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Principles and methodologies of quantum algorithmic gates design for master course and PhD students 
in computer science, control engineering and intelligent robotics described. The possibilities of quantum 
algorithmic gates simulation on classical computers discussed. Applications of quantum gate of 
nanotechnology in intelligent quantum control introduced. A new approach to a circuit implementation design 
of quantum algorithm gates for fast quantum massive parallel computing presented. The main attention 
focused on the development of design method of fast quantum algorithm operators as superposition, 
entanglement and interference, which are in general time-consuming operations due to the number of products 
that have performed. SW & HW support sophisticated smart toolkit of supercomputing accelerator of quantum 
algorithm simulation on small quantum programmable computer algorithm gate (that can program in SW to 
implement arbitrary quantum algorithms by executing any sequence of universal quantum logic gates) 
described. As example, the method for performing Grover’s interference operator without product operations 
introduced. The background of developed information technology is the "Quantum / Soft Computing 
Optimizer" (QSCOptKBTM) SW based on soft and quantum computational intelligence toolkit.  
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Описаны принципы и методологии проектирования квантовых алгоритмических ячеек для 

магистрантов и аспирантов в области компьютерных наук, теории управления и интеллектуальной 
робототехники. Обсуждаются возможности моделирования квантовых алгоритмических ячеек на 
классических компьютерах. Описаны приложения схемотехнических решений квантовых ячеек. 
Представлен новый подход к реализации схемотехнических решений квантовых алгоритмов для 
быстрых квантовых параллельных массивных вычислений. Основное внимание уделено разработке 
метода проектирования операторов быстрых квантовых алгоритмов, таких как суперпозиция, 
запутывание и интерференция, которые в общем случае являются трудоемкими операциями из-за 
количества выполненных продуктов. Программно-алгоритмическая платформа поддерживает 
сложный интеллектуальный инструментарий ускорителя моделирования квантового алгоритма на 
малом квантовом компьютере, на котором реализуются квантовые алгоритмы путем выполнения 
последовательности универсальных логических элементов квантовой логики. В качестве примера, 
представлен способ выполнения оператора Гровера. Основой разработанной информационной 
технологии является ПО "Quantum / Soft Computing Optimizer" (QSCOptKBTM), основанное на мягких и 
квантовых вычислениях и является платформой сильного квантового вычислительного интеллекта. 

 

Ключевые слова: квантовые алгоритмы, малый квантовый компьютер, сильный вычислительный 
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1. Introduction: quantum algorithm gate level computing supremacy – quantum 
deep learning applications in intelligent cognitive control and robotics 

R. Feynman and Yu. Manin (see, below photo on Fig. 1), independently, suggested and correctly shown 

that quantum computing can be effectively applied for simulation and searching of solutions of classically 

intractable and algorithmically unsolved quantum systems problems using quantum programmable computer 

(as physical devices).  

 .  

Figure 1. Original data up to the year 2010 [1] 

Gartner hyper-cycle for emerging technologies (Fig. 2) predicted [2, 3] the smarter developments in 

quantum computing and end-to-end quantum IT (quantum supremacy) for quantum engineering in intelligent 

control and robotics. 

 

(a) 

 

(b) 

Figure 2. (a) Gartner hype cycle for emerging technologies; (b) The number of research papers published per year 

in quantum computing and algorithms, quantum communications, and quantum sensing and metrology, respectively 

Recent research shows successful engineering application of end-to-end quantum computing information 

technologies (as quantum sophisticated algorithms and quantum programming) in searching of solutions of 
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algorithmic unsolved (classically intractable) problems in classical dynamic intelligent control systems, 

artificial intelligence (AI) and intelligent cognitive robotics.  

Perhaps the most important open problem in the theory of quantum information processing and problem-

oriented engineering applications is to understand the nature of quantum mechanical speed-up for the solution 

of computational problems:  

Q: What problems can be solved more rapidly using quantum computers than is possible with classical 

computers, and what ones cannot?  

Computation, based on the laws of classical physics, leads to different constraints on information 

processing than computation processes based on quantum mechanics.  

Figure 3 demonstrate efficient quantum computing for different algorithm computation problem. 

   

 

Figure 3. Speed-up Benchmarks of quantum computing. 

To realize how fast a quantum algorithm is in comparison to the classical methods of solving 

computationally difficult tasks, let us consider the best conventional algorithm known at present, which is the 

general sieve number (GNFS) algorithm, famous for factoring large n-bit integers, 2 1nN , larger than 

10010 , in the sub-exponential time of 
2

3
64

exp log
9

n n . On the other hand, the Shor quantum algorithm 
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is only 
3n  time, at the cost of n  quantum gates. Thus, the Shor’s quantum algorithm is 

2
3

2
3

3

64
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9 64
exp log

9

n n

n n
n

 and faster than the GNFS method, which is at least a 

fascinating speed-up.  

Another very clever application, having as kernel the Deutch-Jozsa quantum decision-making algorithm, 

is the also famous Grover quantum search in unstructured large data base algorithm. The Grover key-search 

method is a quantum algorithm capable of violating a password authentication system, such as the RFS 

encryption system in only N  (or steps /N m  with m  marked items), where 2nN  is the 

number of possibilities of matching the oracle’s kept-in-secret n-bit key. To realize its quadratic speed-up, the 

Grover’s algorithm would be 
1282  faster than the conventional brute force method to break a 256-bit 

secret key. 

Quantum computers hold promise for solving many intractable (in classical mean) problems. However, 

unfortunately, there currently exist no algorithms for “programming” a quantum computer. Calculation in a 

quantum computer (like calculation in a conventional computer) can be described as a marriage of quantum 

HW (the physical embodiment of the computing machine itself, such as quantum gates and the like), and 

quantum SW (the computing algorithm implemented by the HW to perform the calculation). To date, SW of 

quantum algorithms (QA), such as Shor’s algorithm, used to solve problems on a quantum computer have been 

developed on an ad hoc basis without any real structure or programming methodology.  

Important computer-scientific challenges for quantum information science are to discover efficient QAs 

for interesting engineering problems and to understand the fundamental capabilities and limitations of quantum 

computation in comparison to those of classical computation. The bulk of this article is concerned with the 

problem of discovering new QAs. To take full advantage of the power of quantum computers, we should try 

to find new problems that are amenable to quantum speed-up.  

As Fig. 4 conceptually illustrates, many well-known QC algorithms have qubit resource requirements that 

far exceed the current scale at which QCs can built. 
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Figure 4. The Algorithms-to-Machines gap illustrates how well-known quantum computing algorithms (such as 

Shor’s and Grover’s algorithms have resource requirements that far exceed the qubit counts (shown in yellow) of 

systems we are able to build) and superconducting quantum computing setup. 

More importantly, we should try to broaden the range of available algorithmic techniques for quantum 

computers, which is presently quite limited. The first examples of problems that can solved faster with a 

quantum computer than with a classical computer were oracle, or black box, problems. In standard 

computational problems, the input is simply a string of data such as an integer or the description of a graph. In 

contrast, in the black box model, the computer given access to a black box, or oracle that can queried to acquire 

information about the problem. The goal is to find the solution to the problem using as few queries to the oracle 

as possible. This model has the advantage that proving lower bounds is tractable, which allows one to 

demonstrate provable speed-up over classical algorithms, or to show that a given QA is the best possible. There 

is a huge gap between the problems for which a quantum computer might be useful (such as chemistry 

problems, material science problems, etc.) and what we can currently build, program, and run.  

Remark. Quantum microarchitecture is a key component in bridging the gap between quantum software 

and quantum hardware of a fully programmable quantum computer. Useful quantum computation would 

require full stack architecture. To construct a universal and fully programmable quantum computer, clarifying 

the required component of a quantum computer is essential. As example, in the QuTech quantum computer 

system stack, multiple layers from top-level quantum algorithms to underlying quantum chips are included in 

a full stack quantum computer. In the middle of this system view, the Quantum Instruction Set Architecture 

(QISA) and the Quantum Microarchitecture layers play a key role in bridging the gap between quantum SW 

and quantum HW. Nowadays, research in quantum computer engineering has focused primarily at devising 

high-level programming languages and compilers, and building reliable low-level quantum HW. Relatively 

little studies have focused on how to control operations on experimental quantum processors. However, with 

Noisy Intermediate-Scale Quantum (NISQ) (cite Preskill 2018) quantum devices with 50 to hundreds of qubits 

coming soon, we need to start thinking about how to use the compiler output to fully control the quantum chip. 

To solve this problem, an experimental microarchitecture (QuMA) is proposed for controlling a 

superconducting quantum processor.  

A quantum virtual machine is implemented on the basis of QuMAsim and other quantum 

software/emulators. OpenQL is a high-level quantum programming framework which has an eQASM back-

end and generates executable code for the CC-Light. Therefore, the user can write his quantum algorithm in 

the OpenQL high-level language then compile it to generate the eQASM code. There is also some qubit state 

simulator like QX and QuantumSim, which can perform the quantum simulation. 
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Quantum computer: Full stack  

Figures 5 a, b provides a high-level view of the quantum system stack and success probabilities 

achievement for different types of quantum computers and software toolkits.  

 

    
 

.      
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Figure 5a. Overview of quantum computer system stack and D-Wave 2X, 1098 qubits. Schematic of a hybrid 

quantum–classical computing architecture. Principle architecture of today’s quantum software stack. Quantum 

Algorithm as a Service (QaaS) and Quantum Computing as a Service (QCaaS). 
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Figure 5b. Processing of hardware-independent quantum algorithms 

A quantum algorithm consists of a sequence of operations and measurements applied to a quantum 

processor. To date, the instruction set which defines this sequence has been provided by a classical computer 

and passed via control hardware to the quantum processor. Here, the first experimental realization of a quantum 

instruction set demonstrated, in which a fixed sequence of classically defined gates performs an operation that 

is fully determined only by a quantum input to the fixed sequence. Specifically, we implement the density 

matrix exponentiation algorithm, which consumes N copies of the instruction state  to approximate the 

operation (an arbitrary angle). The implementation relies on a 99.7% fidelity controlled-phase gate between 

two superconducting transmon qubits. An average algorithmic fidelity 0.9 achieved, independent of the setting 

of fidelity, to circuit depth nearly 90. This new paradigm for quantum instructions has applications to resource-

efficient protocols for validating entanglement spectra, principal component analysis of large quantum states, 

and universal quantum emulation. 

Programmable computation, whether classical or quantum, consists of two fundamental components: an 

instruction set, and a machine to execute those instructions. For classical computation, there is no intrinsic 

distinction between these components — the same physical instrument may be used both to generate and 

execute the instructions (Fig. 6 (A)). To date, the same has not been true for experimental demonstrations of 

quantum computing, whether in gate-based systems, quantum annealing, or one-way quantum computing. In 

conventional quantum computing applications, shown schematically in Fig. 6 (B), the instructions are 

programmed using classical resources and then delivered via hardware to a quantum processor that executes 

the instructions. In other words, the parity between instruction set and the processor executing the instructions 

is broken: one is fully classical, the other quantum.  

An implementation of quantum instructions, in which a quantum state provides on-the-fly programming 

to a quantum computer (Fig. 6 (C)) demonstrated. In this approach, a fixed sequence of classically-defined 

gates form the scaffolding for a variable operation on a target system  ; an auxillary quantum state with 

density matrix   completes the encoding of the instructions. This hybrid approach to quantum programming 

partially restores the parity between the instructions and the processor in a quantum computer. 

Quantum instructions have a variety of applications, including executing private quantum functions and 

quantum simulation. Quantum instructions are central to an efficient implementation of quantum emulation, 

which enables the implementation of an unknown unitary U with a finite set of known input-output relations 
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   U

in out ⎯⎯→ . Quantum emulation consumes fewer copies of the instruction qubits than would be 

sufficient for tomographic reconstruction, enabling the application of U to an arbitrary state without 

compromising the privacy of U itself. A quantum instruction set has also been theoretically proven to provide 

quantum speedups in quantum semi-definite programming. Additionally, if a Hamiltonian is encoded in the 

instruction state, quantum instructions enable sample-optimal Hamiltonian simulation.  

 

Figure 6. (A) Schematic representation of classical computing. Instructions are expressed by a classical function f 

defined by a bitstring ‘00011...’, and is then executed on a dataset 110.... (B) Schematic representation of 

conventional quantum computing. The instruction set encoding a quantum circuit is generated using classical 

resources. A control layer generates the corresponding gate sequence, which is sent to the quantum hardware and 

implements the operation U = exp(−iH(0110) t). Here H(0110) is the Hamiltonian with parameters given by the 

bitstring 0110. (C) Quantum instruction set using the density matrix exponentiation (DME) algorithm. A single-qubit 

instruction ( 1 ) is used to implement the operator ( ) 1

1DME , ,
i

N N e
   −

  using a sequence of N partial SWAP 

operations, each supplied with a new copy of 1 . A multi-qubit program using quantum instructions shares the 

same structure of the classical gates. 

A quantum instruction set can be implemented efficiently using an approach called density matrix 

exponentiation (DME). DME consumes N copies of the quantum instruction density matrix  , and 

approximately performs the unitary gate 
ie −

, where   is an arbitrary angle. It has been shown that DME 

asymptotically outperforms any tomographic strategy to implement 
ie −

. Without access to a quantum 

instruction set, implementing 
ie −

 necessitates a full tomographic construction of  . This in turn requires 

( )2 2/O d   copies of  , where d is the dimension of the instruction system and   is the desired precision. 

DME as implemented with quantum instructions requires only ( )2 /O    copies, resulting in an exponential 

reduction in resource requirements. This advantage makes DME a powerful platform to implement quantum 

operations based on quantum states, avoiding the need for classical learning of  . In addition to implementing 

quantum instructions, DME is a useful tool for using the target system to learn about the instruction set. In 

particular, a controlled-DME protocol combined with quantum phase estimation can be used to extract the 

dominant eigenvalues and eigenvectors of  , using only ( )2 /O    copies. 

For intuition, if   is a single-qubit pure state, DMEN rotates   about the axis defined by the Bloch 

sphere vector of  , through an angle  . The physics of DMEN are related to the Trotterization of non-

commuting Hamiltonians to perform quantum simulation. Dividing a quantum simulation into smaller steps 

reduces errors stemming from the Trotter approximation, and similarly, supplying DMEN with more copies 

reduces algorithmic error. 
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Gate-model quantum computers are theoretically capable of exceptional performance in certain 

applications, although it is unclear how useful they will be in general. The Quantum Approximate Optimization 

Algorithm (QAOA) of Farhi et al. has been proposed as a possible path towards making gate-model quantum 

computers effective at solving problems in combinatorial optimization. Recently, Rigetti Computing published 

results of QAOA run on their 19-qubit gate-model quantum computer. The inputs they considered can also be 

solved on D-Wave quantum annealing systems, providing an opportunity to compare the two quantum 

processing units (QPUs) directly. Reproducing their tests, it was found the probabilities of returning an optimal 

solution to be 99.6% for the D-Wave 2000Q and 0.001% for the Rigetti 19Q. In addition, the D-Wave 2000Q 

was able to solve 102 copies of the problem in parallel. The advantages in quality and size of the D-Wave 

2000Q, taken together, provide an improvement of 10 million times in terms of ground-state throughput per 

sample (Fig. 7). 

 

Figure 7. Success probabilities for Rigetti 19Q, Rigetti Quantum Virtual Machine (QVM) simulator, and D-Wave 

2000Q on the 19-qubit input from Otterbach et al. 

The integration of all these necessary ingredients into a full-stack QCCD (quantum charge-coupled 

device) quantum computer. The device is built around a microfabricated cryogenic surface trap (Fig. 8) 

containing five zones used for gating operations and ten storage zones.  

 
 

Figure 8. Illustration of the programmable QCCD quantum computing system along with a photograph of the trap. 

(a) On the right, a picture of the trap. On the left, the information flow from the user to the trapped qubits. From top 

to bottom we illustrate: user, cloud, internal tasking, machine control system, FPGA. The circuits are processed by a 

compiler as described in the text to generate control signals (purple) sent to both the trap electrodes as well as 

optoelectronic devices that control laser beams. An imaging system and PMT array collects and counts scattered 
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photons, and the result (green) is sent back to the software stack and user. (b) A schematic of the trap detailing: the 

load hole (black), load zone (purple), storage zones (orange), gate zones (blue), as well as auxiliary zones (yellow) 

for additional qubit storage. 

The illustration of how a general quantum circuit is carried out shows that ions already sharing a gate 

zone are gated, then spatially isolated for single-qubit gates, then the second and third ions are swapped so that 

the final two-qubit gates can be executed. While not shown, readout, two-qubit gates, and single-qubit rotations 

can all be performed in parallel. Using 171Yb+ and 138Ba+ as the qubit and coolant ions, respectively, parallel 

operation and communication between two adjacent gate zones separated by 750 m demonstrated.  

The software stack from the user down to the qubits in Fig. 8. The processor is programmed using the 

quantum circuit model. A quantum circuit is submitted remotely through a cloud-based service and tasked in 

Honeywell's internal cloud. The algorithm is compiled into the various primitives needed to execute the 

quantum circuit and sent to the machine control system. This system is responsible for programming the field-

programmable gate array (FPGA) to execute the specific quantum circuit as well as scheduling and executing 

calibration routines. These automated calibrations are either executed on a predetermined time interval or 

triggered when a drift tolerance is exceeded. The FPGA handles the timing of operational primitives and real-

time decision-making based on mid-circuit measurement outcomes. Clock synchronization between qubits is 

maintained via a phase-tracking protocol handled by the FPGA, which updates the qubit phases after transport 

and gate operations to account for phase accumulation generated by AC-Stark shifts. 

In the rare event of ion-loss or detectable ion-reordering events, the data is discarded at the machine 

control level, and circuits are repeated as necessary to produce valid data. Finally, results are reported back 

through the cloud service to the user. 

Quantum gate teleportation is a protocol in which a pair of maximally entangled qubits is used as a 

resource for applying a gate between a pair of remote data qubits. The protocol requires local entangling 

operations, mid-circuit measurements, and classically-conditioned quantum gates. The circuit for teleportation 

of the CNOT gate is shown in Fig. 9.  

 

Figure 9. (a) Circuit implementing a teleported CNOT gate, with q0 and q3 the control and target qubits, 

respectively. (b) Bar plots showing the distribution of measurement outcomes when qubits q0 and q3 are prepared 

and measured in the  0 , 1  and  ,+ −  bases [2].  

Here, qubits q1 and q2 are initially prepared in the Bell state ( )
1

00 11
2

B = + . Two rounds of 

CNOT gates, each followed by a measurement and conditional gate, result in a circuit that is logically 

equivalent to a CNOT controlled on q0 and targeting q3 (see Fig. 9). To realize this circuit, transport operations 

are required to distribute the Bell state between two zones for remote gating. Each CNOT in the circuit is 

compiled into a native Uzz gate and single-qubit rotations. 
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To efficiently benchmark the teleported CNOT gate, the method for bounding the fidelity of a process 

from its action on two mutually-unbiased bases. This amounts to verifying the following quantum truth table: 

00 00

01 11
:     

10 10

11 01

CNOT

→ ++ → ++

→ +− → +−

→ −+ → −−

→ −+ → −−

 

where the states are labeled 3 0q q . We prepare q0 and q3 in each state of the  0 , 1  and  ,+ −  

bases, apply the circuit in Fig. 9 (a) and measure in the appropriate basis. Repeating the circuit 500 times for 

each input state, and randomize the order in which the eight variations are run. The data is shown in Fig. 9 (b). 

Also notable are results for QAOA running on a classical simulation of a noiseless gate-model quantum 

computer. Even when running on a small, easy input using ideal hardware, QAOA success probabilities appear 

to be four orders of magnitude lower than D-Wave QPU success probabilities. This indicates that the single 

step of QAOA is insufficient. Running more steps of QAOA as necessary will require significantly higher 

coherence and lower error rates. The results do not provide evidence that QAOA will be practical for solving 

these problems on near-term gate-model devices. 

The Rigetti 19Q is a gate-model quantum computer and the Rigetti QVM is a noiseless classical simulator, 

in this case simulating the 19Q. The Rigetti QPU and simulator both run the quantum approximate optimization 

algorithm (QAOA). The D-Wave 2000Q runs the quantum annealing algorithm (QA). The success 

probabilities from QAOA are at least 4 orders of magnitude lower than those from the D-Wave quantum 

annealing system. 

This stack consists multiple layers. The bottom layers are quantum chip together with quantum to classical 

interface. These two layers are technology dependent and many implementations focus on improving the 

fragility of qubits. Different technologies have investigated like superconductors, trapped ions and nitrogen-

vacancy centers. Among these technologies, superconducting qubits give the biggest potential for scalability. 

Besides physical qubits, logical qubits also draw attention with performance improved by quantum error 

correction. The middle layers are the control microarchitecture and Quantum ISA. QISA provides an interface 

to communicate SW and HW just like in classical architectures. QISA usually includes both quantum 

instructions and classical instructions since a quantum computer will always consist of both computing 

components.  

These instructions are fed into control microarchitecture and decoded into required control signals with 

precise timing. These control signals processed by quantum to classical interface based on the specific quantum 

technology. These signals translated into required pulses and sent to quantum chip. The top layer represents 

quantum algorithms that described by high-level quantum programming languages like Scaffold and LIQ

Ui . These algorithms lack the low-level hardware information and it assumed that all operations can 

executed perfectly. Compilers help to provide this information so the quantum algorithms can execute by the 

potential quantum hardware. In compilation layer, these algorithms are compiled into a series of instructions 

that defined by QISA. 

Controller microarchitecture is required to solve the control challenges in full stack quantum computer. 

There are many control difficulties need to be solved for quantum computer.  

The first version of QuMA proposed and the diagram showed in Fig. 10.  
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Figure 10. Overview of the structure of QuMA 

QuMA is a heterogeneous architecture, which includes a classical CPU as a host and a quantum co-

processor as an accelerator (Fig. 11).  

 

Figure 11. Quantum microarchitecture implementing the instantiated eQASM for the seven-qubit superconducting 

quantum processor. 
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QuMA accepts a binary file generated by the OpenQL compiler infrastructure. These instructions 

processed and generated micro operations at a deterministic timing. The analog-digital interface converts 

digital signals into corresponding analog pulses, which will perform quantum operations on qubits. 

2. Hardware  

Nowadays, there are various potential quantum technologies being pursued to implement qubits, such as 

trapped ions, quantum state in superconducting circuits, nuclear spins or electron spins in silicon, and nitrogen-

vacancy centers. Other candidates like Majorana fermion based topological qubits (not yet built) are actively 

being researched as well. The currently most promising technologies are trapped ions and superconducting 

qubits, both of which have demonstrated to satisfy the DiVincenzo criteria. 

Superconducting qubits Superconducting integrated circuits are Josephson junction based harmonic 

oscillators coherently controllable and measurable by magnetic flux pulses and microwaves. The performance 

of superconducting qubits benefits from the non-linearity of Josephson junctions and surrounding microwave 

circuitry. These systems have potentially excellent scalability since this technology have not encountered any 

hard-physical limits. Figure 12 show superconducting phase qubit. 

 
(a)                                                       (b) 

Figure 12. Superconducting phase qubit from [3].  

Superconducting qubits usually fabricated with well-established fabrication techniques such as photo and 

electron-beam lithography. However, superconducting qubits also suffer from drawbacks like low coherence 

times. This also makes quantum error correction very important for this type of system. Transmon is a 

promising technology, which achieves error rates lower than the fault-tolerance threshold for surface code. A 

universal gate set which comprised of single-qubit gates (mainly x and y rotations) and the CZ gate is used at 

here. The transmon is a lumped-element nonlinear LC resonator. The first-excited state used as the qubit. The 

transition frequency between these states can tuned by controlling the flux through the loop between the two 

Josephson junctions. 

Figure 13 shows a prototype seven-port transmon developed in Dicarlo lab, Delft University of 

Technology.  
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Figure 13. The prototype seven-port transmon. 

The vertical I/O will be realized either using through-silicon through-silicon-visa or bump bonding in a 

flip-chip arrangement (Fig. 14). 

    

Figure 14. Images at various scales of implementation of surface-code fabric. (a) Starmon qubit. (b) Transmission-

line crossover. (c) Vertical I/O.  

Quantum computer of D-Wave Co. shown on Fig. 15. 

 

 
 

https://api.ning.com/files/aevJbPu9dzMpmK5x9-byaFUshvHYDD0ToI5pttKi4JSx9KirCz8ncGTtceB5nIFNWwZPaMkvwCQo*TAE9BQkztd0uCilScCa/DWave2000Q.jpg
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Figure 15. D-Wave quantum computer and Rigetti quantum processor 

On Fig. 16 an imaging objective collects ion fluorescence along the Y-axis and maps each ion onto a 

multichannel photo-multiplier tube (PMT) for measurement of individual qubits.  

 

Figure 16. Computation architecture. (a) Decomposition of algorithms from the user interface and software 

operations to the physical hardware. (b) Hardware setup. A linear chain of trapped ion qubits along the Z-axis is 

shown at the center of the figure.  

Counter propagating Raman beams along the X-axis perform qubit operations. A diffractive beam splitter 

creates an array of static Raman beams that individually switched using a multi-channel acousto-optic 

modulator (AOM) to perform qubit-selective gates. By modulating appropriate addressing beams, any single-

qubit rotation or two-qubit Ising (XX) gate can be realized (Fig. 17).  

 

Figure 17. Two qubit Ising (XX) gate [4]. 

The architecture on Fig. 18 involves only one classical computer, which is the host of the digital image 

(original and classical), the cloud accessed via Internet, and the corresponding QPU. It is clear that for this 
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architecture it is not necessary that the classical computer and the QPU are in the same location. The key lies 

inside the classical computer. 

 

 

Figure 18. Architecture: classical computer + cloud + QPU of IBM Q or Rigetti 

Example: Quantum Image Processing. Two sets of implementations on quantum platforms will be 

presented:  

a) the first set consists of a strict comparison of performance between FRQI, NEQR and QBIP on the 

Rigetti platform, specifically on its Quantum Virtual Machine (QVM), and which consists of taking an image 

of the classical world, representing it with the technique, and then returning it again to the classical world to 

evaluate the impact that the technique had on the morphological integrity of the image, i.e, without quantum 

algorithm, only the technique; b) while the second set will consist of exclusive QBIP implementations for 

several quantum algorithms, since it is the only technique with which efficient implementations can be made 

on IBM Q, Rigetti, Quantum Programming Studio, Quirk, among many others. Three techniques of internal 

image-representation in a quantum computer are compared: Flexible Representation of Quantum Images 

(FRQI), Novel Enhanced Quantum Representation of digital images (NEQR), and Quantum Boolean Image 

Processing (QBIP). All conspicuous technical items are considered in this comparison for a complete analysis: 

 i) performance as Classical-to-Quantum (Cl2Qu) interface,  

ii) characteristics of the employed qubits,  

iii) sparsity of the used internal registers,  

iv) number and size of the required registers,  

v) quality in the outcomes recovering,  

vi) number of required gates and its consequent accumulated noise,  

vii) decoherence, and  

viii) fidelity.  

These analyses and demonstrations are automatically extended to all variants of FRQI and NEQR. 

This study demonstrated the practical infeasibility in the implementation of FRQI and NEQR on a 

physical quantum computer (QPU), while QBIP has proven to be extremely successful on: a) the four main 

quantum simulators on the cloud, b) two QPUs, and c) optical circuits from three labs. Moreover, QBIP also 

demonstrated its economy regarding the required resources needed for its proper function and its great 

robustness (immunity to noise), among other advantages, in fact, without any exceptions. 

A typical scheme of QImP necessarily implies an architecture like the one presented in Fig. 19. 
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(A) 

 
(B) 

Figure 19. (A) Scheme of Quantum Image Processing (QImP) [6]. (B) Example of annealing-based generative 

models for binary images. (a) Learning consists of adjusting control parameters so that the generated samples 

become similar to those in the dataset. (b) Inference consists of using the learned model to sample parts of a 

corrupted image and obtain a reconstruction. 

Evidently, this scheme does not differ much from that used by quantum computing for any other task. 

Figure 19 shows that the classical image (digital) must be introduced into the quantum computer for further 

processing, which is the responsibility of a quantum algorithm allocated inside a quantum computer. Image 

processing consists in the filtering of the noise that the digital image brings from its classical origin, e.g., a 

camera, the channel through which it was received, etc. 

Consequently, the quantum algorithm will have the function of filtering said noise. The problem is to 

introduce a quantum version of the original classical image into the quantum computer. There are two 

possibilities to achieve this: a) by hand, i.e., preparing qubit by qubit in an artisanal way, or b) automatically, 

using a Classical-to-Quantum interface (Cl2Qu). 

Now, suppose that the camera takes color pictures at a resolution of 1920x1080 pixels (i.e., a common 

camera), so, each digital image will be composed of 1920x1080x3x8 bits (approximately 50 Million bits), 

which should be converted into approximately 50 Million of qubits inside the quantum computer. If we analyze 

this real case in order, option (a) is not viable, since no laboratory in the world is able to prepare 50 Million 

qubits, let alone there are no humans who would do this artisanal imitation work, i.e., convert each one of the 

50 Million of bits in its quantum counterpart. This is obviously unthinkable. Regarding (b), we find the 

following options according to the QImP literature, i.e., via: 
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I. FRQI (and its variants), 

II. NEQR (and its variants) [3], and a third option, 

III. which are constituted by a family of proven Cl2Qu interface, and that are used by QBIP. 

Next, postulate the essential and inexcusable conditions that must be met by any Cl2Qu interface in order 

to be used on a QPU like Rigetti or IBM Q Experience. Therefore, with this information, we can evaluate the 

performance as Cl2Qu interface of the three techniques suggested above. What is clear even from this precise 

moment is that any effort to implement a QImP scheme is absolutely unfeasible without a real and practical 

Cl2Qu interface. 

Quantum Boolean Image Processing (QBIP) This technique consists of a pair of interfaces, i.e., Cl2Qu:

 12bit C Qu bit qubit→ →  , and Qu2Cl:  2qubit bit Qu Cl bit → →  , with a quantum algorithm 

between them. QBIP strictly respects the configuration stablish in Fig. 19, where the three mentioned elements 

work strictly and exclusively with CBS  0 , 1 , not being altered by the quantum measurement. If we have 

a Lena’s color image like that of Fig. 20 (a), and discompose it in its 24 bitplanes, then, we will obtain Fig. 20 

(a), which shows a simplified detail of this procedure for a tile of only 4-by-4 pixels of Fig. 20 (b) (for the 

purpose of not complicating the drawing), which is carried out by a bit-slicer() function implemented on a 

classic computer. 

      
(a)                                       (b) 

Figure 20. a) Lena’s color image of 128-by-128-by-3-by-8 bits. b) Slicing of 4-by-4 pixels of the original image in its 

24 bit-planes. 

The action of the mentioned bit-slicer() function has a counterpart, it is the bit-reassembler() function, 

which allows us to reconstruct the image from its bitplanes.  

The joint action of both functions can be seen in Fig.21.  

 

Figure 21. The combined action of the bit-slicer() and bit-reassembler() functions on Lena's red channel. 

However, in order not to complicate said figure, we only represent the 8 bit-planes of the red channel.  

QBIP only works with the most significant bit (MSB) of each color channel of the original image, as we can 

see in Fig. 22 (where only it is represented the MSB of the red channel), which for an image of 

RЧCЧCoCЧBpPpC bits (where, R is the number of rows, C the number of columns, CoC means channels-of-

color, which they always are 3, and BpPpC is the number of bit-per-pixel-per-channel, which are generally 8) 

we can only work with RЧCЧCoC bits, dramatically lowering the storage respect to FRQI and NEQR at least 

8 times. 



Электронный журнал «Системный анализ в науке и образовании»                     Выпуск №1, 2020 год 

73 

 

 

Figure 22. a) Lena’s color image of 128-by-128-by-3-by-8 bits. b) Lena’s MSB bitplane of the red channel with 128-

by-128-by-1 bits. 

It is precisely and exclusively on the mentioned MSBs (of the respective three-color channels) that the 

quantum algorithm acts. 

Figure 23 shows, from left to right: 

- the original image to be treated, 

- the FRQI version after applying this technique and the posterior quantum measurement of them 

respective outcomes. It is evident that the quantum measurement eliminates the gray levels, converting each 

pixel to a strict CBS {0,1}, i.e., destroying the original image, 

- the NEQR version, with three types of outcomes (and all its possible combinations), which destroys the 

morphology of the image as a result of the devastating effect of entanglement coupling.  

Finally, 

- the QuBoIP version, where we have applied the technique to the 8 bitplanes of the image, i.e., not just 

to the first bitplane (MSB) as it is usual in this technique. The outcomes clearly show the total absence of 

entanglement between them, as well as, the complete immunity to alterations related to quantum measurement 

and entanglement coupling. 

 

Figure 23. Results of the first experiment. From left to right, in order, we have: the original image, the FRQI version 

after quantum measurement, the NEQR version in terms of the entanglement between some of their outcomes and 

their respective allocation, and the QuBoIP version after its treatment and quantum measurement. 

Finally, we show another important result of the experiment for the three techniques: the elapsed time 

each one takes,  

- FRQI → 819 minutes, 

- NEQR → 714 minutes, and 

- QuBoIP → 68 minutes, taking into account all the bitplanes of the image + a Classical-to-Quantum 

interface + a simple quantum measurement module as a Quantum-to-Classical interface, Fig. 24. 
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(a)                                                                     (b) 

Figure 24. Example of a possible pair of Cl2Qu and Qu2Cl interfaces for QBIP extracted from the superdense 

coding protocol (a); Quantum-to-Classical (Qu2Cl) interface (b). 

This result was reached coding in pyquil 2.6 on the QVM of Rigetti on an Intel Core i7-4702 MQ 

CPU @ 2.20 GHZ/2.20 GHZ with 8.00 GB RAM on a 64-bits operating system, Windows 7 Ultimate. 

This demonstrates that when working exclusively with CBSs, virtually anything can be used as a Cl2Qu 

interface. 

3. Software 

SW is a simulation platform to aid in the exploration of quantum computing. Currently, there are three 

classes of simulators built into the system representing different levels of abstraction:  

1. Physical Modeling: This is the Hamiltonian simulator, which attempts to model some of the actual 

physics in a quantum system. It differs from the other simulators in that it has the concept of the time it takes for 

an operation to be performed (since it is numerically solving a differential equation) and can only operate on a 

small number of qubits (around 30). It is also (by its very nature) slow. 

2. Universal Modeling: This is the most flexible of the simulators. It allows a wide range of operations to 

be performed (including ones defined by the user). It can handle millions of operations (gates) to be executed, is 

highly optimized for parallel execution and is highly efficient in memory usage. Its main limitation is the number 

of qubits (~30) that can be entangled at one time. 

3. Stabilizer Modeling: This simulator has the virtue of allowing large circuits (millions of operations) 

on massive numbers of qubits (tens of thousands). The main limitation is the types of gates, which may be included 

in the circuit. They are fixed in the system and come from the “stabilizer” class (e.g., Clifford group). This limits 

the usefulness of the types of algorithms that can be implemented and tested. However, it does allow the design 

and test of Quantum Error Correction Codes (QECC) which requires large numbers of qubits per logical qubits. 

Simulations can accomplish in several ways: 

1. Test mode: Several built-in tests of the system can be invoked from the command line and are useful 

demonstrations. 

2. Script mode: The system can be run directly from an F# text script (.fsx file). This allows the simulator to 

be operated by simply running the executable (no separate language compilation required). The entire simulator 

is available from this mode, but interactive debugging is difficult. Script mode allows users to experiment (with 

fast turn-around time) as well as being able to “kick the tires” without having to install a complete development 

environment. 

3. Function mode: This is the normal development mode. It requires a compilation environment (e.g., Visual 

Studio) and the use of a .Net language (typically F#). The user has the full range of APIs at their disposal and can 

extend the environment in many ways as well as building their own complete applications. 
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4. Circuit mode: Function mode can be compiled into a circuit data structure that is extremely general. This 

data structure can be manipulated by the user, run through built-in optimizers, have quantum error correction 

added, rendered as drawings, exported for use in other environments and may be run directly by all the simulation 

engines. 

The entire architecture summarized in Fig. 25.  

 

Architecture for a collaborative quantum software platform 

 

The |LIQU⟩ Platform Architecture 

Figure 25. The entire architecture 

Here are each of the major sections. 

Any methods of quantum global optimization and of quantum learning based on quantum neural networks 

can be described as modified models of quantum search algorithm that by L. Grover was developed. This 

approach can also use for design optimisation of robust intelligent control based on Quantum Soft Computing. 

The idea of Quantum Soft Computing application for design of robust intelligent control introduced. The 



Электронный журнал «Системный анализ в науке и образовании»                     Выпуск №1, 2020 год 

76 

 

structure of quantum soft computing includes the Quantum Genetic Search Algorithm (for global optimisation 

of control laws) and Quantum Neural Network (for robust approximation of teaching control signals) based on 

mutual applications of quantum and genetic search algorithm’s operators. The background of this structure is 

Grover’s quantum search algorithm. 

We describe how to build a classical hardware (HW) device, which accelerates the simulation of quantum 

algorithms (QA) on classical computer. The usual approach for so doing consists in the simulation of the either 

QAs and their underlying quantum systems (see Figs 26, 27 and 28). The main aim of this Part 2 is not to work 

on real quantum HW (as quantum dots, ion traps, NMR etc.) but to take quantum computing as a computation 

paradigm (alternative to classical computing and soft computing).  

 

Figure 26. An illustration of potential milestones of progress in quantum computing. The arrangement of milestones 

corresponds to the order in which the committee thinks they are likely to be achieved; however, it is possible that 

some will not be achieved, or that they will not be achieved in the order indicated. 
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Figure 27. Schematic of a modular design approach to a large-scale, fault-tolerant quantum computer. 

 

Figure 28. Architecture of Qiskit. Aqua and Ignis produce circuits for different tasks (algorithms and applications, 

or device QCVV, respectively).  

The IBM Q systems and Aer simulators are backends that execute quantum circuits or pulse schedules. 

The Terra compiler is the bridge that translates and optimizes for a given backend and comprises modular 

pass-based circuit optimizers (Transpiler) and pulse optimizers (Scheduler). Some example passes are shown. 

Efficient high-level synthesis methods, access to a library of precomputed gate and pulse equivalents, and 

information about device constraints and properties all increase compilation quality. 

The diagram represents device abstractions and is not intended to imply any particular physical device 

layout, which will depend on the specific technology and implementation. Each quantum module consists of 

its own data plane and control and measurement layer and intersects with the control processor plane. 

Quantum computing is not only a beautiful way of exploiting HW devices governed by quantum 

mechanics, but also a new approach for information processing which may (and is) interesting and useful. The 

ideas introduced by quantum computing, like the use of reversible operators, have applications even without 

the disposability of real quantum computer. In fact, in the rest of this report the new methodologies, which 

hybridize quantum computing and soft computing (referred to as methodologies) are introduced.  

These new methodologies widen the range of applicability of soft computing techniques, keeping their 

actual advantages. Since we are interested in applying the quantum computation paradigm, our approach 

consists first in the analysis of the input-output relations of each block and then in the simulation of these 

relations. In particular, we present a new circuit implementation of quantum search algorithm with information 

criteria (minimum of Shannon entropy) for search termination process that is the background for optimisation 

of control processes. We focus our attention on superposition, entanglement, and interference quantum 

operators (there are the fundamental quantum operations of QSA) and propose a new HW accelerator structure 

for Grover's QSA.  



Электронный журнал «Системный анализ в науке и образовании»                     Выпуск №1, 2020 год 

78 

 

The TU Delft superconducting quantum computing stack (QuantumInfinity) along with Octobox-2 is 

schematically represented in Fig. 29. 

 

Figure 29. Simplified view of the bQI stack. The blue boxes label the main components with OpenQL compiler 

running on the host computer. QuantumInfinity also includes a density-matrix-based qubit simulator to simulate 

quantum experiments using parameters extracted from transmon qubit characterization. 

QuantumInfinity translates the quantum instructions into physical MW pulses and dc flux pulses in order 

to execute the quantum algorithms on qubits. The baseline QuantumInfinity (bQI) system stack supported the 

following native instructions (or basis gate set) for qubit characterization and benchmarking. Arbitrary 

waveform generators (AWGs) stored the pulses corresponding to these single qubit and two-qubit operations. 

The bQI stack employed OpenQL as the compiler to generate executable code for the central controller (CC). 

The bQI system executed the single-qubit instructions similar to any programmable processing unit. The AWG 

stored a single pulse for each of the four instructions. Every instance of an instruction in a quantum program 

triggered the CC to command the AWG to drive the corresponding instruction’s waveform via a codeword. 

This method is distinctly different from the conventional technique of qubit control, where all required qubit 

operations are concatenated into a monolithic waveform and played out once.  

The techniques introduced in the eQI system to support arbitrary rotation instructions are shown in Fig. 30. 

   
(a)                                                                                           (b) 

Figure 30. (a) simplified viewb of the eQI stack. The quantum operation specification, a dynamic gate set, and 

paging are used to implement single-qubit arbitary-rotation instructions eQI; (b) Evolution of the qubit state during 

a Rxy (ϕ = 0.2π, γ = π) operation is shown. The axis defined by φ = 0.2π is represented by the orange arrow. The red 

arrow and the green circular arrows represent the final qubit state vector and the sense of rotation, respectively. The 

red dots on the Bloch sphere denote the most probable qubit state at each 1 ns timestep when the gate time is set to 

20 ns. 
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Rxy(ϕ, γ ) is an instruction that effectively specifies an infinite number of rotation operations. This 

instruction applies a rotation of γ , around an axis oriented  measured from the x-axis on the xy plane (see Fig. 

30, b). This is challenging to implement, since the AWG has limited memory (to store waveforms) and limited 

codeword space (to address individual gates).We introduce and implement three mechanisms on the eQI stack 

to address these hardware constraints: quantum operation specification (QOS), dynamic gate set (DGS), and 

paging (PG). 

Quantum algorithm presented unique architectural and design challenges in requiring a large number of 

single-qubit arbitrary rotations and two-qubit entangling gates. We implemented the two-qubit version of the 

algorithm with 60 different random disorder realizations, each of which contained 40 two-qubit instructions 

and 104 single-qubit instructions. The results validated the capability of our enhanced quantum computing 

system to run small-scale algorithms targeting real-world applications. 

The results from state-of-the-art, few qubit devices are still limited in accuracy. The aim of this work is to 

implement necessary architectural features to maximize the potential of near-term systems. By utilizing larger 

quantum computers, we believe that there is potential to gain more accurate information about such materials 

systems, even with noisy qubits. 

Figure 31 shows examples from quantum deep machine learning category.  

 

Figure 31. Parameterized quantum circuit models can be trained for a variety of machine learning tasks, such as 

supervised and unsupervised learning, on both classical and quantum data. 

In the top-left panel, the model learns to recognize patterns to classify the classical data. In the top-right 

panel, the model learns the probability distribution of the training data and can generate new synthetic data 

accordingly. For supervised learning of quantum data, bottom-left panel, the model assists the compilation of 

a high-level algorithm to low-level gates.  

Parameterized quantum circuits (PQCs) offer a concrete way to implement algorithms and demonstrate 

quantum supremacy in the NISQ era. PQCs are typically composed of fixed gates, e.g. controlled NOTs, and 

adjustable gates, e.g. qubit rotations. Even at low circuit depth, some classes of PQCs are capable of generating 

highly non-trivial outputs. For example, under well-believed complexity-theoretic assumptions, the class of 

PQCs called instantaneous quantum polynomial-time cannot be efficiently simulated by classical resources 

(see below for accessible Reviews of quantum supremacy proposals). The demonstration of quantum 

supremacy is an important milestone in the development of quantum computers. In practice, however, it is 

highly desirable to demonstrate a quantum advantage on applications. 

Finally, for unsupervised learning of quantum data, bottom right panel, the model performs lossy 

compression of a quantum state. We look at machine learning applications using PQC-models where the goal 

is to obtain an advantage over classical models. For supervised learning with classical data we give a general 
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overview of how PQC-model can be applied to classification and regression. For unsupervised learning with 

classical data we focus on generative modeling since this comprises most of the literature. PQC-models can 

also handle inputs and outputs that are inherently quantum mechanical, i.e. already in superposition. These are 

often referred to as quantum data. Quantum input data could originate remotely, for example, from other 

quantum computers transmitting over a quantum Internet. Otherwise, if a preparation recipe is available, one 

could prepare the input data locally using a suitable encoder circuit. Assuming this data preparation is efficient, 

one can extend supervised and unsupervised learning to quantum states and quantum information. Figure 32 

shows examples for all these cases.  

Intuitively each application is a specification of the components outlined in Fig. 32. 

 

 

 

Figure 32. A machine learning model comprised of classical pre/post-processing and parameterized quantum 

circuit.  

Variational circuits (also called parametrized quantum circuits) are a family of hybrid quantum-classical 

algorithms. At the core of the algorithm is a quantum circuit which depends on a set of circuit parameters, as 

well as an objective function which defines a scalar score for each set of parameters. The goal is to optimize 

or train the circuit with respect to the objective. Typically, variational circuits are trained by a classical 

optimization algorithm that makes queries to the quantum device. The optimization is usually an iterative 

scheme that finds better candidates for the parameters θ in every step, starting with either random or pre-trained 

initial parameters. 

A data vector is sampled from the dataset distribution, x ~ PD. The pre-processing scheme maps it to the 

vector ( )x  that parameterizes the encoder circuit ( )x
U


. A variational circuit U , parameterized by a vector 

 , acts on the state prepared by the encoder circuit and possibly on an additional register of ancilla qubits, 
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measurements. These estimates are then mapped to the output space through classical post-processing function 

f. For a supervised model, this output is the forecast associated to input x. Generative models can be expressed 

in this framework with small adaptations.  

Forward the quantum generative adversarial network (QGAN) and theoretically examine variants where 

target data, generator and discriminator are either classical or quantum introduced on Fig. 33. 

 

Figure 33. Illustration of quantum generative models. (a) In the quantum generative adversarial network, the 

generator creates synthetic samples and the discriminator tries to distinguish between the generated and the real 

samples. The network is trained until the generated samples are indistinguishable from the training samples. In this 

method the target data, the generator, and the discriminator can all be made quantum or classical. (b) The quantum 

autoencoder reduces the dimensionality of quantum data by applying an encoder circuit Uenc, tracing over a number 

of qubits and finally reconstructing the state with a decoder circuit Udec. [7]. 

PQC models can also help in the study of quantum mechanical systems. For systems that exhibit quantum 

supremacy, a classical model cannot learn to reproduce the statistics unless it uses exponentially scaling 

resources. Provided that we can efficiently load or prepare quantum data in a qubit register, PQC models will 

deliver a clear advantage over classical methods for quantum learning tasks. 

In many practical decision-making scenarios, there is no available data concerning the best course of 

action. In this case, the model needs to interact with its environment to obtain information and learn how to 

perform a task from its own experience. This is known as reinforcement learning. An example would be a 

video game character that learns a successful strategy by repeatedly playing the game, analyzing results, and 

improving. Although quantum generalizations and algorithms for reinforcement learning have been proposed, 

to the best of our knowledge, none of them are based on hybrid systems and PQC-models.  

All the proposed HW architectures are modular in the sense that they can generalized by adding similar 

parts according to the desired number of qubits; furthermore, we do not use multipliers and, by utilizing logic 

gate in an analogical scheme, we reduce the number of operation and component, providing a substantial in 

speed-up of computation.  

We are concentrating our attention on the description of matrix calculus for the efficient simulation and 

design methodology of quantum algorithm gates using classical computer technology. We introduced the topic 

of quantum algorithmic gate (QAG) design, explaining what its objectives are, and describing some of its 

physical resources, limitations and information bounds.  

The system of effective simulation of quantum algorithms on classical computers described. Search 

quantum algorithms as Grover’s and Shor’s with SW / HW implementations are considered. Examples of 

speed up of SW and adapted acceleration of HW implementation of quantum computing discussed. 

4.  Quantum supremacy of intelligent control 

Using two control objects of varying complexity (3DoF and 7DoF manipulators) as an example, the 

advantages and limitations of using soft and quantum computing technologies in intelligent control systems 
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were demonstrated. On the example of 3DoF manipulator, the minimal difference between the results of the 

physical Manipulator Testbench and the MatLab/Simulink model demonstrated. 

From Fig. 34, a, b it can see that in the considered unexpected control situation, intelligent control system 

based on quantum computing decides with the positioning problem with a given accuracy, in contrast to 

intelligent control system based on soft computing with separated control. 

  

(a) (b) 

Figure 34(a) Intelligent control systems based on soft computing with separated control in unexpected control 

situation; (b) intelligent control systems based on quantum computing  

Figure 35 demonstrate quantum supremacy in the considered unexpected control situation, intelligent 

control system based on quantum computing decides with the positioning problem of prosthetic robotic arm 

with a given accuracy, in contrast to intelligent control system based on soft computing with separated control 

(see Fig. 34 a). 

 

 

Figure 35. Example of quantum supremacy: Application of quantum computing cognitive control of prosthetic arm 

with super-accuracy of position in unpredicted situation. 
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Figure 36 shows a generalized comparison of intelligent control systems based on soft and quantum 

computing for 3DoF and 7DoF manipulators for standard and unexpected control situations of the considered 

examples and demonstrate quantum supremacy. 

 

Figure 36. Comparison of intelligent control systems based on soft and quantum computing for 3DoF and 7DoF 

Further research focused on the development and analysis of the physical Testbench of Manipulator with 

7 DoF, as well as its integration with the mobile platform. 

 Our main applied domains of QAG - approach: (i) Computer science; (ii) Artificial intelligence (AI) 

industrial applications; (iii) Fundamental intelligent informatics and general system theory; and (iv) 

Intelligent robust control system design in next two books are considered.  

These domains be in deep interdependence. And included quantum algorithms design (quantum walk 

models, one-way computing and quantum adiabatic computing) in many applied quantum software 

engineering: quantum machine learning; quantum game models and decision-making processes in information 

uncertainty; quantum pattern / face recognition; quantum error correction codes; quantum-inspired neural 

network structures design (for quantum learning) and quantum-inspired genetic search algorithms (for 

quantum global optimization) etc.  

It is the background of quantum soft computing for robust KB design of intelligent control system and 

robust quantum control (quantum soft computing applications), etc. 

 

Conclusion 

We described briefly any important applications of QAG simulation system (as examples, quantum 

games, quantum random search walk algorithms and control decision-making processes in classical and 

quantum situations of information uncertainty) and its developed tools in AI-systems design. Main ideas and 

peculiarities of Quantum Soft Computing tools as a new paradigm of computational intelligence and simulation 

processes briefly are considered. Applied Quantum Soft Computing toolkit (as a quantum computational 

toolkit and background for robust intelligent control design technology) discussed.  
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