toy Sponge 

Hash model is shown in Fig. 31. 

The first step in building the needed quantum Sponge Oracle is to reproduce the Quarter Round algo-

rithm on a quantum computer. As sketched in Fig. 32a there are three operations in QR: an addition modulo 

2n, a bitwise XOR operation and an n-bit word rotation. In terms of explicit quantum operations, the addition 

is the one that incurs most of the computational cost. A bitwise XOR can be achieved in a reversible manner 

using controlled-not (CNOT) gates and the rotation can be understood as a classical qubit relabelling and 

does not add any quantum cost. The explicit circuit design of ARX based hash functions highlights some of 

the issues one might face when translating a classical permutation into a reversible quantum language. 

As previously stated, XOR operations can be substituted by a CNOT gate, reversible due to its quantum 

nature. That, however is not the case for the AND and OR classical gates, as they require additional quantum 

resources to be added into the circuit in order to be reversible. A similar thing happens with bit shifts. While 

rotations can be substituted by qubit relabeling, shifts are innately destructive, therefore non-reversible, and 

could also need the addition of auxiliary quantum registers. The modular addition might be costly, but the 

ancilla qubits required to keep track of the carry bits can ultimately be decoupled from the system. The 

Quarter Round circuit we have designed makes use of an addition modulo 2n. This element can be construct-

ed using a regular quantum adder without computing overflow qubits. Quantum adders have been previously 

studied and different algorithms are available with different depth and qubit requirements.  
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Fig. 31. Scheme of a quantum circuit that would find preimages of a known hash function. 

[The oracle must encode the Toy Sponge Hash operations and flip the sign of the preimages which are 

searched. Each quantum wire represented in the Fig. A2.28 corresponds to two qubits in the Toy Sponge 

Hash implementation. The qubit register m encodes the message, c is a classical register and a mark the 

Grover ancilla. The diffusion part produces the inversion over the average. The dashed box of the circuit has 

to be repeated ( )/O N M  times, where N = 2n is the full message space and M is the number of preimag-

es, in order to find a preimage with probability close to 1] 

 

Fig. 32. Quantum circuits for the Quarter Round and the adder module 2n 

For the purpose of this simulation we have used a modified version of the adder due to the reduced 

amount of ancillas required. As seen in Fig. 32b, the circuit is highly parallelizable, enabling reduction of 

circuit depth and requiring one ancillary qubit. For each addition performed in parallel one extra ancillary 

qubit is needed. However, as the ancilla is decoupled from the system by the end of the computation, that 

same ancilla can be reused throughout the full circuit. 

The described quantum Quarter Round block can then be added between the different quantum registers 

as instructed by ColQR and DiagQR in order to build an operator π that outputs a ChaChaπ permutation on 

the quantum registers.  

The construction of this circuit is showcased in Fig. 33a, where the explicit distribution of Quarter 

Rounds can be seen.  

The Quarter Round circuits, as built in Fig. 33a, are applied as dictate ColQR and DiagQR, then repeat-

ed 10 times. In this figure, each visible quantum wire accounts for two quantum wires in the Toy Sponge 

Hash construction and are reduced for visual clarity. Since the construction has been done using quantum 

gates, the operator will be reversible. 
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Fig. 33. Quantum circuit for ChaCha π and for the Sponge Oracle 

That is, applying the gates in reverse order will recover the inverse permutation. 

Full oracle. The algorithm is made of a sequence of basic Grover steps. According to the theory, even if 

the exact number of preimages is unknown at first, it is necessary to apply ( )/O N M Grover steps, where 

N = 2n and M is the number of preimages, in order to find those preimages. Every Grover step will increase 

the probability of the desired solution, until the maximum is obtained. The full oracle we need to implement 

consists of three parts. 1) The first permutation, constructed classically as it does not include the message, 

has to be XOR-ed to the messages in superposition. 2) Then the previously described permutation is applied, 

and a multi-CNOT gate with controls matching the desired hash value acts on the output of the permutation 

and the ancilla. This step changes the sign of the quantum state that encodes the desired hash. 3) After that, 

the permutation is inverted in order to return to the original message space. Note that applying the permuta-

tion circuit in reverse order achieves the inverse permutation. At the end of the oracle action, all messages 

that output the same hash value have their amplitude sign inverted. Shown in Fig. 34b is the construction of 

the full Sponge Oracle using the previously described circuits. This explicit circuit construction inverts the 

sign of all messages that output the same hash function in the context of the Toy Sponge Hash model de-

scribed above. The π operator is the quantum version of the ChaChaπ permutation. The c wire denotes a static 

classical channel that determines the position of some gates, m refers to the qubit register that encodes the 

message and a labels the Grover ancilla. The hash value checked in this particular example would be 

10011010, this is determined by the controls in the multi-controlled NOT gate in the center. 

Diffusion operator. The explicit construction of the diffusion operator is common to all Grover imple-

mentations. The role of this operator is to perform the inversion about the average once the states that codify 

the solutions of the problem have had the sign of their amplitude changed. The quantum circuit that achieves 

this is shown in Fig. 34.  

 

Fig. 34. Explicit circuit construction that computes the inversion about the average on the quantum registers 

that encodes the superposition of all possible messages.  

[This amplifies the amplitude of the correct answers] 
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In this case, the diffusion operator only needs to be applied to the message registers of the quantum cir-

cuit as they are the only ones that are started in a superposition, in the proposed Toy Sponge Hash this ac-

counts for 8 qubits. The diffusion operator corresponds to a matrix D whose 

2
ijD

N
=  if i j  and 

2
1ijD

N
= − + , where N = 2n. 

Both the oracle and the diffusion operator contain multi-CNOT gates that need to be decomposed into 

elementary gates in order to faithfully asses the full complexity of the circuit. Different methods in which 

multi-controlled gates can be decomposed in terms of CNOT and Toffoli gates are outlined and given their 

basic gate scaling. Some of the most efficient constructions can only be performed in the case of having a 

circuit with some extra work qubits. 

A multi-CNOT gate can be decomposed, see Fig. 35, with linear efficiency into Toffoli gates using one 

extra qubit.  

 

Fig. 35. Decomposition of multi-CNOT gates into basic Toffoli gates using a single extra work qubit. The 

extra qubit needs not be initialized at |0⟩. Note that ancillas already required for the addition can be reused 

here 

[In Fig. 35 (a), the decomposition of the multi-CNOT gate with one work qubit into smaller gates is shown. 

In Fig. 35 (b), the full decomposition of the resulting gates is shown using enough work space so that they 

can be reduced to Toffoli gates] 

There are in fact several unused qubits in the circuit when the multi-CNOT gates have to be applied, but 

in order to keep it separate from the qubits encoding the solutions, we shall use the ancillary qubit introduced 

in the addition modulo 2n circuit as the work qubit for these constructions.  

Full Grover step. The Sponge Oracle and the diffusion operator combined to produce the body of a 

single Grover step and its full construction can be seen in Fig. 36. 
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Fig. 36. Explicit circuit construction that performs Grover’s search algorithm in order to find preimages for 

a certain known Hash function following the Toy Sponge Hash model. 

[The label c denotes an auxiliary classical register, a is the Grover ancilla, and m labels the qubit register 

that encodes the message. The dashed section of the circuit has to be repeated ( )/O N M  times,  

where N = 2n is the message space and M is the number of preimages, in order to complete the algorithm] 

The full quantum circuit will require a series of ( )/O N M  Grover steps, where N = 2n is the search 

space, and M is the number of solutions, that is, preimages with the same hash value. With the full Grover 

step constructed, preimages of Toy Sponge Hash can be obtained. This can be done directly if the number of 

preimages is known, applying the Grover step 
2

4

n

M


 times, with M the total number of preimages. If 

that is not the case, this construction can be first employed in quantum counting algorithms in order to obtain 

the total number of preimages. 

Unknown number of preimages. Alternatively, this Grover step can be employed in an iterative algo-

rithm to find a preimage even with an unknown number of solutions in the same order of complexity, that is 

2n

O
M

 
 
 
 

 oracle calls. The algorithm assumes that the number of possible solutions is less than 3N/4, where 

N is the message space, which holds for hash functions as the number of preimages is small by construction. 

The success of this algorithm is not guaranteed in a set number of steps unlike the regular Grover procedure. 

Nevertheless, the original paper proves that when the number of solutions is much lower than the total space, 

the number of Grover iterations is upper-bounded by 
9

4

N

M
, where M is the number of solutions. The 

prefactor is larger, but even in the worst case, the overall scaling is still the same. However, the average 

number of function calls needed to solve the algorithm is much closer to the optimal scaling. Average values 

of the iterations needed according to simulation are presented. 

The explicit construction and programming of all steps in a Grover attack on Toy Sponge Hash allows 

for a detailed exact simulation of the results and costs of an attack on a hash function. In the following we 

will discuss the success in the finding of preimages, according to the expected performance of the algorithm 

in ideal conditions, that is, without introducing a simulation of the experimental errors which are expected. 

Furthermore, the fact that we handle the exact description of the state at every step of the computation opens 

the possibility to analyze the entanglement entropy which is pervading the system. This is, in turn, makes it 

possible to assess the limits of an approximate simulation of a quantum circuit using Tensor Networks. A 

study of the effects of Pauli errors, appearance of random X, Y or Z gates after any gate application, is per-

formed in order to compare the effectiveness of running the full algorithm or a reduced version under noise 

conditions. 
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Finding preimages. Let us first run the attack on Toy Sponge Hash using the quantum circuit we have 

considered in the previous section. The algorithm is made of a sequence of basic Grover steps. According to 

the theory, even if the exact number of preimages is unknown at first, it is necessary to apply ( )/O N M  

Grover steps, where N = 2n and M is the number of preimages, in order to find those preimages. Every 

Grover step will increase the probability of the desired solution, until the maximum is obtained. In order to 

visualize the iterative nature of Grover’s algorithm, we plot in Fig. 37 the probabilities of measuring the final 

message states for hash instances with two and three preimages respectively, as a function of Grover steps. It 

can be seen that the probability of measuring the preimages is amplified with each iteration following a sinus 

wave pattern reaching its maximum at the closest integer near 
2

4

n

M


, as expected. After that point, the 

probability of finding the solutions decrease as it is redistributed back to all states. Grover’s algorithm can be 

understood as a rotation in the two-dimensional plane defined by a vector with the superposition of all solu-

tions and another orthogonal vector with the superposition of the non-solution states. 

 

Fig. 37. Evolution of the probability of finding a message during the Grover process. 

[As more Grover steps are performed the probability of finding a preimage of the target hash is amplified. As 

can be appreciated in both images, after just a portion of the required 
2

4

n

M


 Grover steps, the solutions 

become easily noticeable] 

As it can be appreciated in Fig. 37, there is no need to reach the full number of Grover steps in order to 

already find an important amplification of the probability of measuring a preimage state. This implies that 

one could stop the quantum computation before the full scaling is reached, and extract more output samples 

in a way that a solution will still be found with high probability. Outlined in Table 1 are the probabilities of a 

preimage appearing after each amount of Grover steps, as well as the average number of samples needed to 

find the first preimage apparition.  

 

Table 1. Probability of success and number of average samples needed before finding one preimage depend-

ing on the number of Grover steps performed 

 

[The average number of total oracles calls in order to find a preimage is also presented. For different 

number of preimages, the probability of measuring one of them increases according to the number of Grover 

steps applied. In general, the optimal solution is to perform the full Grover’s algorithm to find solutions. 
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However, should circuit depth be an issue, we can stop at an earlier step and acquire more samples for a 

similar result.] 

This strategy to cut short the full quantum computation has been analyzed for several number of 

preimages. It can be seen that the optimal way to proceed in an ideal quantum computer is to finish the full 

Grover’s algorithm and perform all iterations. However, if unlimited circuit depth is not available, as is the 

case for Noisy Intermediate-Scale Quantum (NISQ) devices where gate errors and decoherence are a rele-

vant issue, one can strive for a set depth and still arrive to the right solution by extracting more samples. This 

practical consideration may be non-trivial in this and other applications of Grover’s search algorithm. 

A study of the entropy within the quantum circuit is relevant, as classical techniques are available to 

simulate quantum algorithms in a most efficient manner if the entanglement present along a quantum compu-

tation is low. As a matter of fact, the technology usually quoted as Tensor Networks is known to achieve a 

faithful representation of any quantum state with moderate entanglement. 

Entropy obstruction to simulation by Tensor Networks. Let us introduce the von Neumann entropy 

as a figure of merit to quantify entanglement in the register  . The way to compute the entropy of a bi-

partition A − B of the system requires to first get the reduced density matrix to half of the register 

TrA B  = . Then the von Neumann entropy for this partition is  

SA = −TrρA log2 ρA. 

This entropy is zero in the absence of entanglement and is bounded by the size of the system nA, that is 

the number of qubits in the partition. It is known that states whose von Neumann entropy only scales loga-

rithmically with the number of qubits can be described in terms of Matrix Product States. This means the 

amount of entropy present in the quantum register along the quantum circuit should be large, otherwise there 

would exist an efficient attack on hash functions based on simulating Grover’s algorithm with Tensor Net-

works. It is well known that the entropy present in the register along Grover’s algorithm is bounded by 1 if 

measured after an application of each Grover step. This has a very simple explanation. At the end of a 

Grover step, the register is separated in two distinct orthogonal states, the solutions and the rest. As a conse-

quence, the maximum von Neumann entropy between circuit bi-partitions reached its bounded by 1, corre-

sponding to maximum two-partite entropy. But this argument fails to understand that the heart of the quan-

tum computation is done within the oracle. There, the quantum register displays an enormous increase of 

entropy, which is at the origin of its quantum advantage. 

Let us emphasize this point further. No algorithm that does not produce large entropy can provide any 

quantum advantage over classical strategies. This is due to the fact that a low amount of entanglement can be 

simulated efficiently. Grover’s advantage needs to be rooted at exploiting large entanglement in the quantum 

register. This, indeed, should take place within the oracle. 

A confirmation of this reasoning can be seen in Fig. 38. 
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Fig. 38. Von Neumann entropy in the middle and after a Grover step for different number of preimages. In 

this analysis, all bipartitions remain orthogonal in the final solution state. 

[In the case where entropy is measured after Grover step we consider the bipartition that corresponds to half 

the message space. In the case where entropy is measured in the middle of the Grover step, we consider the 

bi-partition of half the qubits that correspond to the whole permutation matrix] 

The von Neumann entropy for half of the register in the middle of the Grover step is closer to the max-

imum possible bipartite entropy in the Toy Sponge Hash. More precisely, the entropy in the middle of the 

Grover step is computed right after the Grover ancilla changes the sign of the target hash states, at the center 

of the circuit shown in Fig. A2.30b. The bi-partition used at this point is half the quantum registers that make 

up the permutation matrix. For the entropy after the Grover step, the bi-partition is instead half the quantum 

registers that encode the message space, as the rest of the permutation matrix is at the 0  state. In the Toy 

Sponge Hash quantum algorithm, a gate by gate study of the entanglement entropy reveals that its maximum 

is 7.3619, regardless of the number of preimages. This is to be compared with the theoretical maximum, 8. It 

is noteworthy to observe that the maximum along the computation is reached at the first action of the Sponge 

Oracle. In some way, the register develops very large correlations which are needed to spot the solutions. 

Then, as the solutions are enhanced, quantum correlations need not be that high.  

The entanglement in the register along the computation depends on the number of preimages as well as 

if their binary encoding is orthogonal in the respective bi-partitions. Nevertheless, entanglement always 

peaks at the first application of the Sponge Oracle. This shows that, in the case of large number of qubits n, 

the entropy in the register will likely scale with n, rendering inefficient the classical alternatives for simula-

tion of quantum circuits. Grover’s algorithm does need an actual quantum computer to support entropy that 

scales as the volume of the system. 

The explicit construction of a quantum algorithm based on Grover’s search provides an exact 

quantification of the quantum resources which are needed for an actual implementation of a preimage attack. 

The main takeaway is that the number of gates and depth required to build the oracle and diffusor scales 

linearly with n, the number of qubits in the register, with large prefactors. This is relevant as large prefactors 

may make inaccurate naive predictions for the power of quantum computation. 

The implementation of Grover’s algorithm in a quantum simulator to per-form a quantum search for 

preimages of two scaled hash functions, whose design only uses modular addition, word rotation, and bitwise 

exclusive OR and  implementation provides the means to assess with precision the scaling of the number of 

gates and depth of a full-fledged quantum circuit designed to find the preimages of a given hash digest. The 

detailed construction of the quantum oracle shows that the presence of AND gates, OR gates, shifts of bits 

and the reuse of the initial state along the computation, require extra quantum resources as compared with 
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other hash functions based on modular additions, XOR gates and rotations. We also track the entanglement 

entropy present in the quantum register at every step along the computation, showing that it becomes maxi-

mal at the inner core of the first action of the quantum oracle, which implies that no classical simulation 

based on Tensor Networks would be of relevance. Finally, strategies that suggest a shortcut based on sam-

pling the quantum register after a few steps of Grover’s algorithm can only provide some marginal practical 

advantage in terms of error mitigation.  

Classical gates such as AND, OR or XOR are dealt differently at the quantum level. It turns out that 

XOR easily translates onto a CNOT. But a classical AND or OR gate is not reversible which implies prolif-

eration of qubits. Thus, new hash functions can be designed to be more difficult to be attacked by a quantum 

Grover strategy. The analysis of the entropy that the register develops shows that entanglement is maximal 

during the first action of the oracle. This fact discards the possibility of simulating the quantum algorithm 

using the powerful Tensor Network classical techniques. A strategy to run part of Grover’s algorithm per-

forms better than the full quantum circuit because of the smaller accumulation of errors. 

Remark. Diao pointed out, a strictly exact search is possible only if the ratio of solutions 𝑀 to the data-

base size 𝑁 is 1/4. Especially, the highest failure rate is 50% when 𝑀/𝑁 = 1/2. Various generalized and 

modified versions of Grover algorithm, including the phase matching methods, have been explored with the 

view of improving the efficiency of Grover algorithm. Among them, the Grover-Long algorithm has one 

adjustable phase that finds the target with zero failure rate for any database, with exactly the same number of 

iterations as that of the standard Grover algorithm; actually was provided a series of exact quantum search 

algorithms, each with an iteration number 0j j , where 0j   is the number of iterations in the Grover algo-

rithm. The exact quantum search algorithms are usually called Long’s algorithm, and the optimized one with 

iteration number is called Grover-Long algorithm, which has been shown by Toyama et al to be exactly 

optima. Meanwhile, many quantum algorithms based on Grover algorithm for various applications, such as 

finding maximum/minimum, were proposed. 

Modified quantum search algorithm: Grover-Long algorithm. The initial state can be prepared by 

𝑊 operator, which can be described as  
1

0

1
0

N
n

good bad

i

M N M
W i

N NN
  

−


=

−
= = = + , 

where |Ψgood⟩ stores solutions which we want to find and |Ψbad⟩ stores other values; 𝑁 is the database size; 𝑀 

is the number of solutions. Especially, when 𝑁 = 2𝑛, the initial state is a uniform superposition state, the 𝑊 

operator becomes 𝐻⨂𝑛, where 𝐻 is the Walsh-Hadamard transformation; 𝑛 is the number of qubits. One 

Grover iteration can be divided into four operators  
1

oG WI W O−= − , 

where 𝑂 is an oracle which performs a phase inversion on |Ψgood⟩; 𝐼0 is a conditional phase shift operator 

which performs a phase inversion on |0⟩. Quantum Grover-Long search algorithm is done by replacing the 

phase inversion with an adjustable angle 𝜙 phase rotation. The rotation angle is given as: 

sin
4 22arcsin

sin

J






 
 +=  
 
 

, where sin /M N = . Upon measurement in J-th iteration, one of marked 

states is obtained with zero failure rate: 2 1J floor






 
− 

 + 
 
 

, where floor is rounding down to an integer. 

By utilizing the number of solutions M and the database size N, we can calculate the exact value of 𝛽, 𝜙, 𝐽. 

Grover-Long algorithm will find a solution with zero failure rate. 

The design of 𝑰𝟎 operator. Since only |0⟩ receives a rotation phase, the operator of 𝐼0 can be described 

as a diagonal matrix, as shown below 
2 1

0 2 1
1

0 0 diag ,1, ,1

n

n

i iI e e 



 
−

−
=

 = + =   . 
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The first element of 𝐼0 is always 𝑒𝑖𝜙, other elements are 1. 𝑛 is the number of qubits. The operator 𝐼0 can 

be converted to the quantum circuit, as shown in Fig. 39. 

 

Fig. 39. The general circuit for _0 operator, where q[0] denotes the lowest qubit,  

q[n-1] denotes the highest qubit 

The design of oracle O. Oracle can recognize the solutions of a searching problem. If one orthonor-

mal basis state is one of solutions, it will receive a rotation phase. Here, we elaborate on the construction of 

oracle from two parts: the searching problem has a unique solution or multiple solutions. Firstly, there is only 

one solution in the searching problem. Namely, the oracle can be described as a diagonal matrix that has only 

one 
ie 

, as shown below 

2 1

0,

n

iO e 

  

   
−

= 

= +  , 

where   is the position of 𝑒𝑖𝜙 in the diagonal matrix. The position   of 𝑒𝑖𝜙 is divided into two cases. If   is 

odd, the u1(𝜙) gate will be applied to q[0], where u1(𝜙) = diag[1, 𝑒𝑖𝜙]. If   is even, X, u1(𝜙), X gates will be 

applied to q[0]. As shown in Fig. 40 and Fig. 41, q[0] is a target qubit and other qubits are control qubits.  

 

Fig. 40. General circuits for different oracles which mark an odd state 
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Fig. 41. General circuits for different oracles which mark an even state 

Oracle operators can be converted to quantum circuits, where the white dot of the j-th(1≤ j ≤ n −1) line 

denotes that the operator is applied to q[0] when the j-th qubit is set to |0⟩; the black dot denotes that the 

operator is applied to q[0] when the qubit is set to |1⟩. The parameter   can be expressed by 

( )
1

1

1 2
n

j

j

j 
−

=

= +  , when the u1(𝜙) gate is applied to q[0]. Another case, ( )
1

1

2
n

j

j

j 
−

=

=  , when X, u1 

(𝜙), X gates are applied to q[0]. Note that ( )j  is a bool function which denotes the j-th qubit is 0 or 1. 

Through the above steps, the oracle can mark any quantum state by changing the position of 𝑒𝑖𝜙, when the 

searching problem has a unique solution, where n is any positive integer. 

Secondly, we should discuss that the oracle can mark M (0 < M ≤ 2n) quantum states. Namely, the num-

ber of solutions is M. The oracle can be described as a diagonal matrix  
2 1

1 0,

nM
i

V

O e 

 
  

   
−

= = 

= +  , 

where the number of 𝑒𝑖𝜙 is M and the set of 𝑒𝑖𝜙 position is  1 2, , , MV   = . The oracle marking multiple 

quantum states can be composed of many oracles that mark one quantum state. For example, if oracle marks 

two quantum states which V = {0,1}. Then, u1(𝜙) and X, u1(𝜙), X gates are applied to q[0], other control 

qubits follow the previous rules, as shown in Fig. 42. 

 

Fig. 42. A general circuit for marking states |0⟩ and |1⟩ 
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Three equivalent simplified principles. If there are 2m (1 ≤ m ≤ n − 1) solutions, the oracle will be-

come very complex. Besides, it’s difficult to execute too many entanglement gates on current quantum 

computers. Here, we discussed three principles to simplify circuit construction. Firstly, it is well-known that 

an n-qubit controlled phase gate can be approximately decomposed into 2_−1 two-qubit controlled phase 

gates. Thus, if oracle marks 2m states, 2n+m−1
 two-qubit controlled gates will be performed. If the searching 

problem is finding the minimum value, the oracle will mark all values less than or equal to d0. Under such 

conditions, we proposed the first principle which only uses 2n−m−1 two-qubit controlled gates to mark 2m 

states.  

The schematic diagram is shown in Fig. 43. 

 

 

Fig. 43. A schematic diagram of the first equivalent simplified principle. (a) The circuit for marking two 

continuous odd states by an (n − 1)-qubit controlled phase gate (it has n − 2 control qubits and a single 

target qubit). (b) The circuit for marking 2m continuous odd states. (c) The circuit for marking all states 

Secondly, since a multi-qubit-controlled gate error is far more than a single-qubit gate error in most 

types of quantum computers, it’s necessary to use the number of multi-qubit-controlled gates as few as 

possible. It is proposed the second principle for those oracles that cannot be simplified by the first principle, 

such as a single even state. The circuit has the same multi-qubit CNO𝑇 gate on the pre- and post-controlled 

phase gate, such as I0 operator. The multi-qubit CNO𝑇 gate can be simplified to a NO𝑇 gate as shown in Fig. 

44.  

 

Fig. 44. A schematic diagram of the second equivalent simplified principle. (a) The original circuit. (b) The 

simplified circuit 

Therefore, this oracle only uses an n-qubit controlled gate (it has n − 1 control qubits and a single target 

qubit). 

Thirdly, to simplify the oracles marking even and odd states, we proposed the third principle, through 

elementary algebraic transformation. After the above two simplified principles, the oracle will contain sever-

al circuits similar to Fig. 45(a) which can be simplified as Fig. 45(b). 
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Fig. 45. A schematic diagram of the third equivalent simplified principle. (a) The original circuit. 

 (b) The simplified circuit 

Experiment and simulation. Finding a maximum or minimum is a fundamental building block in 

many mathematical models. Compared with classical algorithms, Durr, Hoyer’s quantum algorithm (DHA) 

achieves quadratic speed. However, its key step, the quantum exponential searching algorithm (QESA), 

which is based on Grover algorithm, is not a sure-success algorithm. Meanwhile, quantum circuits encounter 

the gate decomposition problem due to variation of the scale of data. In this paper, we propose an optimized 

quantum algorithm for searching maximum and minimum, based on DHA and the optimal quantum exact 

search algorithm. Furthermore, we provide the corresponding quantum circuits, together with three equiva-

lent simplifications. In circumstances when we can exactly estimate the ratio of the number of solutions M 

and the searched space N, our method can improve the successful probability close to 100%. Furthermore, 

compared with DHA, our algorithm shows an advantage in complexity with large databases and in the gate 

complexity of constructing oracles. Experiments have been executed on an IBM superconducting processor 

with two qubits, and a practical problem of finding the minimum from Titanic passengers’ age was numeri-

cally simulated. Both showed that our optimized maximum or minimum performs more efficiently compared 

with DHA. Our algorithm can serve as an important subroutine in various quantum algorithms which in-

volves searching maximum or minimum. 

Let us compare the key step of DHA (with quantum exponential searching algorithm - QESA) and 

quantum maximum or minimum searching algorithm - QUMMSA (with Grover-Long) firstly by a 2-qubit 

experiment based on a superconducting processor. Besides, a 6-qubit numerical simulation was conducted to 

show how QUMMSA can efficiently solve a minimum finding problem based on a real data set (passenger 

age (excerpt) of the Titanic). Through the results of two demos, we report that comparing to QESA in DHA, 

QUMMSA possesses shorter circuit depth, less multi-qubit gates and lower failure rate by means of Grover-

Long algorithm. 

A 2-qubit contrast experiments. The experimental device is IBMQ Yorktown which consists of five 

coupled superconducting transmons. Limited by the accuracy of the experimental device, two qubits Q0, Q2 

were used for the experiment of Grover-Long algorithm. While, two work qubits Q1, Q2 and an ancilla qubit 

Q0 were used for QESA. The schematic and topology of this processor are shown in Fig. 46(a) and Fig. 46(b) 

respectively. 

 

Fig. 46. 5-qubit superconducting processor: (a)schematic; (b) topology 
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Two co-planar waveguide (CPW) resonators, acting as quantum buses, provide the device control and 

readout. Entanglement in IBM system is achieved via CNOT gates, which use cross-resonance. Single qubit 

rotation gate with an arbitrary angle and CNOT are as primitive operators. In this demo, aiming at finding 

maximum, we set N ∈ {3,4} as the database size, M ∈ {1,2,3} as the number of solutions. Even the exact M 

and N are set in advance, in the experiment, but they are unknown in real data searching scenario, thus esti-

mated M  and N  are used. Due to prior knowledge missing, we would suppose that each orthogonal basis 

state stores a value. Considering initial states, though combination, 12 kinds of circuits can be obtained for 

each algorithm. A specific combination (N = 3, M = 2, formula below as the initial state) is taken for exam-

ple to show details  
T1

1,0,1,1
3

 = . Given randomly select value from the database d0 = 2, any state that 

≥ d0 should be marked, namely |10⟩, |11⟩ in this case. Then after applying two algorithms, the measurement 

result d1 could be obtained. If d1 ≥ d0, the algorithm is thought to operate successfully. 

The experiment of Grover-Long algorithm. Two qubits Q0, Q2 which have the best performance in 

IBMQ Yorktown were used for Grover-Long algorithm. The estimated value of the database size was set as  

2 4nN = =  and the estimated value of the number of solutions was set as 
02 2nM d= − = . Then the 

estimated 𝛽̃ = 0.7854, j  = 1, and 𝛷̃ = 𝜋⁄2 could be calculated. After parameters estimation, Grover-Long 

algorithm was applied with j  iterations on the initial state |𝛹⟩. The optimized circuit following the construc-

tion rules is shown in Fig. 47(a).  

The R𝑦(𝜃) is defined as an operator of the rotation 𝜃 angle around the Y-axis,  

( )
cos sin

2 2

sin cos
2 2

yR

 


 

 
− 

=  
 
 
 

. 

Owing to the error between the estimated value 
M

N
 and the exact value 

M

N
, the 2-qubit theoretical 

failure rate 𝜀𝐺L will exist and can be calculated by formula as 0.037GL  . 

 

Fig. 47. (a) A 2-qubit circuit of Grover-Long algorithm. (b) A 2-qubit circuit of the initial state preparation. 

(c) A 2-qubit and an ancilla qubit circuit of Grover algorithm. (d) The experimental result and the theoreti-

cal result. Among them, |Ψ⟩ is the initial state; |Ψ𝐺⟩ is the state after applying Grover algorithm; |Ψ𝐺L⟩ is 

the state after applying Grover-Long algorithm; |ΨT⟩ is the ideal result 

However, the experimental failure rate of Grover-Long algorithm 𝜀𝐺L𝐸 is 0.180, because of the gate error 

and readout error of IBMQ. 
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The comparison results. The circuits of combination that 𝑁 = 3, 𝑀 = 2 and the initial state is |𝛹⟩ 
based on Grover-Long algorithm (Fig. 47(a)) and QESA (Fig. 47(b, c)) are firstly compared. As aforemen-

tioned, the modified Grover-Long circuit requires fewer entanglement gates and does not require an ancilla 

qubit. And as for Grover-Long algorithm, number of iterations can be estimated in advance, thus it is deter-

ministic. In most cases, the theoretical failure rates of Grover algorithm are more than 50% due to improper 

number of iterations. On the contrary, in the experiment, gate errors and readout errors can lead to chaos, 

which can counteract failure rate to around 50%. The specific gate errors and readout errors are attached. 

To avoid redundancy, circuits of other combinations are not depicted, but the failure rates and meas-

urement results of Grover Long, as well as iteration number of QESA under approximate failure rate against 

Grover-Long are compared, as shown in Fig. 48.  

 

Fig. 48. The comparison of experimental results from the execution of two algorithms performed on a 2-

qubit database. [The bold black state, the orange state denotes, the gray state and the bold orange state 

denote the marked states, the state with an amplitude of 0, the normal state, the wrong marked state, respec-

tively. The gradient color map shows the probability of detecting each output state after applying Grover-

Long algorithm. The experimental failure rate of Grover-Long algorithm 𝜀𝐺L𝐸 is given and the number in 

parentheses indicates the number of QESA iterations when two algorithms have a similar experimental 

failure rate] 

All the comparison of results indicates that our algorithm and circuits are more efficient than QESA and 

its circuits. 

We presented QUMMSA based on Grover-Long algorithm. An experiment implemented in an IBM su-

perconducting processor, and a numerical simulation of a 6-qubits system to solve a specific problem were 

presented. They showed that QUMMSA is indeed more efficient. We analyzed the failure rate of the 

QUMMSA, and proposed two methods to further reduce the failure rate in big data scenarios. The complexi-

ty of the two algorithms are compared. 

The QUMMSA.  

Problem: Let D be an unsorted database with N items. The problem is to find the maximum or mini-

mum from D. For convenience, we only present the minimum searching algorithm as an example. The 

maximum searching algorithm can be achieved similarly. 

Core idea: Exploiting the Grover-Long algorithm, we can find ( )1M M   solutions from the unsorted 

database with N items. 

Here, a random value d0 is taken as a reference value. If the search algorithm gives a result d1, which is 

less than or equals to d0, it will run successfully. Note that there are M results that satisfy the search condition 

and d1 is one of them. Then, let d1 replace d0 and repeat the above steps until M = 1. Since the M solutions 

are given with equal probability after Grover-Long algorithm, the number of solutions will be reduced by 
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half on average, after one main loop. Therefore, the mathematical expectation of main loops to find the 

minimum is log2 N, in theory. 

Hypotheses: To simplify the problem, our hypotheses are as follows. 

(1) Each data value is represented by a binary string and is stored in an orthonormal basis state of |Ψ⟩, 
where |Ψ⟩ is the initial state. Therefore, the data value lies in interval [0, 2n − 1], where n is the number of 

qubits.  

(2) There is a one-to-one mapping between a data value and its index. The index may be a person's 

name or other non-numeric data. 

(3) Each data value is an integer.  

(4) Each data value is distinct. 

(5) Preparing an initial state takes log2(N) steps. Performing an oracle takes one step. Others are not 

counted.  

(6) One orthonormal basis state stores a data value, the amplitude is ( )11/ 2 2n nN N−   . The am-

plitude will be 0 if no data value is stored. 

Remark. In summary, hypotheses (1-2) define the quantum data type which is similar to the data type of 

classical computers. For example, unit 8 is a classical data type which means 8 bits are used to store an 

unsigned integer. The data type limits the range of data values. Without loss of generality, we make the 

above hypotheses (3-5) as used. In original Grover algorithm, the initial state is a uniform superposition 

state, which doesn’t apply to the QUMMSA. Hypothesis (6) indicates that not all orthonormal basis states 

are stored with data values. 

Pseudocode: Here we provide the pseudocode of QUMMSA, as shown in Algorithm 1. 

 

Algorithm 1: Quantum algorithm for finding the minimum 
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Compared with DHA, the QUMMSA provides two improvements. First, removing the theoretical fail-

ure rate of Grover algorithm by replacing QESA with Grover-Long algorithm. Through the sample estima-

tion, we can obtain close to 100% accurate parameters of Grover-Long algorithm, even if M and N are un-

known. Second, it replaces the interrupt condition of DHA with a constant c which is independent of the 

database size. In the worst case, QUMMSA has a 1 − 1⁄2c possibility to find the minimum. 

In order to experiment with algorithms in the absence of a large physical quantum computer, quantum 

computer simulators are used to verify their feasibility, correctness, scaling and predict their behavior on a 

real quantum system. This is different from the term, quantum simulation, where one quantum system is 

simulated in another more accessible quantum system to study its properties. There are many available 

quantum simulators - developed either as a teaching tool, for development of algorithms or using as an 

interface to quantum hardware. For example, QX is a universal quantum computer simulator that takes as 

input a specially designed quantum assembly language (QASM) and provides through aggressive optimiza-

tion, high simulation speeds for qubit state evolution. The feasibility of quantum simulation is dependent on 

the number of qubits required for the circuit. The efficiency of simulators reduces exponentially with respect 

to the number of qubits because the number of states increases as 2q. There are however other factors that 

also have an effect. For example, it is quite trivial to initialize a million qubits and only perform Pauli-X/Y/Z 

operations on them or simulate reversible versions of classical circuits. Basically, it is dependent on how 

sparse the state vector (or the density matrix) is. If the state is in a highly superposed/entangled state, manip-

ulating qubits in the order of 50 starts to become quite challenging even in super-computing clusters. The 

currently available qsim servers in the department (with 28 HT cores, @ 2.00 GHz and 384GB memory) can 

simulate ≈35 qubits if the states and operations are non-sparse. There are fields of research that are trying to 

make a more efficient simulation with tensor networks. Alternatively, it is argued that the quantum speedup 

advantage can be reasoned in terms of how much of the quantum phenomena of superposition and entangle-

ment is harnessed. Thus, 50 qubits are widely regarded as the supremacy limit for quantum computation i.e. 

quantum computation will be able to calculate something that is classically intractable. It needs to be noted 

that, the 50-qubit limit is not needed to exhibit useful quantum phenomena. A simple example for this is, 

putting a qubit to a ∣+⟩ state and measuring it on the {∣0⟩, ∣1⟩} computational Z-basis which would simulate 

an exact unbiased coin, a perfect random number generator, which no classical algorithm can. Such strate-
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gies are the basis of research in quantum communications, whose application can typically be realized with 

fewer qubits. 

An important distinction is to be made here regarding physical and logical qubits. Many quantum com-

puting ventures are on the verge of reaching the 50 limits, however, 50 physical qubits are highly error-prone 

and cannot be addressed individually to perform useful computation. Thus, multiple qubits are encoded using 

error-correcting codes (ECC) to represent a single logical qubit. This process is a bit different from classical 

redundancy due to the no-cloning principle. However, it needs to be stressed that, simulators might still be 

very useful to study quantum algorithms as long as 50 or more logical qubits with high fidelity do not be-

come a reality. In simulators, the internal state vector can be obtained in its totality. Thus, for simulating the 

algorithm, there is no need to repeat the execution multiple times and average the measurement probability. 

It is impossible to reconstruct the exact state vector from measurements in a real quantum processor. Only 

the probabilities (squared amplitudes) can be estimated with increasing degrees of resolution with multiple 

measurements. The exact complex amplitude remains hidden, which is useful in the algorithm design stage 

to understand how the quantum system evolves. QX allows this feature with the display directive, that prints 

out the state vector in verbose at the point in the circuit where the directive is placed. This is extremely 

handy for debugging scaled down versions of quantum algorithms and might outlive the supremacy limits.  

Using a simulator also implies a few fine-prints. Firstly, for an arbitrary algorithm, it limits the problem 

size what can be simulated on the available computer resource. This is not a major problem from the algo-

rithm design aspect as it is easy to reason out the extension of the algorithm for larger program size once it is 

tested for a smaller size. However, it might not be directly emulated for the real-World problem size leaving 

room for speculation about the practical efficiency on a real quantum processor. Many quantum simulators 

allow introducing noise-models. The QX simulator has an option to set a symmetric depolarizing channel 

with parameterized error probability. These models are constantly being updated to more realistic error 

models as more data from practical experiments are being available. Thus, an algorithm on the simulator 

might not execute exactly the same on a real processor if the exact environmental model is not considered. 

A gate-operation-based, universal, and scalable superconducting quantum computer will have the fol-

lowing structure (Fig. 49): 

- Physical resources: This layer is a collection of physical qubits and necessary circuits for the control 

and readout of the physical qubits. 

- Error correction resources: In this layer, errors acting on quantum information stored in a set of 

physical qubits are corrected. This operation produces a single error-free logical qubit. For this, basic 

controls for physical qubits are required, such as initialization, gate operation, readout, and feedback. 

- Logical resources: The initialization, gate operation, and readout of logical qubits are performed in 

this layer. 

- Algorithmic resources: Quantum algorithms, such as Shor’s factoring and Grover’s search algo-

rithms, are performed in this layer. 

 

Fig. 49. Structure of a quantum computing system 
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Useful quantum computation would require a full stack architecture. The underlying quantum processor 

needs to be interfaced with the quantum algorithmic descriptions. Such a full stack is on the roadmap of 

Delft University of Technology’s quantum research. The QuTech quantum computer system stack is de-

scribed in Fig. 50. 

 

Fig. 50: Quantum computer system stack 

Quantum chip refers to the physical hardware housing the qubits as discussed above.  

- Quantum-Classical interface comprises of ADC and DAC and their controls for interacting with the 

physical qubits.  

- Micro-architecture takes into account the precise timing controls and the instruction pipelines.  

- Quantum Instruction Set Architecture defines the runtime operations of both classical control and 

quantum parts of the algorithm. It encapsulates the hardware dependence.  

- Quantum Runtime Unit is responsible for scheduling the operations required for the compiler code. 

This includes quantum error correction (QEC) and qubit logical to physical mapping.  

- Compiler and Programming language is the interface for the algorithm designer to precisely define 

the quantum operators and state in abstracted high-level constructs. 

- Quantum Algorithm descriptions are in computer science or mathematical state evolution designed 

to perform the desired task. They need to be decomposed into programming constructs as input to the 

compiler. 

However, the quantum leap (doubly quantum, we could say) there exists from today’s prototypes to ful-

ly-functional and useful quantum computers has such a breadth and depth as to require additional support 

from other disciplines related to processor design. Such approach to the problem demands for a system-wide 

optimization, the foundations of which may be laid on audacious proposals for the design and architecture of 

the quantum computer as a whole. Even though the challenges are hard and diverse, a comprehensive ap-

proach of the computer de-sign based on multi-core architectures, as opposed to current densely-packed 

monolithic approach, is crucial to unlock the scalability issues.  

This multi-core quantum computer, presented in Fig. 51, will cluster together dozens of NISQ cores 

(with tens to hundreds of qubits), connected through a quantum communications network (for core-to-core 

qubit transport, such as quantum teleportation or photonic switches) and a control classical network (for core 

coordination and job distribution), mapping the quantum algorithm among them to boost performance. In 

this way, we alleviate the requirements for control circuits and improve qubit isolation, while lever-aging all 

the advantages of quantum parallelism. 
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Fig. 51. Multi-core quantum computer and code flow 

The full-stack layered architecture for multi-core quantum computers can be seen in Fig. 52.  

 

Fig. 52. Double joint full-stack layered architecture for multi-core quantum computers 

In order to represent the different abstractions of the quantum computer at each of the layers, we have 

included a stairway that graphically explains what elements configure that specific layer (on each of the step 

treads) and its key functions (on the step risers). The basic layers of the multi-core quantum computer are, 

then, from logical to physical: Application, Runtime/Compiler, Network layer, Core layer and Qubit layer. A 

single-core quantum computer would hence have a void Network layer, but would keep the rest of them. 

Communications (the red “wedge” in the Fig. A2.50) are part of the stack in a vertical way, i.e. they affect all 

the way from the code (which could contain references and optimizations to the qubit communica-

tion/distribution, as it is sometimes done in multi-core classical computing), to the qubit movement per-

formed at the Core layer (which is in fact the most basic form of quantum communication). 

This full stack overview of a multi-core quantum computer with built-in communications helps us to 

show that they play a fundamental role not only in a specific part of it, but in the computer as a whole. With-

out the communications block (in red), the stack of Fig. A2.50 is unstable. But the question arises of whether 

this key block would really unlock quantum computer scalability. 
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The Design Space Exploration (DSE) technique is a structured design methodology that allows to opti-

mize a system maximizing a given cost function –or Figure of Merit (FoM)– based on some parameters of 

interest (see Fig. 53). 

 

Fig. 53. A Design Space Exploration for Multi-Core Quantum Computers 

Like any other structured design process, this optimization relies on modeling the interdependencies 

among the different performance metrics and the variables describing the system. This modeling process 

might include analytic/theoretical expressions, behavioral models, computer-based simulations, or their 

zone-wise combinations. It is important to note that DSE is used to design, not just to optimize (performance 

metrics optimization is in fact just one of the DSE use cases – DSE is also useful for rapid prototyping or 

system integration with no need for analytical metric. 

A framework for quantum simulation with hardware acceleration: Qibo architecture open-
source software for fast evaluation of quantum circuits and adiabatic evolution. Quantum simulation 

framework as Qibo enables developers to delegate all complicated aspects of hardware or platform imple-

mentation to the library so they can focus on the problem and quantum algorithms at hand. This software is 

designed from scratch with simulation performance, code simplicity and user-friendly interface as target 

goals. It takes advantage of hardware acceleration such as multi-threading CPU, single GPU and multi-GPU 

devices. Qibo is designed with three target goals: a simple application programming interface (API) for 

quantum circuit design and adiabatic quantum computation, a high-performance simulation engine based on 

hardware acceleration tools, with particular emphasis on multithreading CPU, single GPU and multi-GPU 

setups, and finally, a clean design pattern to include classical/quantum hybrid algorithms. In general, the 

inclusion of hardware acceleration support requires a good knowledge of multiple programming languages 

such as C/C++ and Python, and hardware specific frameworks such as CUDA, OpenCL and OpenMP. How-

ever, given that the knowledge of each of these tools could be a strong technical barrier for users interested 

in custom circuit designs, and subsequently, the simulation of new quantum and hybrid algorithms, Qibo 

proposes a framework build on top of the TensorFlow library which reduces the effort required by the user.  

In Fig. 54 we show a schematic representation of the code structure.  
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Fig.54. Schematic view of the Qibo structure design 

 

The main usage scheme is the following: 

 

where qibo.models.Circuit is the core Qibo object and holds a queue of quantum gates. 

The ground layer represents the base abstraction layer, where the circuit structure and gates are defined. 

On top of the abstraction layer, we specialize the simulation system using TensorFlow and numpy primi-

tives. The backend layers are required in order to build quantum algorithms such as the Variation Quantum 

Eigensolver (VQE), perform measurement shots, etc. These algorithms are implemented in such a way that 

there is no direct dependency on the backend specialization. Furthermore, several models delivered by Qibo, 

such as VQE, QAOA and adiabatic evolution, require minimization techniques provided by external librar-

ies, in particular TensorFlow for stochastic gradient descent, Scipy for quasi-Newton methods and CMA-ES 

for evolutionary optimization. Finally, we provide the entry point for code usage through a simple high-level 

API in Python. 

In the large circuit regime Qibo offers a better scaling than other libraries in both CPU and GPU. It is 

also clear that GPU accelerated libraries offer about an order of magnitude improvement compared to CPU 

implementations. The exact agreement between TFQ and single-thread Qibo as both libraries use Tensor-

Flow as their computation engine noted. 

In terms of memory, Qibo can simulate the highest number of qubits (33 in complex128 / 34 in com-

plex64) possible for the memory available in the DGX station (256 GB). A single 32 GB GPU can simulate 

up to 30 qubits (31 in complex64), however this number can be extended up to 33 (34 in single precision) 

using the distributed scheme.  

On the task of finding the preimages of a hash function based on the ChaCha permutation the example 

takes as input a hash integer of 8 or fewer bits and finds the corresponding preimage, that is the number that 

maps to the given hash when applying the permutation. If the number of collisions is known for the given 

hash then the algorithm finds all the possible solutions. Here collisions refer to the number of solutions. If 

the number of collisions is not given then the algorithm finds one solution using an iterative procedure. 
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Remark. In general, existing quantum computers can be categorized into the universal quantum gate 

(QGM-Quantum Gate Machine) and quantum annealer (QAM-Quantum Annealing Machine). Both of them 

have been built and are accessible by public users through the Internet. The implementation scheme of the 

proposed methods for both of these kinds of quantum computers are illustrated in Fig. 55.  

 

Fig. 55. Quantum computing methods for solving the problem of finding high-orders H-matrix developed 

from classical methods 

Three main proposed methods are derived from non-quantum computing/classical H-matrix construc-

tion methods, which we will referred to as the Williamson, Baumert-Hall, and Turyn methods. For each of 

the method, it will be described how to formulate its corresponding quantum Hamiltonian to be implemented 

on the quantum computers. 

Conclusions 

In recent years, rapid developments of quantum computer are witnessed in both the hardware and the 

algorithm domains, making it necessary to have an updated review of some major techniques and applica-

tions in quantum algorithm design [1-44]. In this survey as well as tutorial article, first presented an overview 

of the development of quantum search algorithms, then investigated important techniques: Quantum phase 

estimation, linear combination of unitaries, quantum linear solver, Grover search, and quantum walk, togeth-

er with their applications in quantum state preparation, quantum machine learning, and quantum search. In 

the end, it was collecting some open problems influencing the development of future quantum algorithms. 
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