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ʅɽʂʆʊʆʈʓɽ ɺɿɸʀʄʆʆʊʅʆʐɽʅʀʗ ʂɺɸʅʊʆɺʆʁ ʊɽʆʈʀʀ ʋʇʈɸɺʃɽʅʀʗ ʉ 

ʆɹʈɸʊʅʓʄʀ ʉɺʗɿʗʄʀ ʉ ʂɺɸʅʊʆɺʆʁ ʌʀʃʔʊʈɸʎʀɽʁ ʀ ʂɺɸʅʊʆɺʓʄʀ 
ʀʅʌʆʈʄɸʎʀʆʅʅʓʄʀ ʇʈʆʎɽʉʉɸʄʀ ʏ. 1. 
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Introduction 

The advent of quantum information theory and the ever-increasing experimental possibilities to imple-

ment this theory on real physical systems has created great demand for a theory on the control of quantum 
systems [1-12]. Since qubits (i.e., two-level quantum systems) make up the hardware (HW) for quantum 

information processing one important question is how to optimally control or engineer their states. Many 

problems of quantum computation and nanotechnologies can be formulated in terms of quantum optimal 

control of unitary or decohering gates [8-18]. Most previous work on the optimal control of qubit states uses 
an open loop strategy with a variational calculus approach to optimization [17-22]. However, in order to 

apply controls one must consider the qubit as an open quantum system which gives the possibility for time-

continuous non-demolition measurements and thus a closed (feedback) loop strategy would be more advan-
tageous. A feedback strategy we employed using dynamic programming which is a globally optimal solution 

to the control problem and thus extends the previous locally optimal variational approaches [17, 18].  

Related works. Feedback control was introduced into quantum dynamics in the early 1980ôs, but it was 
not until the 1990ôs that it began to be studied and applied in earnest. A mathematical theory of feedback 

control in quantum systems was introduced by Belavkin, who obtained a quantum version of the Stratono-

vich equation, which is the classical equation to describe the continuous measurement of a system. The 

Kalman-Bucy filter is the special case of the Stratonovich equation for linear systems, in which the meas-
urement is restricted to linear functions of the dynamical variables. Belavkinôs work prevented it from hav-

ing an impact in the physics community, and the quantum version of the Stratonovich equation, referred to as 

the Stochastic Master Equation (SME), was obtained independently by Wiseman and Milburn building on 
the work by Carmichael. Srinivas and Davies, Gisin, and Diosi also presented stochastic equations for meas-

ured systems in this time period. In 1994, Wiseman and Milburn showed that a Markovian master equation 

could be derived to describe continuous feedback in quantum systems, called Markovian feedback, if the 

feedback was given by a particularly simple function of the stream of measurement results. In 1998, Yani-
gasawa and Kimura and Doherty and Jacobs introduced the notion of performing feedback using estimates 

obtained from the SME, in the control literature and physics literature, respectively. Both sets of authors 

showed that for linear systems this class of feedback protocols was equivalent to modern classical feedback 
control, so that standard results for optimal control could be transferred to quantum systems. This method 

was in fact that proposed by Belavkin in 1983 in analogy to that used in classical control theory. In quantum 

control, using estimates obtained from the SME is often referred to as Bayesian feedback to distinguish it 
from Markovian feedback. In the former the measurement results are processed (ñfilteredò) to obtain an 

estimate of properties of the current state, whereas in the latter the measurement stream is fed back directly 

[11]. 

Remark. Wiseman showed that feedback mediated by continuous measurements can in fact be imple-
mented without measurements [16]. To see how this works, let us consider two parallel mirrors between 

which a single mode of the electromagnetic field is trapped (the two mirrors are referred to as an ñoptical 

cavityò). The light that leaks out through one of the mirrors can be detected, and the information is used to 
manipulate the optical mode. Alternatively, the output light can be directed to a mirror of another optical 

cavity, and thus forms an input for this cavity. If we then connect an output from the second cavity back to 

the first we have a loop, and light can be made to travel only one way around the loop by the use of optical 
circulators. For describing this situation the quantum input-output theory developed by Collet and Gardiner 

is invaluable. The process of connecting quantum systems together via free-space one-way traveling-wave 

fields was first considered by Gardiner and Carmichael, where the former called it a ñcascade connectionò. 

Wiseman showed that cascade connections can implement the same feedback control processes as Markovi-
an measurement-based feedback and can perform tasks that the latter cannot. 

A second notion of feedback control without explicit measurements was introduced by Lloyd in 2000. 

He suggested that a unitary interaction between two quantum systems could be used to implement feedback 
control. This can be achieved, for example, by choosing the interaction so as to correlate the two systems, 

i.e., the controlled system and the controller, whereby the state of the controller is dependent on the state of 

the system. One then chooses a second interaction in which the evolution of the system depends on the state 

of the controller. This particular process is equivalent to a measurement followed by a unitary feedback 
operation that depends upon the measurement result, although coherent feedback processes are not restricted 
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to this form. Both kinds of ñmeasurement-freeò feedback, that mediated by cascade connections and that 

which uses unitary interactions are now referred to as coherent feedback control (CFC), and the latter is 
often called ñdirectò coherent-feedback. All control involving explicit measurements is usually called meas-

urement-based feedback control, or just measurement feedback control (MFC) [1-27]. 

In the 2000ôs James and his collaborators studied ñfeedback networksò of linear quantum systems con-
nected by one-way fields , and Gough and James built on input-output theory to construct a compact and 

convenient formalism to handle arbitrarily complex networks. More recently a number of authors have 

considered the use of nonlinear coherent-feedback networks for various control tasks. In 2009, Nurdin, 

James, and Peterson showed that linear coherent feedback networks could out-perform linear measurement-
based feedback, suggesting that measurement-based feedback was limited by the need to reduce the infor-

mation about a system to classical numbers. It is also shown quite recently that coherent feedback can 

achieve more for generating quantum nonlinearity and cooling compared with the measurement-based feed-
back. The relationship between measurement-based and coherent feedback is a topic of current research. 

Feedback control theory of open quantum systems 

There are not only fundamental differences between measurement-based and coherent feedback, but al-

so important practical differences. Making measurements on quantum systems, often possessing only a few 

quanta, usually requires a tremendous amplification of the signal. This is because the measurement results, 
by definition, are well-defined classical numbers. To robustly store and manipulate such numbers requires 

states with energies much greater than a single quantum. Amplifying signals at the single-quantum scale 

without swamping them with noise is a great challenge, and is one major practical disadvantage of measure-
ment-based feedback. A second disadvantage is the timescale required to obtain and then process the meas-

urement results (usually on a digital device).  

On the other hand, measurement-based feedback has the advantage that the processing of the infor-

mation is essentially noise-free. By contrast, if a quantum system is used as a controller it will likely be 
subject to noise processes from its environment. It may also be less clear how to use the quantum system to 

process the information to achieve a control objective. It is important to note that the method of ñadaptive 

feedbackò, in which the term ñfeedbackò is used, is not the feedback control, i.e., measurement-based or 
coherent feedback that we are concerned with in this review. Adaptive feedback is a method for obtaining 

control protocols, not a class of protocols for controlling a system. In this method, one chooses an arbitrary 

control protocol, tries it out on the system, and based on the result make a modification to the protocol and 
tries it again. In this way one can use one of many search algorithms to look for a good protocol. Researchers 

who refer to adaptive feedback as a feedback method distinguish the feedback control we consider here by 

calling it ñreal-time (on-line) feedback controlò. 

Remark. It is also important to note that we do not discuss here all the ways in which feedback can be 
realized. One could, for example, perform a series of ñsingle-shotò measurements with a discrete set of 

outcomes, and perform a unitary action on the system for each outcome. While there are certainly a range of 

interesting and non-trivial questions regarding such feedback, such as controlling thermal dynamics and 
quantum error correction, the mathematical machinery required to analyze it does not require stochastic 

differential equations. This is also true of coherent feedback implemented via unitary interactions. This latter 

topic has only recently begun to be explored in earnest, and there are certainly many open questions. Howev-
er in this review we focus on continuous-time feedback control, both measurement-based and coherent. Both 

of these require the use of stochastic (Ito) calculus, something that is less familiar to many researchers in 

quantum theory. While measurement-based feedback requires only the usual Ito stochastic calculus, cascad-

ed quantum feedback requires a quantum version of Ito calculus developed by Gardiner and Collett as part of 
their input-output theory. This quantum stochastic calculus was also developed independently by Hudson 

and Parthasarathy in a more rigorous measure-theoretic way. A readily accessible introduction to Ito calculus 

can be found in Appendices 1, 2 and 3, and the quantum version is described in [28-31].  

To distinguish between experiments that realize quantum feedback control rather than classical control, 

we apply the criterion that an experiment involves the former if quantum measurement theory is required to 

correctly explain its results. This is certainly the case if the control process realizes a signature of quantum 
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behavior that is not manifest classically. For linear systems, the only distinction between quantum and classi-

cal motion is that the joint-uncertainty of position and momentum is limited by Heisenbergôs uncertainty 
principle. A measurement introduces noise because a reduction in the uncertainty of one canonical variable 

tends to increase the uncertainty of the conjugate variable. Feedback control of a quantum harmonic oscilla-

tor can thus be considered quantum mechanical if either (i) the ñbackactionò noise from the measurement 
must be taken into account in understanding the behavior, or (ii) alternatively one of the canonical variables 

has its uncertainty reduced below that of the vacuum state (so-called ñsqueezed statesò). 

Remark. Experiments implementing measurement-based feedback in the quantum regime were realized 

initially in quantum optics, where it first became possible to measure individual microscopic degrees of 
freedom with sufficient fidelity. These were followed by experiments involving trapped atoms and ions, and 

very recently it has become possible to realize measurement-based feedback control in mesoscopic super-

conducting circuits. Experiments involving continuous coherent feedback were performed prior to those 
realizing continuous measurement-based feedback, although at the time these experiments were not thought 

of as involving feedback. An example is the cooling of trapped ions using the ñresolved sidebandò cooling 

method.  

Advances in feedback control of quantum open systems 

The importance of feedback control theory in the control of open quantum systems was first recognized 
by V.P. Belavkin. As in the classical case with partially observer systems, a feedback control strategy is 

usually favorable to the open loop control (without feedback). Optimal feedback control strategies for the 

open quantum oscillator appeared even earlier and a quantum Bellman equation for optimal feedback control 
was introduced for a general diffusive and a counting measurement process. An interest in optimal quantum 

control and stability theory has recently emerged in the optics community. From a more formal perspective, 

one could say that quantum mechanics is believed to be a correct microscopic theory of (non-relativistic) 

physics but that the reduced dynamics of subsystems nearly always corresponds closely to models that fall 
within the domain of classical mechanics. Hence strongly non-classical behavior can only be observed in a 

subsystem on timescales that are short compared to those that characterize its couplings to its environment 

(see, Figures 1 and 2).  

A quantum system is described by its corresponding Schrºdingerôs equation. The Schrºdingerôs equa-

tion for a quantum control system  

( )
( ) () ( ) ( )0

,
, , ,i i

x t
H t x u t H t x x t

t

y
y

µ
= +è øê úµ

, 

where 0H  is the free Hamiltonian (energy) of the system; iH  is the interaction Hamiltonian of the system 

while being coupled to the control apparatus in the semiclassical treatment; ( ),x ty  is the state of the sys-

tem. Open loop quantum control system is considered as a single larger system in an augmented state space 

ñSystem + Environment =S EÃH H .ò A quantum system interacting with a thermal bath is called an ñopenò 

quantum system.  
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Figure 1. Closed quantum system 

 

Figure 2. Open quantum system 

Open quantum systems lose their coherence or superposition in the order of a few microseconds to mil-

liseconds depending on the interaction. An open quantum system can be described as follows (see, Figure 3). 
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Figure 3. Structure of open quantum control system 

Figure 4 show structure of quantum control systems for described cases. 

 

Figure 4. Structures of open-loop (a) and closed-loop (b) quantum control systems 

Let us consider the example of another approach to quantum feedback design.  

Coherent Quantum Feedback 

As explained above, measurement-based feedback involves using the results of measurements on a 

quantum system to direct its motion. When we make a measurement on a quantum system, we obtain classi-

cal information. But we necessarily obtain only partial information about the dynamical variables, and in 
general we disturb the state at the same time. It is therefore interesting to consider a feedback loop in which 

classical information is not extracted. This concept, now referred to as coherent feedback, was first intro-

duced by Lloyd in 2000, and it can be seen as the more general case of the all-optical feedback proposed 

earlier, in 1994, in quantum optical systems by Wiseman and Milburn. The idea is that instead of having a 
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classical controller that makes a measurement on the system, the controller is a quantum system, and the 

control is achieved simply by having the two systems interact (see, Fig. 5).  

 

Figure 5: (Color online) Comparison of (a) measurement-based feedback and (b) coherent feedback. In 

measurement-based feedback in (a), the system (in blue) is controlled by a classical feedback loop (in pink); 

while in coherent feedback (b) the system is coherently controlled by a fully quantum feedback loop. 

To understand this better, it is worth examining the Watt governor, which has a very simple feedback 

mechanism. The purpose of the Watt governor is to control the speed of an engine. To do this, the engine is 

connected to a simple mechanical device so that it spins the device. The device is designed so that the cen-

trifugal force from the spinning causes it to expand, so that the faster the engine spins, the more it expands. 
This expansion is then used to reduce the fuel supply to the engine, thus stabilizing the engine at some cho-

sen speed. The nice thing about this simple feedback system is that we can think of it as a loop in which the 

control device obtains information from the engine, and uses this to control it. It is also clear that the engine 
and controller are merely two coupled mechanical systems. In the Hamiltonian description of the joint sys-

tem, there is therefore no loop, but merely an interaction between the two systems. A quantum controller can 

therefore act in the same way, performing feedback control even though the description of the system may 
not involve an explicit loop. 

In fact, there is a way to make the loop explicit for a quantum controller in which there are no measure-

ments. This is done by coupling the system to a travelling-wave electrical (optical) field that propagates in 

one direction from the system to the controller. We then use a second travelling-wave field that propagates 
from the controller to the system, thus closing the loop. To do this, the two travelling fields must continue 

propagating after they interact with the systems, and this introduces an irreversible element to the dynamics. 

However, since control systems are usually intended to introduce some kind of damping to the system, this 
irreversibility need not be detrimental. In what follows, we discuss feedback control that employs a unitary 

(Hamiltonian) interaction between the system and controller, often referred to as direct coherent feedback, 

where the interaction is mediated by travelling-wave fields, often referred to as field-mediated feedback. 

The separation principle in open quantum control systems 

In the case of any macroscopic object, such as an ordinary mechanical pendulum, there are so many 
such couplings (e.g. via mechanical coupling to its support and to air molecules) that these timescales are 

inaccessibly short. From an even more abstract perspective, one could say that Schrºdingerôs equation is 

meant to apply to the universe as a whole (whose óinternalô degrees of freedom are densely interconnected) 
while physical experiments deal only with embedded subsystems. Unless great care is taken to suppress the 

environmental couplings of an experimental system, the overwhelming tendency is for its behavior to appear 

classical, or at least imperfectly quantum. 

As was show, since we never have complete observability of quantum systems, the problem of quantum 
feedback control must involve a filtering procedure in order to measure and control the system optimally.  
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Figure 6 show the separation principle of open quantum control system.  

 

Figure 6. The separation principle in open quantum control systems 

Measurement for a quantum system cannot be performed without probabilistic back-action. In general, 

the alteration of the system caused by the measurement is too drastic and instantaneous, and it prevents real-

time feedback control. A possible way to avoid this difficulty is measuring the target quantum system indi-
rectly in continuous time. This is the essential idea of continuous quantum measurement. It is realized by 

keeping the target quantum system interacting with another quantum system called probe system and meas-

uring the probe system in continuous time. As the result, we obtain classical signal containing information of 
the target quantum system. We can use the signal to calculate the state of the target quantum system and 

utilize the calculated state to determine the control input. This is the basic idea of the measurement-based 

quantum feedback control and it is illustrated in Fig. 7.  

 

Figure 7. Conceptual diagram of the measurement-based quantum feedback control 

This situation is analogous to that of the feedback control of partially observable classical stochastic 

systems. As in the classical case, filtering theory for quantum systems, i.e., quantum filtering theory provides 
a basis for feedback control of quantum systems under such a situation. 
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We can separate these two problems and consider first the problem of quantum filtering.  

Advances in quantum filtering 

In quantum filtering theory pioneered by Belavkin, the quantum filtering equation for the system with a 
chosen continuous non-demolition measurement (NDM) has to be derived. A system observed through its 

interaction with the electromagnetic field by continuous measurement of some field observables, needs to be 

updates continuously in time to incorporate the information gained by the measurement. That is we have to 

condition the quantum state of the system on the obtained measurement results continuously in time. The 
quantum filtering equation is a stochastic differential equation for the conditioned state in which the innova-

tion process, representing the information gain, is one of the driving terms. In the quantum optics literature, 

some particular forms of the filtering equation were introduced in the 1990s as stochastic master equations 
(although without any reference to the original derivation). As in the optics literature, we take the filtering 

equation as our starting point; however, the driving Wiener process is not treated as the noise, but as an 

innovation process. For more background on the derivation of this stochastic equation as a general filtering 
equation in an open quantum system conditioned with respect to a non-demolition observation. 

Once the quantum filtering equation is obtained, we are left with a classical control problem. In particu-

lar, if the state of a qubit is parameterized by its polarization vector in the Bloch sphere, i.e., a vector in the 

three-dimensional unit ball providing sufficient coordinates for the system, the filtering equation provides 
stochastic dynamics for the polarization vector. The control is present in the dynamics through Rabi oscilla-

tions, which perform rotations of the polarization vector in the Bloch sphere caused by a laser driving the 

qubit. The phase and intensity of the laser are the parameters that can be controlled. 

The main aim of this article is to demonstrate the relevance of classical control and quantum filtering 

when controlling quantum systems. This is shown by the example of optimal control of a two-level quantum 

system. A cost function, which is a measure of optimality of the control, is introduced and the corresponding 

Bellman equations are derived for this system. From these equations, we produce an optimal control strategy 
which depends on the solutions to the corresponding Hamilton-Jacobi-Bellman equation. In general these 

solutions are very difficult to find, even numerically, so we resort to a physically motivated simplification of 

the dynamics by considering a qubit in a strongly driven, heavily damped, optical cavity. This enables us to 
present an exact solution to the control problem. 

Quantum probability 

Though they are both probabilistic theories, probability theory and quantum mechanics have historically 

developed along very different lines. Nonetheless the two theories are remarkably close, and indeed a rigor-

ous development of quantum probability contains classical probability theory as a special case.  

Figure 8 is demonstrated the definitions and differences in classical and quantum probabilities.  

     

                           (a)                                                                                                         (b) 

Figure 8. Classical (a) and quantum (b) probability definitions 

Classical physics is built on foundations of classical logic, which is closely related to classical probabil-

ity. We may think of quantum mechanics as the description of physical systems using a non-commutative 
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probability theory (quantum probability). In quantum probability theory states may be defined using states 

y  or density operators r as []X Xy y=E  or [] [ ]TrX Xr=E . Algebras A  of events describe 

information in both classical and quantum probability.  

The simple example in Figure 9 depicts that when vectors are used to implement both events and densi-
ties the probability in the vector space is the squared inner product between the vectors, that is, the squared 

size of the projection of A  onto j . 

 

Figure 9. The correspondence between classical probability and quantum probability 

The embedding of classical into quantum probability has a natural interpretation that is central to the 
idea of a quantum measurement: any set of commuting quantum observables can be represented as random 

variables on some probability space, and conversely any set of random variables can be encoded as commut-

ing observables in a quantum model.  

Thus in the classical probabilistic model, events (e.g., word occurrences, category memberships, rele-
vance, location, task, genre) are represented as sets and the probability measure is based on a set measure, 

e.g., set cardinality. In contrast, in quantum probability, events are represented as orthonormal vectors and 

the probability measure is the trace of the product between a density matrix and the matrix representing an 
event as summarized in Table 1.  

Table 1. The correspondence between classical probability and quantum probability 

 

The quantum probability model then describes the statistics of any set of measurements that we are al-
lowed to make, whereas the sets of random variables obtained from commuting observables described meas-

urements that can be performed in a single realization of an experiment. As we are not allowed to make 

noncommuting observations in a single realization, any quantum measurement yields even in principle only 

partial information about the system.  

Quantum control with learning loop 

The situation in quantum feedback control is thus very close to classical stochastic control with partial 

observations. A typical general (with learning loop) quantum control scenario, representative of experiments 

in quantum optics, is shown in Figure 10. 
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Figure 10. A closed-loop process for teaching a laser to control quantum systems [The loop is entered with 

either an initial design estimate or even a random field in some cases. A current laser control field design is 

created with a pulse shaper and then applied to the sample. The action of the control is assessed, and the 

results are fed to a learning algorithm to suggest an improved field design for repeated excursions around 

the loop until the objective is satisfactorily achieved] 

The components of a learning-loop can look very different depending on the specific application. In ab-

stract terms a learning-loop consists of an action under external control which acts on a system and produces 
there a system response. Due to the natural correlation between action and response an algorithm can be used 

to learn how to change the action to control the response in a desired fashion.  

Remark. In the coherent control experiments as already pointed out the controlled action are the tailored 
femtosecond (fs) laser pulses. The external control knobs are all integrated in a single pulse shaping device. 

The system response is the feedback signal retrieved from experiment. It is feuded into the optimization 

algorithm that accordingly steers the pulse shaper to improve the laser pulse shape. The time for the learning-

loop to provide an optimal pulse is given by the total number of iterations multiplied by the time it takes to 
perform one iteration. This time is given by the response time of each of the elements that constitute a 

closed-loop experiment: laser repetition rate, pulse shaper, learning algorithm and feedback signal retrieved 

from experiment. Hence it is not possible to be specific, so the total optimization time can range between a 
few minutes and several hours. In the following a more detailed description of a tailored pulse, its characteri-

zation and the feedback algorithm is discussed. This article concludes with a practical application of the 

learning-loop approach: the compression of fs-laser pulses to their bandwidth limit. 

Remark. A mentioned above, no quantum measurement can give full information on the state of a quan-
tum system; hence any quantum feedback control problem is necessarily one will partial observations, and 

can generally be converted into a completely observed control problem for an appropriate quantum filter as 

in classical stochastic control theory. Here we study the properties of controlled quantum filtering equations 
as classical stochastic differential equations (see above mentioned Figure 5). We then discuss methods, using 

a combination of geometric control and classical probabilistic techniques, for global feedback stabilization of 

a class of quantum filters around a particular eigenstate of the measurement operator. 

We wish to control the state of a cloud of atoms, e.g., we could be interested in controlling their collec-

tive angular momentum. To observe the atoms, we scatter a laser probe field off the atoms and measure the 

scattered light using a homodyne detector (a cavity can be used to increase the interaction strength between 

the light and the atoms). The observation process is fed into a controller which cam feedback a control signal 
to the atoms thought some actuator, e.g., a time-varying magnetic field. The entire setup can be described by 

a Schrºdinger equation for the atoms and the probe field, which takes the form of a ñquantum stochastic 

differential equationò in a Markovian limit. The controller, however, only has access to the observations of 
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the probe. The laser probe itself contributes quantum fluctuations to the observations, hence the observation 

process can be considered as a noisy observation of an atomic variable.  

As in classical stochastic control we can use the properties of the conditional expectation to convert the 

output feedback control problem into one with complete observations. The conditional expectation ( )t Xp  

of an observable X  given the observations { }: 0sY s t¢ ¢  is the least mean square estimate of tX  (the 

observable X  at timet ) given
s tY¢ . One can obtain a quantum filtering equation that propagates( )t Xp , or 

alternatively the conditional density matrix tr defined by the relation ( ) [ ]t tX Tr Xp r= . This is the quan-

tum counterpart of the classical Kushner-Stratonovich equation (due to Belavkin) and plays an equivalent 

role in quantum stochastic control. In particular, as [ ] ( )
ttX Xp=E E  we can control the expectations of 

observables by designing a state feedback control law based on the filter.  

Remark. Note that as the observation process 
s tY¢  is measured in a single experimental realization, it is 

equivalent to a classical stochastic process (i.e. the observables 
tY  commute with each other at different 

times). But as the filter depends only on the observations, it is thus equivalent to a classical stochastic equa-

tion; in fact, the filter can be expressed as a classical (Ito) stochastic differential equation for the conditional 

density matrix tr. Hence ultimately any quantum control problem of this form is reduced to a classical 

stochastic control problem for the filter.  

Problem: Case study will consider a class of quantum control problems of the following form. Rather 

than specifying a cost function to minimize, as in optimal control theory, we desire to asymptotically prepare 

a particular quantum state 
fr  in the sense that [ ]t fX Tr Xrè ø ê úE  as t¤ for all X . As 

[ ] ( )
ttX XpE E , this comes down to finding a feedback control that will ensure the convergence 

t fr r  of the conditional densitytr . In addition to this convergence, we will show that controllers also 

render the filter stochastically stable around the target state, which suggests some degree of robustness to 

perturbations. We will discuss the preparation of states in a cloud of atoms where the z-component of the 
angular momentum has zero variance, whereas we will discuss the preparation of correlated states of two 

spins. Despite their relatively simple description the creation of such states is not simple.  

Quantum feedback control may provide a desirable method to reliably prepare such states in practice 
(though other issues, e.g. the reduction of quantum filters for efficient real-time implementation, must be 

resolved before such schemes can be realized experimentally; we refer for a state-of-the-art experimental 

demonstration of a related quantum control scenario.)  

Thought we have attempted to indicate the origin of the control problems studied here, a detailed treat-

ment of either the physical or mathematical considerations behind our models is beyond the scope of this 

section; for a rigorous introduction to quantum probability and filtering we refer [11, 23-27]. Instead we will 

consider the quantum filtering equation as our starting point, and investigate the classical stochastic control 
problem of feedback stabilization of this equation. We first introduce some tools from stochastic stability 

theory and stochastic analysis that we will use in our proofs. We introduce the quantum filtering equation 

and study issues such as existence and uniqueness of solutions, continuity of the paths, etc. We pose the 
problem of stabilizing as angular momentum eigenstate and prove global stability under a particular control 

law. It is our expectation that these methods are sufficiently flexible to be applied to a wide class of quantum 

state preparation scenarios. As an example, we use the techniques developed above to stabilize particular 
entangled states of two spins. 

Therefore when engineers set about to control a classical system with incomplete data, they can evoke 

the celebrated separation theorem which allows them to treat the problem of estimating the states of the 

system (based on typically partial observations) from the problem of how to optimally control the system 
(though feedback of these observations into the system dynamics). Remarkably, this approach may also be 
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carried over to the quantum world which cannot be in principle completely observer: this was first pointed 

out by Belavkin.  

Quantum measurement, by its very nature, leads always to partial information about a system in the 

sense that some quantities always remain uncertain, and due to this the measurement typically alters the prior 

to a posterior state in the process. The Belavkin non-demolition principle states that this state reduction can 
be effectively treated within a non-demolition scheme when measuring the system over time. Hence we may 

apply a quantum filter for either discrete or time-continuous non-demolition state estimation, and then con-

sider feedback control based on the results of this filtering. The general theory of continuous-time non-

demolition estimation derives for quantum posterior states a stochastic filtering evolution equation not only 
for diffusive but also for counting measurement; however we will consider here the special case of a 

Belavkin quantum state filtering equation based on a diffusion model described by a single white noise 

innovation.  

We should also emphasize that the continuous-time filtering equation can be obtained as the limit of a 

discrete time state reduction based on von Neumann measurements; however this time-continuous limit goes 

beyond the standard von Neumann projection postulate, replacing it with a quantum filtering equation as a 

stochastic master equation. Once the filtered dynamics is known, the optimal feedback control of the system 
may then be formulated as a distinct problem. Modern experimental physics has opened up unprecedented 

opportunities to manipulate the quantum world, and feedback control has already been successfully imple-

mented for real physical systems. Currently, these activities have attracted interest in related mathematical 
issues such as stability and observability.   

The separation of the classical world from the quantum world is, of course, the most notoriously trou-

blesome task faced in modern physics. At the very heart of this issue are the very different meanings we 
attach to the word state. What we want to exploit is the fact that the separation of the control from the filter-

ing problem gives us just the required separation of classical form quantum features. By the quantum state 

we mean the von Neumann density matrix which yields all the (stochastic) information available about the 

system at the current time ï this we also take to be state in the sense used in control engineering. All the 
quantum features are contained in this state, and the filtering equation it satisfies may then be understood as a 

classical stochastic differential equation which just happens to have solutions that are von Neumann density-

matrix-valued stochastic processes. The ensuing problem of determining optimal control may then be viewed 
as a classical problem, albeit on the unfamiliar state space of von Neumann density matrices rather than the 

Euclidean spaces to which we are usually accustomed. Once we get accustomed to this setting, the problem 

of dynamical programming, Bellmanôs optimality principle etc. can be formulated in much the same spirit as 
before. 

We shall consider optimization for cost functions that are non-linear functions of the state. Traditionally 

quantum control has been restricted to linear functions where ï given the physical meaning attached to a 

quantum state ï the cost functions are therefore expectations of certain observables. In this situation, which 
we consider as a special case, we see that the distinction between classical and quantum features may be 

blurred: that is, the classical information about the measurement observations can be incorporated as addi-

tional randomness into the quantum state. This is the likely reason that the separation does not seem to have 
been taken up before. 

This basic fact of nature that at small scales ï at the level of atoms and photons ï observations are in-

herently probabilistic, as described by the theory of quantum mechanics. The traditional formulation of 

quantum mechanics is very different, however, from the way stochastic processes are modeled. The theory of 
quantum measurement is notoriously strange in that it does not allow all quantum observables to be meas-

ured simultaneously. As such there is yet much progress to be made in the extension of control theory, par-

ticularly feedback control, to the quantum domain.  

One approach to quantum feedback control is to circumvent measurement entirely by directly feeding 

back the physical output from the system. For example, in quantum optics, where the system is observed by 

coupling it to a mode of the electromagnetic field, this corresponds to all-optical feedback. Though this is in 
many ways an attractive option it is clear that performing a measurement allows greater flexibility in the 

control design, enabling the use of sophisticated in-loop signal processing and non-optical feedback actua-
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tors. Moreover, it is known that some quantum states obtained by measurement are not easily prepared in 

other ways.  

We take a different route to quantum feedback control, where measurements play a central role. The key 

to this approach is that quantum theory, despite its entirely different appearance, is in fact very closely relat-

ed to Kolmogorovôs classical theory of probability is the fact that in quantum theory observables need not 
commute, which precludes their simultaneous measurement. Kolmogorovôs theory is not equipped to deal 

with such object: One can always obtain a joint probability distribution for random variables on a probability 

space, implying that the can be measured simultaneously. Formalizing these ideas leads naturally to the rich 

field of noncommutative or quantum probability. Classical probability is obtained as a special case if we 
consider only commuting observables. 

Stochastic quantum control theory 

Let us briefly recall the setting of stochastic control theory. The system dynamics and the observation 

process are usually described by stochastic differential equations of the Ito type. A generic approach to 
stochastic control separated the problem into two parts. First one constructs a filter which propagates our 

knowledge of the system state given all observations up to the current time. Then one finds a state feedback 

law to control the filtering equation. Stochastic control theory has traditionally focused on linear systems, 

where the optimal [linear quadratic Gaussian (LQG)] control problem can be solved explicitly.  

A theory of quantum feedback control with measurement can now be developed simply by replacing 

each ingredient of stochastic control theory by its noncommutative counterpart. In this framework, the sys-

tem and observations are described by quantum stochastic differential equation. The next step is to obtain 
quantum filtering equations. Remarkably, the filter is a classical Ito equation due to the fact that the output 

signal of a laboratory measuring device is a classical stochastic process. The remaining control problem now 

reduces to a problem of classical stochastic nonlinear control. As in the classical case, the optimal control 

problem can be solved explicitly for quantum systems with linear dynamics (see Figure 5). 

The field of quantum stochastic control was pioneered by V.P. Belavkin in a remarkably series of pa-

pers in which the quantum counterparts of nonlinear filtering and LQG control were developed. The ad-

vantage of the quantum stochastic approach is that the details of quantum probability and measurement are 
hidden in a quantum filtering equation and we can concentrate our efforts on the classical control problem 

associated with this equation. Recently the quantum filtering problem was reconsidered by Bouten et al. and 

quantum optimal control has received dome attention in the physics literature. 

The goal of this article is twofold. We review the basic ingredients of quantum stochastic control: Quan-

tum probability, filtering, and the associated geometric structures. We then demonstrate the use of this 

framework in a nonlinear control problem. To this end, we study in detain an example directly related to any 

experimental apparatus. As this is not a linear system, the optimal control problem is intractable and we must 
resort to methods of stochastic nonlinear control, stochastic Lyapunov techniques to design stabilizing con-

trollers us used, demonstrating the feasibility of such an approach.  

Many results are motivated in studying the quantum control problem by recent development in experi-
mental quantum optics. Technology has now matured to the point that state-of-the-art experiments can 

monitor and manipulate atomic and optical systems in real time at the quantum limit, i.e., the sources of 

extraneous noise are sufficiently suppressed that essentially all the noise is fundamental in nature. The exper-
imental implementation of quantum control systems is thus within reach of current experiments, with im-

portant applications in, e.g., precision metrology and quantum computing. Further development of quantum 

control theory is an essential step in this direction.  

Extension of control theory to the quantum domain has been a target of some researchers since the mid-
1970a. The main motivation there was tied to the fact that measurements of any physical quantity inevitable 

disturbs the state of the quantum system The formulation of feedback control under this circumstance 

seemed to be a great challenge for control theorists. On the other hand, variational principle used in the 
optimal control manifests itself more explicitly in quantum mechanics, because its fundamental governing 

equation is energy preserving. This is perhaps another reason why quantum theory attracts control theorists. 
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Remark. In the early 1980a, more realistic pictures were brought forward in the field by a group of 

chemists who tried to control chemical reactions by properly arranging electromagnetic fields. They purpose 
was to increase the probability of favorable chemical reaction by means of adjusting the phase difference 

between two electromagnetic fields created by laser beams. Theoretical, as well as experimental, verifica-

tions of the possibility of materializing these attempts have been reported extensively in the literature of 
photochemistry. In these papers by chemists, control is ascribed to the selection of Hamiltonian due to the 

method of ñinverse problem,ò and is therefore essentially a feedforward control, as Gordon and Rice proper-

ly described. The chemical experiments on the reaction between the electromagnetic field and two or three 

level atomic systems led t one possible generalization of control theoretical notions, such as controllability. 
Since the evolution of a quantum system is given by the unitary operators with continuous parameters, the 

generalization is based on the unitary representation of Lie groups. This technique has resolved the quantum 

problem. The first theoretical work on feedback for quantum systems appeared in quantum optics, which 
treated the fluctuations of the photocurrent in a quantum mechanical way. The scholastic Schrºdinger equa-

tion was first introduced in the early 1990s. This formulation enables one to control quantum systems via 

measurements, in which the quantum system is driven by interactions conditioned by the measurement 

outcomes. A definite class of states, referred to as Gaussian, is of particular interest is not only classical but 
also in quantum case. As a result, feedback control for the state via measurement was studied. 

Recent progress in quantum electronics has opened up the possibility of quantum information technolo-

gies, which are expected to eliminate the bottlenecks of modern communication and computation. They are 
based on the notion of entanglement which is thought of as a quantum information resource. Entanglement is 

a quantum mechanical correlation which is produced only by nonlocal quantum mechanical interactions. In 

theoretical works, it is assumed that we can specify the quantum state at our disposal whenever we need it, 
no matter how the environment of the system would be. In other words, it is presumed that the quantum state 

can be controlled for the use of communication and computation. This presumption is far from trivial taking 

into account the fact that the quantum systems sometimes entangle with undesirable systems, which results 

in a noisy information resource, and consequently, it has been necessary to consider the production of entan-
glement in the light of quantum control accordingly. Feedback is a method whereby the performance and 

robustness of the system can be improved considerably, even if the system includes some uncertainty in its 

environment to which the system is highly structured. This article is devoted to the formulation of quantum 
mechanical feedback, in order to introduce the concepts and tools of control theory to quantum theory for 

understanding quantum systems and developing quantum control.  

For a system placed among a large number of degrees of freedom interacting with one another, one may 
ignore the detailed dynamics of the external degrees of freedom by treating them statistically. If the system is 

weakly coupled to the external field is characterized by the singular correlation of the field. This singularity 

constitutes the description of the system though the stochastic differential equation or the forward Fokker-

Plank-Kolmogorov equation. In the quantum case, in order to deal with quantum systems properly, physical 
variables should be quantized through the canonical commutation relation, which is essentially singular. An 

analogy between the singularities of the classical correlation function and the quantized commutation rela-

tion leads to a generalization of the stochastic differential equation subject to the quantum mechanical law.  

There is a dual relationship in the description of quantum dynamics analogous to a one-to-one corre-

spondence between the Fokker-Planck Kolmogorov equation and the stochastic differential equation. The 

former describes the evolution of probability distribution of the system which interacts with the external 

field. The influence of the external filed is not explicitly represented in this description because the infor-
mation of the external field is averaged out. The latter is a dual description in the sense that it represents the 

evolution of physical variables, and the single path of the system along with the external filed is explicitly 

presented. Both are basically equivalent, however the latter provides the input-output relation of the system 
by which we can consider various connections of systems. If quantum systems are connected in a complex 

way, it is sometimes hard to derive the Hamiltonian which describes the behavior of the entire system be-

cause the connected systems are entangled with each other through the inputs/outputs, and consequently, the 
total Hamiltonian is not given by the sum of local Hamiltonians describing each component system. 

Furthermore, the noncommutativity of quantum variables complicated the difficulty of the description 

of the filed, after having interacted with the system at some time then interacts with it again at some later 
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time through a closed loop. This is why there has been little work on using nonclassical field to construct 

large quantum systems including closed loops. This article proposed a systematic procedure to obtain the 
Hamiltonian and the quantum stochastic differential equation that lead to a natural extension of control 

theory and some applications of quantum control. We will derive general dynamics of quantum feedback 

systems, based on the framework of quantum feedback systems, the application of quantum feedback to 
some of the most important problems in quantum theory are described.  

We start with review which is a brief review of fundamental notions of quantum theory for introducing 

control theoretical viewpoints to quantum systems. In particular, it focuses on introducing the interaction 

between a system and environments in a quantum mechanical manner, because system control is essentially 
based on the plant-controller interaction. We introduce a quantum stochastic process as a noncommutative 

analog of Wiener process, in which the quantized electromagnetic field traveling in free space is the non-

commutative input source (see, Appendices 1.2 and 3). An optical system is treated in terms of an idealized 
class of Hamiltonians describing a linear coupling of a localized system to the noncommutative input. The 

system then obeys the quantum stochastic differential equation which arises due to the stochastic nature of 

the noncommutative input operators. Then we deal with the quantum mechanical feedback in the proper 

context of quantum feedback system. The feedback connection of quantum systems has a wide range of 
applications that enables us to derive Hamiltonians for the applications for deriving the evolution of quantum 

systems connected in a complex way.  

Quantum systems are in some ways closely analogous to classical ones, and in other ways quite distinct. 
An essential difference between them is that canonical observables are represented by noncommutative 

operators in quantum mechanics, whereas the corresponding classical variables are represented by scalar. 

The noncommutativity of observables leads to a significant departure from classical mechanics, known as the 
uncertainty principle, which states that no action can be done without introducing inevitable disturbances to 

quantum systems. Although certain uncertainties of physical variables could be also found in classical sys-

tems, it is remarkable in combination with another significant property: entanglement. These features cast 

light on the possibility of quantum information technologies and broaden the applications of engineering. In 
quantum cryptography, for example, spatially separated systems utilize entanglement for sharing keys, and 

the uncertainty principle guarantees that they can detect other observers trying to eavesdrop on the quantum 

key distribution.  

Quantum control is recognized as an indispensable technology to provide the cannel resource needed for 

the communication between sender and receiver. The concepts and tools of control theory contribute not 

only to the understanding of dynamics of complex quantum networks, but also to the designing of the system 
for any purpose. An extension f control theory to the quantum domain enables us to deal with complex 

quantum systems in a systematic way. 

A feedback system is, in general, supposed to consist of processes of obtaining information about the 

plant, processing it through a controller and changing the behavior of the system according to the output of 
the controller. The performance of the feedback system depends on the structure of the additional; degrees of 

freedom resulting from these processes. One possible method of constructing the auxiliary degrees of free-

dom is to utilize a measurement for obtaining the information about the plant and to process the measure-
ment outcomes with a classical dynamics is that inevitable changes occur when the information from the 

measurements is read in macroscopic ways. This leads to a limitation on the performance of quantum feed-

back. The feedback process, however, need not necessarily be macroscopic and classical in practice. 

An alternative method for quantum feedback control can be constructed in a completely quantum me-
chanical way, in which the entire processes of feedback is implemented by quantum systems. We discussed 

the dynamics of a cavity coupling to the electromagnetic filed traveling in free space. A cavity is thought of 

as a first-order quantum system driven by a stochastic field, sent through a quantum channel that entangles 
with the state of the system and produces the output. This characteristic allows us to have access to the 

system through the output signals in order to get the information about the system and to alter its behavior.  

It has introduced the symmetric operator-ordering scheme (SOS) for defining the Hamiltonian of quan-
tum networks, in which spatially separated systems interact with each other though the feedback and cascade 

connections. In this case, the dynamics of the system cannot be derived from the local Hamiltonian of each 
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system in general, because of entanglement that is generated through the external field. According to SOS, 

we can obtain the Hamiltonian which explicitly shows the interaction between the component systems, and 
derive the evolution. In particular, when the input and the output of the system are of interest, it is described 

by a transfer function, which enables us to deal with complex quantum systems in a simple way. It is re-

ceived wisdom that, in order to control the system, it is necessary to argument degrees of freedom of the 
system by connecting additional systems through the input-output. The quantum stochastic differential 

equation is available for the construction of the auxiliary degrees of freedom with the tools of control prob-

lems of quantum theory are reduced to conventional problems of control theory based of the developed 

formalism.  

Models of quantum feedback control 

In present issue we are discussed different models of quantum feedback control. Let us briefly describe 

here the applications of feedback control in quantum systems. We explain how feedback in quantum systems 

differs from that in traditional classical systems, and how in certain cases the results from modern optimal 
control theory can be applied directly to quantum systems. In addition to noise reduction and stabilization, an 

important application of feedback in quantum systems is adaptive measurement, and we discuss the various 

applications of adaptive measurements. We finish by describing specific examples of the application of 

feedback control to cooling and state-preparation in nano-electro-mechanical systems (NEMS) and single 
trapped atoms. 

We study Quantum Control (QC) methods and its interrelations with advanced control. In particular, we 

are describing methods to control quantum systems in the arena of quantum and atomic optics, and quantum 
nanomechanics. The objective of QC is to determine which final (or target) states of a quantum system are 

dynamically reachable from a given initial state. This is operationally achieved by applying to the system a 

sequence of simple control pulses. 

Lately, various aspects of QC have been discussed in the literature, including the question of controlla-
bility of systems with continuous spectra, wave function controllability for bilinear systems, controllability 

of distributed systems, of molecular systems, of spin systems, of quantum evolution in NMR spectroscopy, 

and QC on compact Lie groups etc. 

QC (same as quantum tomography) can be viewed as reciprocal aspects of the analysis of the states of a 

system. Both are connected to the problem of extracting the maximum amount of information from that 

system. In general, for quantum systems possessing a certain group of dynamical Lie-type symmetry, it has 
been shown, that the degree of controllability depends on the structure of a given Lie group. 

Let us consider briefly the main idea of QC. 

Some basic concepts of quantum control 

A quantum system is said to be completely controllable if, given any two states 0 1,y y  (we will re-

stricted ourselves to pure states) there exists a time T > 0 and a set of admissible control functions 

() ()1 , , Mf t f tè øê ú defined for 0 t T¢ ¢, so that () 0 00U y = yand () 0 1U T y = y, where ()U t  

is the evolution operator of the system. 

Thus the objectives of quantum control are to find ways to manipulate the time evolution of a quantum 

system such as to 

o Drive an initial given state to a pre-determined final state, the target state;  

or 

o Optimize the expectation value of a target observable. 
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When a quantum system is invariant under the action of a (Lie-type) group of dynamical symmetry, the 

control functions are usually chosen so that the evolution operator is expressed as a product of some ñele-
mentaryò group transformations, each representing a sequence of isolated physical ñpulsesò. The key is 

whether or not the control parameters lead to an evolution operator that is a generic element of the group. 

When this is the case, it has been shown that the system is completely controllable. 

If, on the other hand, the evolution operator is not a generic element of the group but is an element of a 

subgroup of the dynamical symmetry group, the system is only partially controllable. The problem then 

consists in classifying families of states of the form: () () 0t U ty = y, i.e. families of states invariant 

under the action of the evolution operator. In other words, the problem consists in classifying the orbits of a 
subgroup, formed by all admissible evolution operators, in the Hilbert space of a given quantum system. 

Example. As a simple example, let us start by reviewing how the controllability of a single two-level at-

om can be implemented by means of applying pulses of an external field. This is the simplest system, with 

()2SU  as the group of dynamical symmetry. In the rotating frame, the Hamiltonian for such a system 

reduces to ( )int
2

zH g + -

D
= s + s +s, where 

a fD=w -w is the external field frequency and 
,z°s  are the 

Pauli matrices (g is chosen real for simplicity). The frequency of the external field 
fw  is an adjustable 

parameter, so that two types of pulses can be applied to the atom: a resonant pulse, for which  0D=, leads 

to an evolution of the form ()R q, where ()R q is given below, and a dispersive pulse, for which gD  

and which produces an evolution of the form ()D y , where ()D y  is described also below. An evolution 

can then be obtained by patching together dispersive and resonant pulses to obtain the three-parameter trans-

formation:  

( ) ()() (), ,U D R Dy q f = y q f,  

where 

2

3
2, ,

g t
gtq= y=

D

2

1 ,
g t

f=
D

() ( ) ()
cos sin

diag ,
sin cos

,i i i
D e e R

i

y - y q qå õ
y = q =æ ö

q qç ÷
.  

Here, , 1,2,3jt j = , denotes the length of the intervals during which the appropriate pulse is applied. 

The evolution operator ( ), ,U y q f has a form of a generic element of ()2SU , the orbits of which 

form a three-dimensional sphere. The space () () 12 / 1SU U CP  of all physically distinguishable states of 

a two-level atom contains a single orbit, so we immediately arrive at the conclusion that a single two-level 

atoms is completely controllable, i.e. for arbitrary ()0  and Ty y there exists ( ), ,U y q f so that 

() () () ()( )3 2 1 0, ,T U t t ty = y q f y,  

where
1 2 3T t t t= + +. 

We study the feedback methods of advanced control and rather than controlling, say, a jet engine, we 

can use feedback to control an object as small as a single atom. Feedback has many interesting and useful 

properties. It makes it possible to design precise systems from imprecise components and to make physical 

variables in a system change in a prescribed fashion. An unstable system can be stabilized using negative 
feedback and the effects of external disturbances can be reduced. Feedback also offers new degrees of free-

dom to a designer by exploiting sensing, actuation and computation. A consequence of the nice properties of 

feedback is that it has had major impact on man-made systems. Drastic improvements have been achieved 
when feedback has been applied to an area where it has not been used before. 
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The different stochastic equations correspond to different ways in which the system can be continuously 

monitored. 

Quantum jumps  

Consider the master equation 

 [ ] ( )
1

, 2
2

i H c c c c c cm m m m m m
m

r r r r r* * *=- + - -ä  (1) 

A stochastic equation that unravels this master equation, and that is driven by a point process, is 

 ()( )
()

1
1

2
c c c

c
d iH c c t c c dt dN

c c t

m

m m m m m
m m

m m

y y y* *

*

å õ
æ ö= - + - + -
æ öæ ö
ç ÷

ä ä   (2) 

Here, for each ɛ, the increment dNm is an increment of a point process, and takes only two values, either 0 

or 1. The value 1 corresponds to an instantaneous event, and thus dNm is equal to 1 only at a set of discrete 

points. The rest of the time 0dNm= . The events occur randomly and independently, and the probability per 

unit time that an event occurs for the process labelled by ɛ is ()c c tm m

*
. This means that the probability for 

an event in the time interval [ ]t dt+  is ()c c tm m

*
. The point-process increments satisfy the relations: 

() (),    E dN t c c t dN dN dNm m m m n m mnd*è ø= =ê ú .  

Since Eq. (2) is a stochastic equation for the state vector, it is usually called a stochastic Schrºdinger 
equation. We can alternatively write down a stochastic master equation for the density matrix 

c c cr y y= , which is 

 () À1

2
c c cd c dN t iH c c dtm m m m

m m

r r r
è ø

è ø= + - -é ùê ú
ê ú

ä äG H

 

  (3) 

The superoperators 
ccm

m

rè øê úäG  and []cc rH  are defined as  

 []
À

À

À
,    c

c c c c c c

c

c c
c c c c c c

Tr c c
m

m

r
r r r r r r

r
è ø= - = + - +ê ú è øê ú

äG H   (4) 

The point process (quantum jump) stochastic Schrºdinger equation (SSE) describes, for example, an op-

tical cavity in which the light that leaks out of the cavity is measured with a photon-counter. In this case 

there is a single Lindblad operator c ag= , where g and a  are the damping rate and annihilation operator 

for the cavity, respectively. The events at which 1dN=  correspond to the detection of a photon by the 

photo-detector. 

More generally, a continuous measurement of the quantum variables ( ) 1, ,lA l m=  can be expressed 

as the stochastic master equation  

 [ ] [ ] [ ]( )
1

,
m

c l l c l l l l

l

d i H dt A dt A dWr r r h
=

=- + G + Gä D H   (5) 
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and output equation 

 
1

2
l l l

l l

dy A dt dW
h

= +
G

  (6) 

where lGand lh represent the measurement strengths and measurement efficiencies. 

The stochastic master equation (5) and the equation for the stream of measurement results, Eq. (6), can 
be derived from the quantum filtering equations. The quantum filtering equations give the evolution of the 

system and the output field before any measurement is made on the output field. Making a measurement on 

the output field turns the quantum filtering equations into a stochastic master equation. As mentioned above, 
we can simultaneously make more than one continuous measurement on a system, and we can simultaneous-

ly measure observables that do not commute. Since the respective dynamics induced by the continuous 

measurements of two different observables commute to first order in dt, we can think of the measurements of 

the two observables as being interleaved ð the process alternates between infinitesimal measurements of 
each observable.  

Note that a von Neumann measurement cannot simultaneously project a system onto the eigenstates of 

two non-commuting observables, but continuous measurements do not perform instantaneous projections. 
The effect of simultaneously measuring the position and momentum of a single particle is to feed noise into 

both observables. Measuring noncommuting observables therefore in general introduces more noise into a 

system than is necessary to obtain a given amount of information. The optical measurement techniques of 

heterodyne detection and eight-port homodyne detection are very similar to simultaneous measurements of 
momentum and position. 

Markovian quantum feedback 

The continuous collapse of the quantum state in continuous quantum measurement means that we can 

execute real-time quantum feedback control before the quantum state collapses to a completely classical 
state. That is the starting point of continuous measurement-based feedback control. This is the kind of feed-

back protocols and are now referred to as Markovian feedback. The reason for this name is that for this kind 

of feedback, if we average the evolution over all trajectories, the result is a Markovian master equation. This 

is not usually true for feedback protocols. 

Let us consider a quantum continuous measurement of the operator A with efficiency ɖ. From Eqs. (5) 

and (6), the measurement and output equations of this measurement can be expressed as 

 [ ] [] [],c c A c A cd i H dt A dt A dWr r r h r=- +G + GD H    (7) 

and  

 
1

2 A

dy A dt dW
h

= +
G

  (8) 

These two equations can also be expressed equivalently by 

 [ ] [] [] (),c c A c A ci H A A tr r r h rx=- +G + GD H   (9) 

and 

 () ()
1

2
A

A

I t A tx
h

= +
G

 (10) 
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where ()tx  is the white noise satisfying ()( ) ()()( ) ( )0,   E t E t t t tx x x d¡ ¡= = -. Formally, we can 

convert Eqs. (7) and (8) into Eqs. (9) and (10) by setting () /t dW dtx = . 

The main object of measurement-based quantum feedback is to use the output signal ()AI t  to engineer 

the system dynamics given by Eq. (9). The most general form of the system dynamics, modified based on the 

output signal ()AI t , can be expressed as 

 () [ ]{ }, 0,f A ft I tr t t rè ø= Í
ê ú

F  (11) 

where () [ ]{ }, 0,At I tt tè øÍ
ê ú

F  is the superoperator depending on the output signal ()AI t  for all past times. 

In this general form of the response of the feedback control loop, the control induces both unitary dynamics 
and dissipation effects on the controlled system. However, for most of the existing studies, quantum feed-

back control is introduced coherently by varying the parameters in the system Hamiltonian, which leads to 

the following modified closed-loop stochastic master equation 

 () [ ]{ }( ) [] [] (), 0, ,f f A f A f A fi H H t I t A A tr t t r r h r xè ø=- + Í +G + G
ê ú

D H . (12) 

As discussed above, in Markovian quantum feedback a term in the Hamiltonian is made proportional to 

the output signal. Denoting this term by 
fH , we set ()f AH I t F=  for some Hermitian operator F . Then, 

by averaging over the noise term and using the Ito rule of the white noise ()tx , we can derive the following 

Wiseman-Milburn master equation from Eq. (12): 

 [ ] [] [ ] []
1

, ,Ai H A i F A A Fr r r r r r
h

=- +G - + +D D . (13) 

The effects induced by the feedback loop are clearer in this form: (i) the first feedback term 

[ ],i F A Ar r- +  plays a positive role to steer the system dynamics to achieve the desired effects; and (ii) 

the second feedback term []
1

F r
h

D  represents the decoherence effects induced by feedback, which tends 

to play a negative role for purposes of control. 

The master equation (13) can be reexpressed as the traditional Lindblad form as following: 

 
( )

[ ] []
1

,
2

AF FA
i H A iF F

h
r r r r

h

+è ø -
=- + + - +é ù
ê ú

D D . (14) 

Although the Markovian quantum feedback given by Eq. (13) is the simplest measurement-based quan-
tum feedback approach, it can be used to solve various problems by choosing A and F appropriately. Mar-

kovian quantum feedback has been used to stabilize arbitrary one-qubit quantum states, manipulate quantum 

entanglement, generate and protect Schrºdinger cat states, and induce optical, mechanical, and spin squeez-
ing. 

Bayesian quantum feedback 

To make full use of the information provided by the measurement, we must process the measurement 

results using the SME (Eq. (5)) to obtain the conditional density matrix. Since this density matrix, along with 

the knowledge of the dynamics of the system, determines the probabilities of the results of any measurement 
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on the system at any time in the future, any optimal strategy for controlling the system can ultimately be 

specified as a rule for choosing the Hamiltonian at time t as a function of the density matrix at that time and 

possibly the time itself: () ()( ),cH t f t tr= . Feedback control in which the feedback protocol is specified 

in this way is sometimes referred to as ñBayesian feedbackò because the SME is the quantum equivalent of 
processing the measurement record using Bayesô theorem. 

As we have mentioned above, the SME, since it requires simulating the full dynamics of the system, 

may be impractical to solve in real-time. Sometimes it is possible to approximately, or even exactly, reduce 

the computational overhead by choosing an ansatz for 
cr that contains only a small number of parameters. 

The SME then reduces to a stochastic differential equation for these parameters. There is one class of sys-
tems in which an ansatz with a small number of parameters provides an exact solution to the SME, that of 

linear systems. A quantum system is referred to as linear if its Hamiltonian is no more than quadratic in the 

position and momentum operators, any Lindblad operators that describe the noise driving the system are 
linear in the position and momentum operators, and any measurements are (i) driven by Wiener noise, and 

(ii) of operators that are linear in the position and momentum. 

The noise that drives linear systems reduces all initial states to Gaussian states (states that are Gaussian 
in the position and momentum bases, and thus have Gaussian Wigner functions), and Gaussian states remain 

Gaussian under the evolution. No proof of the first of these statements exists, but experience leads us to 

believe it. The second statement is not difficult to show, and implies immediately that if the state of a linear 

system is Gaussian, the SME reduces to a stochastic differential equation for the means and (co-)variances of 
the position and momentum. What is more, the dynamics of these variables are exactly reproduced by those 

of a classical linear system driven by Gaussian noise, and subjected to continuous measurements of the same 

observables. To correctly reproduce the quantum dynamics, for each continuous measurement made on the 
system a noise source must be added to the classical system to mimic Heisenbergôs uncertainty principle. 

Example. Consider a linear quantum system with N degrees of freedom, and write the N position and 

momentum operators, denoted respectively by nq  and 
np , in the vector 

 ( )
T

1 1x , , , ,N Nq p q p=   (15) 

We scale these operators so that [ ],n nq p i= . If 
mx  is the mth element of the vector x, then we have 

[ ],n m nmx x i= S, where 
1

0 1

1 0

N

n=

å õ
S=Ãæ ö

-ç ÷
.  

For linear quantum systems, the system Hamiltonian 
SH  and the dissipation operator L can be written 

as 

 
T T T1

x x x b ,   I x
2

SH G u L= - S =,  (16) 

where G  is a real and symmetric matrix, and b, l are real and complex vectors, respectively. The second 

term in 
SH , including the time-dependent function u (t), describes the force applied by the feedback control-

ler (see Fig. 11). 

This feedback Hamiltonian must be linear in the conditional mean values of the position and momentum 

operators, in order to ensure that the system remains linear. This also means that there is a linear map from 

the measurement output 
outY  to u (t), and thus a linear input-output relation for the controlled system. The 

dynamics of the controlled system can be expressed as the following linear quantum stochastic differential 

equation: 

 
Àx x b I Iin ind A dt udt i dB dBg *è ø= + + S -ê ú,   (17) 
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where the matrix ( )TIm I IA G *è ø=S +
ê ú

. The output equation (17) can be written as 

 ( )À T À1
x ,         =I Iout in indY F dt dB dB F

g
= + + + (18) 

 

.  

Figure 11: (Color online) Diagram for state-based quantum feedback. The controlled system (top branch, in 

blue) is described by a quantum stochastic differential equation driven by the quantum Wiener noise 
indB . 

Part of the quantum output field 
outY  from the controlled system is converted into a classical signal dW by a 

measurement device (shown in yellow) and then fed into the filter. The dynamics of the filter is determined by 
the quantum filtering equation driven by the classical Wiener noise, i.e., the innovation process dW. The 

estimated quantum state ( ){ }Xp  is fed into a classical controller to obtain a control signal u, which is then 

fed back to steer the dynamics of the controlled system. The filter and controller which form the classical 

control loop (in pink) can be realized by a classical Digital Signal Processor (DSP) 

After quantum measurement, the dynamics of this linear quantum system can be fully described by the 

conditional means ́  (x) and variances ( )t tVar P=P Y , where tP  is the covariance matrix of the position 

and momentum variables with the ( ),i j -element being ( )
1

2
ij i j j iP x x x x= D D +D D, and ()i i ix x xpD = - . 

The conditional mean values ́  (x) obey the filtering equation 

 () () () ()T Tx x Im xtd A dt Budt VarF l dY F dtp p pè ø= + + +S ³ -è øê úê ú  (19) 

and the conditional covariance matrix satisfies the deterministic Riccati differential equation 

 () ()T T T TIm Imt t t t tVar AVar Var A D Var F l FVar lè øè ø= + + - +S ³ + Sê úê ú
,  (20) 

where ( )T TReD l l*=S S. Thus, the filtering equation is equivalent to the closed set of filtering equations 

(19) for the first-order quadrature and the Riccati differential equation (20), which is finite-dimensional and 

thus simulated with relative ease. The quantum filter given by Eqs. (19) and (20) is called a quantum Kalman 
filter. 

For linear quantum feedback control systems, many objectives, such as cooling and squeezing, can be 

reduced to the optimization of the following quadratic cost function of the system state x as 

 
T T T

0

1 1
x x x x

2 2

T

q T TJ S Q u Rut t t t
è ø= + +ê úñ  (21) 
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To obtain a closed-form control problem, we should first take the expectation value over the condi-

tioned state and then average over all the stochastic trajectories to define a new quadratic cost function 

( )q out
c

J J=P Y , where 
c
Ö is the average taken over the classical Wiener noise dW. From Eq.(21) we 

have 

 ( ) ( ) ( ) ( ) ( ) ( )
T TT

0

1 1 1
x x x x

2 2 2

T

T T T

c c

J Q Tr QVar u Ru d S Tr SVart t t t tp p t p pè ø= + + + +
ê úñ  (22) 

Here the control ( )( )x ,t t tu u Varp=  is a function of the conditional means and variances ( )xtp  and 

tVar . The optimization of the quadratic cost function (22) subject to the quantum filtering equations (19) and 

(20) is a standard classical Linear-Quadratic-Gaussian (LQG) control problem which can be solved by the 

Kalman filtering theory well developed in the field of classical control. 

Networks of quantum systems 

The configuration of the feedback system in Fig. 5 has a unidirectional connection from the system to 
controller, which replaces the measurement in measurement-based feedback, but does not use a unidirection-

al coupling for the feedback part of the loop. We can, however, use a cascade connection for both, in which 

case we have a complete unidirectional loop. What we now need to know is how to describe these cascade 
connections mathematically. To do this, we use the input-output, or ñquantum noiseò formalism of Collet 

and Gardiner (CG), also known as the Hudson-Parthasarathy (HP) model, as the latter independently derived 

the same formalism in a more rigorous, measure-theoretic way. The formalism uses Heisenberg equations of 

motion for the operators of the systems, with input operators that drive these equations in a similar way to 
that in which Wiener noise drives classical stochastic equations. The formalism also contains output opera-

tors, and systems are then easily connected together by setting the input of one system equal to the output of 

another. In the CG/HP formalism, each system is described by a Hamiltonian, along with the operators 
through which it is coupled to the input/output fields. Further, the fields can be coupled to each other using 

beam-splitters, which take two inputs and produce two outputs that are linear combinations of the inputs.  

By describing a single ñunitò as having a Hamiltonian H, a vector of input coupling operators L , and a 

linear transformation between inputs and outputs codified by a matrix S, Gough and James elucidated a set 
of rules that covered the ways in which these units, or network elements, could be combined into networks. 

We now describe briefly the CG/HP formalism, and the Gough-James rules for combining circuit elements. 

A single Markov component is parameterized by a triple (S, L, H) consisting of: 

ï the System Hamiltonian H; 

ï Coupling operators jL Lè ø=ê úbetween the system and the field; 

ï Scattering operators jkS Sè ø=ê ú, unitary. 

The input-output component is sketched in Fig. 12. 

 

Figure 12. Input-Output device with system parameterized by (S, L, H) 
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The dynamics of a system coupled to input fields is given by the quantum Langevin equations.  

As mentioned above, we describe each unit by a tuple 

 ( )S,L,G H=    (23) 

where H is the internal Hamiltonian of the system; S is a n Ĭ n unitary matrix with operator entries and is 

called a scattering matrix; ( )
T

1, , nL L=L  is a vector of operators through which the system couples to the 

inputs, with one for each input. We denote the inputs to the system by () () ()
T

1b , ,in nt b t b t=è øê ú in which 

each of the ()( ),  1, ,ib t i n= , are separate input fields, all initially in the vacuum state. The notation 

given in Eq. (23) can be used to describe a wide range of dynamical and static systems. A single quantum 

input-output system can be written as ( )BS ,L,G I H= , and a quantum beam splitter is given by 

( )BS S,0,0G = . 

Remark. Each input-output component in a photonic circuit is described by a triple ( ), ,S L H , where S 

is the scattering matrix of the component, L is the coupling vector of the component, and H is the Hamiltoni-

an of the componentôs internal degrees of freedom. S is required to be a unitary matrix, and its matrix ele-

ments can in general be operators on the Hilbert space of the componentôs internal degrees of freedom (alt-
hough they are usually just complex numbers). The elements of L can also be operators, in which case they 

describe the way that external fields couple to the componentôs internal degrees of freedom. H plays the 

usual role of determining the (autonomous) time evolution of the componentôs internal degrees of freedom. 
The dimension of L is equal to the number of input-output ports n that the component has (every port must 

be both an input and an output); the dimension of S is n n³ ; the Hamiltonian H is scalar (see, Fig. 13). 

   

Figure 13. ( )S,L,H -model 

We now present the Langevin equations describing input-output systems in more generality. To begin, 

we introduce a vector of quantum Wiener processes B(t) and a matrix of quantum Poisson process ()tL  as 

 () ()
1 11 1

1

B ,    

n

n n nn

B B B

t t

B B B

å õ å õ
æ ö æ ö
= L =æ ö æ ö
æ ö æ ö
ç ÷ ç ÷

  (24) 

These noise processes are integrals of the input fields: 

 () () () () ()À

0 0
,     

T T

i i ij i jB t b d B t b b dt t t t t= =ñ ñ . (25) 
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The increments of these gauge processes B(t), ()tL  satisfy the quantum stochastic calculus relations 

given in Table 2. 

Table 2: Quantum Ito Rule for quantum stochastic calculus  

 

Let V (t) be the unitary evolution operator of the total system composed of the controlled system and the 
input field, then the evolution equation of the total system can be written as 

 () ( ) ()T À À À1
S B L L S B L L

2
dV t Tr I d d d dt iHdt V t

ë û
è ø= - L + - - -ì üê ú

í ý
 (26) 

with initial condition ()0V I= . 

In the Heisenberg picture, the system operator () () ()ÀX t V t XV t= satisfies the following quantum 

stochastic differential equation 

 
() () () () (){ } () () () ()

() () () () () ()() () (){ }

À À

L

À À T

, B S ,L

             L , S B S S

t
dX t X t i X t H t dt d t t X t t

t X t t d t Tr t X t t X t d t

= - + +è ø è ø è øê ú ê ú ê ú

è ø è ø+ - Lê ú ê ú

L
, (27) 

where the Liouville superoperator ()()L t
ÖL  is defined by 

 ( ) [ ]À À À À

L

1

1 1 1 1
L ,L L , L= , ,

2 2 2 2

n

j j j j

j

X X X L X L L X L
=

ë û
è ø è øè ø= + +ì üê úê ú ê ú

í ý
äL ,  (28) 

which is of the standard Lindblad form. Similar, the output fields corresponding to the inputs B(t) and Pois-

son process ()tL  are given by () ()()() () ()()()À À,   o uut o tV t V t t V t Vt t t t= L L=B B , from which we 

obtain the following input-output relation 

 
() () () ()

() () () () () () () () () () () ()T T T T T

B S B L ,

S S S B L L B S L L

out

out

d t t d t t dt

d t t d t t t d t t t d t t t t dt* * * * *

= +

L = L + + +
  (29) 

It can be verified that the increments B ,out outd dL , of the output processes also satisfy the rules of quan-

tum stochastic calculus shown in Table 1. 

For linear quantum systems, the quantum Langevin equations can be solved directly. In order to perform 
calculations for nonlinear quantum systems, one must transform the Heisenberg equations of the input-output 

formalism to master equations. The corresponding master equations are 

 [ ] À À À1 1
,

2 2
j j j j j j

j

i H L L L L L Lr r r r r
å õ

=- + - -æ ö
ç ÷
ä   (30) 
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Although the scattering matrix S does not appear in the master equation (8), it affects the input-output 

relation of the system as shown in Eq. (7) and thus will affect the dynamics of more complex quantum input-
output systems, such as the quantum cascade systems which will be specified below. 

To connect the outputs of one unit to the inputs of another, so as to form an arbitrary network, we need 

only two rules. The first is merely a rule that says how to represent a universe that contains more than one 

separate unit, none of which are connected. If we have the two units ( )1 1 1 1G S ,L ,H=  and 

( )2 2 2 2G S ,L ,H= , the unit that describes both these units with no connections between them is  

 
1 1

1 2 1 2

2 2

S 0 L
G G , ,

0 S L
H H

å õå õ å õ
= +æ öæ ö æ ö
ç ÷ ç ÷ç ÷

(   (31) 

Gough and James refer to this rule as the concatenation product. 

The second rule for combing circuit elements tells us how to determine the unit that describes a network 

in which the outputs of a unit 
1G  are connected to the inputs of a unit 2G . This rule is 

 ( )À À À

2 1 2 1 2 2 1 1 2 2 2 1 1 2 2

1
G G S S ,L S L , L S L L S L

2
H H

å õ
= + + + -æ ö
ç ÷

<   (32) 

and is called the series product. The concatenation and series products can also be used to decompose a 

given system into subsystems, and are thus fundamental to feedforward and feedback control. 

Quantum transfer function model 

The Collet-Gardiner/Hudson-Parthasarathy cascade connections can be used to model essentially any 

network. However, for linear systems, time-delays and quantum amplifiers can be modeled more easily in 

frequency space. If we specialize the network formalism of Gough and James so that all the systems are 
linear, and transform the equations of motion to frequency space, then we have the method of quantum 

transfer functions.  

A general linear quantum network described by the tuple (S, L , H) satisfies the following conditions : (i) 

the entries of the scattering matrix S are scalars; (ii) the dissipation operators jL  are linear combinations of 

the ka  and 
À

ka ; and (iii) the system Hamiltonian H is a quadratic function of the ka  and 
À

ka . To elucidate the 

transfer function method further, we consider a useful special case, in which each system is a harmonic 

oscillator, and the field coupling operators are linear combinations of only the annihilation operators. In this 
case, the Langevin equations for the annihilation operators are not coupled to those for the creation opera-

tors. The annihilation operators for the n oscillators, { }: 1, ,ja j n= , satisfy the commutation relations 

À À À, ,   , , 0j k jk j k j ka a a a a adè ø è ø è ø= = =ê ú ê ú ê ú. The total Hamiltonian is 
À

ij i jij
H a aw=ä  and the coupling 

operators 
j jk kjk

L c a=ä , and so we can simplify the SLH formalism, writing the tuple 

 ( )S, ,G C= W  (33) 

Where 

11 1 11 1

1 1

,        

n n

n nn n nn

c c

C

c c

w w

w w

å õ å õ
æ ö æ ö
= W=æ ö æ ö
æ ö æ ö
ç ÷ ç ÷

. 
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If we now introduce an operator vector, which we will call the state vector of the system, 

( )
T

1a , , na a= , then from Eqs. (5) and (7), we can obtain the following Langevin equation and input-

output relation: 

 () () () () ()Àa a Sb ,    b Sb a ,in out int A t C t t C t= - = +  (34) 

where 
À / 2A C C i=- - W. 

We can now transform these equations to frequency space by taking either the Laplace transform or the 

Fourier transform. Using the Fourier transform, defined as 

 () ( )()
0

expR i t R t dtn n
¤

= -ñ ,  (35) 

the Langevin equations can be rearranged to obtain 

 () ( ) () () () ()
1 Àa Sb ,    b Sb an in out ini I A C Cn n n n n n
-

=- - = +   (36) 

From Eqs. (14), we can obtain the input-output relation of the whole system or network 

 () () ()b bout inin n n=X   (37) 

where ()inX  is the transfer function of the linear quantum system which can be calculated by 

 () ( )
1 ÀS Sni C i I A Cn n
-

X = - -   (38) 

The input-output relation (15) show the linear map between the input and output of the linear quantum 

system given by Eqs. (12). 

The quantum transfer function approach is useful for a number of reasons. While the time-domain net-
work formalism can describe essentially any network, it cannot be used to incorporate static models of non-

conservative elements, such as quantum amplifiers, and such components must be treated as dynamical 

systems. In frequency space, a static model of a quantum amplifier is simply a Bogoliubov transformation. 
Time delays are also much simpler to include in frequency space, and of course frequency space has the 

advantage that the transfer function of two cascaded systems is merely the product of the transfer functions 

of each. 

Quantum filters: Physical motivation 

As above mentioned the theory of quantum filtering was developed by V. P. Belavkin [11], and repre-
sents the continuation of the work of Kalman, Stratonovich, Kushner, Zakai, etc.  

To better understand quantum filtering, let us consider an indirect quantum measurement, which is 

achieved by interacting the measured system with a bath via a system operator L, and then making a meas-
urement on the bath. The bath is a continuum of harmonic oscillators of different frequencies. The bath also 

describes a field, such as the electromagnetic field, in which the oscillators are the modes of the field. The 

Hamiltonian of the total system composed of the measured system and the bath is given by 

()() () ()À À

int int,   ,    .s b bH H H H H d b b H i d k b L h cww w w w w w
¤ ¤

-¤ -¤
è ø= + + = = -ê úñ ñ , 

where sH  is the free Hamiltonian of the measured system, ()Àb w  and ()b w  are the creation and annihila-

tion operators of the bath mode with frequency w, and satisfy () () ( )À,b bw w d w wè ø= -ê ú . The bath mode 
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with frequency w interacts with the system via the system operator L, where ()k w  is the corresponding 

coupling strength. Hereafter we set 1= . The total Hamiltonian H can be re-expressed in the interaction 

picture as 

( )( ) ( ) () ()À

eff intexp exp .i t

b s b sH iH t H H iH t H i d k e b L h cww w w
¤

-¤
è ø= + - = + -ê úñ . 

We now introduce the Markovian assumption ()
2

k
g

w
p

= , which allows the Hamiltonian 
effH  to be 

expressed as () ()À À

eff s in inH H i b t L L b tgè ø= + -ê ú, where () ()
1

2

i t

inb t d e bww w
p

¤
-

-¤
= ñ  is the Fourier 

transform of the bath modes. The operator ()inb t  is, in fact, the time-varying field that is incident on, and 

thus the input to, the system, and satisfies () () ( )À,in inb t b t t tdè ø= -ê ú . We now define a new bath operator 

() ()
0

t

in inB t b dt t=ñ , which is called a quantum Wiener process. If we assume that the bath is initially in a 

vacuum state, the increment of the quantum Wiener process 
indB and its conjugate 

À

indB  satisfy the follow-

ing algebraic conditions: 
À À À À,   0in in in in in in in indB dB dt dB dB dB dB dB dB= = = =. These are the quantum 

version of Ito rule. With the above notation, in the Heisenberg picture, an arbitrary system operator X (t) 

satisfies the following quantum stochastic differential equation 

 [ ] [ ]{ } [ ]{ }À À À À, , , , ,
2

s in indX i X H dt L X L L X L dt dB L X X L dB
g

gè ø è ø=- + + + +ê ú ê ú . (39) 

It is then possible to define an output filed ()outb t  which describes the field leaving the system after it 

has interacted with it, and we can similarly define its Ito increment () ()
0

t

out outB t b dt t=ñ . The celebrated 

input-output relation for the system can then be written as  

out indB dB Lg= + . 

If homodyne detection is performed on the output field Bout (t), then the operator corresponding to the 

measured output is ( )À1
out out outdY dB dB

g
= + , and satisfies the following equation 

( ) ( )À À1
out in indY L L dt dB dB

g
= + + + . 

With the above preparation, we can now present the main results of quantum filtering theory. The pur-

pose of quantum filtering is to provide an estimate ( )Xp  of the value of the system observable X , at time 

t, given the stream of measurement results up until that time. We will define this estimate as the expectation 
value of X given the measurement results.  

To obtain ( )Xp  we first define ( ){ }: , :out outX f Y f= = Y R C , which is the smallest commuta-

tive algebra generated by the observation process 
outY , and denote P  as the probability measure on

outY . The 

estimate ( )Xp  is then the conditional expectation of X on 
outY :  
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 () ( )outX Xp =P Y .  (40) 

From the definition of ( )Xp  given in Eq. (40), it can be proved that we can obtain the following dy-

namical equation for ( )Xp  and the corresponding output equation from dX  and 
outdB  as following: 

 

( ) ( ) ( ) ( )( )

( )

À À

À

,

1
,out

d X X dt L X XL L L X dW

dY L L dt dW

p p g p p p

p
g

è ø= + + - +è øê ú ê ú

= + +

L

 (41) 

where ( )XL  is the Liouville superoperator of the system defined as 

( ) [ ] À À À1 1
,

2 2
sX i X H L XL L LX XL Lg

å õ
=- + - +æ ö

ç ÷
L . 

The process W (t) in Eqs. (41) is called the innovation process of quantum filtering, and has been shown 

to be a classical Wiener process. The increment of W (t) satisfies the following classical Ito relations 

( ) ( )
2

0,    E dW dW dt= = , where E (·) is the ensemble of the stochastic process induced by dW. The 

dynamical equation (41) of ( )Xp  is called the quantum filtering equation. The filtering equation (41) and 

the output equation (41) are the main results of quantum filtering theory. 

Additionally, we can convert the filtering equation (41) from the Heisenberg picture to the Schrºdinger 

picture, and thus obtain a stochastic equation for the evolution of the density matrix. To show this, we use 

the fact that the density operator 
cr  satisfies () ( )0 0 cTr X Tr Xp r r=è øê ú , where 

0r is the initial density 

operator of the system and 0X   is the corresponding system observable in the Schrºdinger picture. Substitut-

ing Eq. (41) into the above relation, the system density operator 
cr evolves according to the following 

stochastic master equation: 

 [ ] ( ) ( ){ }À À À À À1
, 2

2
c s c c c c c c cd i H dt L L L L L L dt L L Tr L L dWr r r r r r r rè ø=- + - - + + - +

ê ú  (42) 

From Eq. (1), we have ( )c outr r=P Y . That is, 
cr is the conditional expectation of the density opera-

tor r which is defined by [ ] ( )0 0Tr X Tr Xr r= . The stochastic master equation (42) is also often referred 

to as quantum filtering equation. 

Thus, the quantum stochastic diff erential equation (40) and the output equation (41) give the dynamics 

of the operators that describe the measured quantum system. These equations are driven by the quantum 

Wiener noise 
indB , and are thus defined on a quantum probability space. As a comparison, the quantum 

filtering equation (41) (or the stochastic master equation (42)) and the output equation (41) give the observ-

ers state-of-knowledge of the measured quantum system based on the information extracted by the quantum 

measurement. These equations are driven by the classical Wiener noise dW  and thus defined on a classical 

probability space. Therefore in quantum filtering theory we use a classical stochastic system to mimic the 

dynamics of a quantum stochastic model, which is why we refer to quantum filtering as a bridge between a 
quantum probability model and a classical probability model. 

Example. Partial information about state of high Q  cavity modes is obtained by measuring Rydberg at-

oms that passed one-to-one through the cavity (see Figure 14).  
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Qubits (Rydberg atoms) are passed through a cavity one by one. At any one time there will be at most 

one qubit inside the cavity, and we measure the outgoing qubits one-by-one. The measurement bit ky  is sent 

into a filter which estimates the state of the cavity mode, and then an instruction is sent to the actuator so as 
to control the mode. The measurement results can be used to apply a feedback action on the cavity mode.  

We consider a quantum mechanical system which is probed by a two-level atom (qubit). 

 

Figure 14. A schematic of the LKB photon experiment 

The qubit is in input state ®  initially. The unitary interaction between the cavity mode and the probe 

qubit leads to a change of state in the Schrºdinger picture: 

Uy yÃ ® = Ã ® 

We take the interaction time t to be very small and assume that the unitary has the form  

{ }2 2

1
exp 1

2
U L L i H I L L L L iH It s t s t t s t s t* * * * *å õ
= Ã - Ã - Ã + Ã - Ã - + Ã +æ ö

ç ÷
 

We now measure the spin 
xs  of the qubit and record the eigenvalues 1h=° corresponding to eigen-

vectors ( ) ( )
1 1

,     
2 2

+ = ® + ¬ - = ® - ¬. The probabilities for detecting 1h=° are 

1 1

2 2
p L Lt y y*

°= ° + + 

After measurement, the system state becomes (up to normalization) 

1

2
L L L iHhy y t y h t y*å õ

´ + - + +æ ö
ç ÷

 

This is interpreted as a discrete-time quantum Kalman filter [27].  
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For a continuous time limit we have (due to a central limit effect) (),   dt dY tt th , where 

()Y t , the continuous time measurement readout, will be diffusion process. The limit equation is 

 ()
1

2
t t t td L dY L L iH dI tc c c*å õ
= - +æ ö

ç ÷
,  (43) 

and we refer to this as the Belavkin-Zakai equation as it plays the same role as the Zakai equation in 

Belavkinôs theory of quantum filtering. In general tc  is not normalized, but it is easy to obtain the equa-

tion for the normalized state /t t ty c c= , we find the Stochastic Schrºdinger equation  

 ( )( ) ( ) ()
1

2
t t t t t t td iH dt L L dt L dI ty y l l y l y

*
= - - - + - ,  (44) 

where (),    t t t t tL L dI t dY dtl y y l*+ - .  

Mathematically ()I t  has the statistics of a Wiener process, and its increment ()dI t  is the difference 

between what we observe, ()dY t , and what we would expect to get t tL Ly y*+ . It is convenient to 

frame this in the Heisenberg picture.  

Information-theoretical bounds and physical limits on quantum control 

We discuss an information-theoretic framework for analyzing control systems based on the close rela-

tionship of controllers to communication channels. A communication channel takes an input state and trans-

forms it into an output state. A controller, similarly, takes the initial state of a system, to be controlled and 
transforms it into a target state. In thus sense, a controller can be thought of as an actuation channel that acts 

on inputs to produce desired outputs. In this transformation process, two different control strategies can be 

adopted: (i) the controlled (open-loop control); or (ii) the controller enacts an actuation dynamics that is 
based on some information about the state of the controlled system (closed-loop control). Using this commu-

nication channel model of control, we provide necessary and sufficient conditions for a system to be perfect-

ly controllable and perfectly observable in terms of information and entropy [31-38].  

New derivations of the advantage afforded by closed-loop control and proposing an information-based 

optimality criterion for control systems are described. In addition, we discuss a quantitative trade-off be-

tween the amount of information gathered by a closed-loop controller and its relative performance advantage 

over an open-loop controller in stabilizing a system. 

Information control system theory: Introduction 

It is common in studying controllers to describe the interplay between the sensors used to estimate the 

state of a system, intended to be controlled, and the actuators used to actually modify the dynamics of the 

controlled system, as a transfer of information involving three steps: estimation, decision, and actuation. In 
the first step sensors are used to gather information from the controlled system in the form of data relative to 

its state (estimation step). This information is then processed according to some plan or control strategy in 

order to determine which control dynamics is to be applied (decision step), to be finally transferred to the 

actuators which feed the processed information back to the controlled system to modify its dynamics, typi-
cally with the goal to decreasing the uncertainty in the value of the systemôs variables (actuation step).  

Whether or not the estimation step is present in this sequence is optional, and determines which type of 

control strategy is used. In so-called closed-loop or feedback control techniques, actuators rely explicitly on 
the information provided by sensors to apply the actuation dynamics, whereas in open-loop control there is 
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no estimation step preceding the actuation step. In other words, an open-loop controller distinguishes itself 

from a closed-loop controller in that it does not need a continual input of óselectiveô information to work: 
like a throttle or a hand brake, it implements a control action independently of the state of the controlled 

system. In this respect, open-loop control techniques represent a subclass of closed-loop controls that neglect 

the information made available by estimation.  

Since control is fundamentally about information (getting it, processing it, and applying it), it is perhaps 

surprising to note that few efforts have been made to develop a quantitative theory of controllers focused on 

a clear and rigorous definition of information. Indeed, although controllers have been described by numerous 

authors as information gathering and using systems, and despite many results related to this problem, there 
exists at present no general information-theoretic formalism characterizing the exchange of information 

between a controlled system and a controller, and more importantly, which allows for the assignation of a 

definite value of information in control processes. To address this deficiency, we present in this section with 
a quantitative study of the role of information in control. The basis of the results was first elaborated in [34], 

and draws upon the work of several of the papers cited above by bringing together some aspects of dynam-

ical systems, information theory, in addition to probabilistic networks to construct control models in the 

context of which quantities analogous to entropy can be defined.  

Central to this approach is the notion of a communication channel, and its extension to the idea of con-

trol channels. As originally proposed by Shannon, a (memoryless) communication channel can be represent-

ed mathematically by a probability transition matrix, say( )p y x , relating the two random variables X and Y 

which are interpreted, respectively, as the input and the output of the channel. We adapt this common proba-

bilistic picture of communication engineering to describe the operation of a basic control setup, composed of 

a sensor linked to an actuator, in terms of two channels: one coupling the initial state of the system to be 
controlled and the state of the sensor (sensor channel), and another one describing the state evolution of the 

controlled system as influenced by the sensor-actuatorôs states (actuation channel).  

We use this model in conjunction with the properties of entropy-like quantities to exhibit fundamental 

results pertaining to control systems. As a first of these results, we show that the classical definition of con-
trollability, a concept well-known to the field of control theory, can be rephrased in an information-theoretic 

fashion. This definition is used, in turn, to show that a system is perfectly controllable upon the application 

of controls if, and only if, the target state of that system is statistically independent of any other external 
systems playing the role of noise sources. A similar information-theoretic result is also derived for the com-

plementary concept of observability. Moreover, we provide bounds on the amount of information a feedback 

controller must gather in order to stabilize the state of a system.  

More precisely, we prove that the amount of information gathered by the controller must be bounded 

below by the difference: 
max

closed openH HD -D , where closedHD  is the closed-loop entropy reduction that results 

from utilizing information in the control process, and 
max

openHD  is the maximum decrease of entropy attainable 

when restricted to open-loop control techniques. This last result, as we will see, can be used to define an 

information-based optimally criterion for control systems.  

Remark. The idea of reducing the entropy a system using information gather from estimating its state is 

not novel by itself. Indeed, as he wondered about the validity of the second law if thermodynamics, the 

physicist James Clerk Maxwell was probably the first to imagine in 1897 a device (or a ódemonô as it was 
later called) whose task is to reduce the entropy of a gas using information about the positions and velocities 

of the particles forming the gas. In the more specific context of control theory, the problem of reducing the 

entropy of a dynamical system has also been investigates notably by Poplavskii and by Weidmann. Pop-
lavckii analyzed the information gathered by sensors in terms of Brillouinôs notion of negentropy, and de-

rived a series of physical limits to control. His study focuses on the sensor part of controllers, leaving aside 

the actuation process which, as will be shown, can be also treated in an information-theoretic fashion. In a 

similar way, Weidmann performed an information-based analysis of a class of linear controllers having 
measure preserving sensors.  
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We build on these studies and go further by presenting results which apply equally to linear and nonlin-

ear systems, and can be generalized with the aid of a few modifications to encompass continuous-space 
systems as well as continuous-time dynamics. To illustrate this scope of applications, we study specific 

examples of control systems. Among these, we consider two variants of proportional controllers, which play 

a predominant role in the design to present-day controllers, on addition to complete our numerical investiga-
tion of noise-perturbed chaotic controllers. In addition, we discuss a quantitative trade-off between the 

amount of information gathered by a closed-loop controller and its relative performance advantage over an 

open-loop controller in stabilizing a system. Finally, we remark on the relationship of frameworks with 

thermodynamics and optimal control theory [35, 36].  

Control and thermodynamics 

The reader familiar with thermodynamics may have note a strong similarly between the functioning of a 

controller, when viewed as a device aimed at reducing the entropy of a system, and the thought experiment 

of Maxwell known a the Maxwellôs demon paradox. Such a similarly was already noted in the Introduction 
section of this work. In the case of Maxwellôs demon, the system to be controlled or ócooledô is a volume of 

gas; the entropy to be reduced is the equilibrium thermodynamic entropy of the gas; and the ópiecesô of 

information gathered by the controller (the demon) are the velocities of the atoms or molecules constituting 

the gas. When applied to this scheme, our result on closed-loop optimality can be translated into an absolute 
limit to the ability of the demon, or any control devices, to convert heat to work. Indeed, consider a feedback 

controller operating in a cyclic fashion on a system in contact with a heat reservoir at temperature T. Accord-

ing to Clausius law of thermodynamic, the amount of heat closedQD  extracted by the controller upon reducing 

the entropy of the controlled system by a concomitant amount closedHD  must be such that 

 ( )ln 2closed B closedQ k T HD = D . (45) 

In the above equation, Bk  is the Boltzmann constant which provides the necessary conversion between 

units of energy (Joule) and units if temperature (Kelvin); the constant ln2arises because physicists usually 

prefer to express logarithms in base e. From the closed-loop optimality theorem, we then write 

 ( ) ( )maxln 2 ;closed B openQ k T H I X Cè øD ¢ D +ê ú ( )( )max ln 2 ;open BQ k T I X C=D + , (46) 

where ( )max maxln 2open B openQ k T HD = D . This limit should be compared with analogous results found by other 

authors on the subject of thermodynamics demons. 

It should be remarked that the connection between the problem of Maxwellôs demon, thermodynamics, 

and control is effective only to the extent that Clausius law provides a link between entropy and the physical-

ly measurable quantity that is energy. But, of course, the notion of entropy is a more general notion than 
what is implied by Clausius law; it can be defined in relation to several situation which have no direct rela-

tionship whatsoever with physics (e.g., coding theory, rate distortion theory, decision theory). This versatility 

of entropy is implicit here. Our results do not rely on thermodynamic principles, or even physical principles 
for that matter, to be true. They constitute valid results derived in the context of a general model of control 

processes whose precise nature is yet to be specified. 

Entropy and optimal control theory  

Consideration of entropy as a measure of dispersion and uncertainty led us to choose this quantity as a 

control function of interest, but other information0theorretic quantities may well have been chosen instead if 
different control applications require so. From the point of view of optimal control theory, all that is required 

is to minimize a desired performance criterion (a cost or a Lyapunov function), such as the distance to a 

target point or the energy consumption, while achieving some desired dynamic performance stability) using a 
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set of permissible controls. For example, one may be interested in maximizing closedHD  instead of minimiz-

ing this quantity if destabilization (anti-control) mixing is an issue. As other examples, let us mention the 

minimization of the relative entropy distance between the distribution of the state of a controlled system and 
some target distribution, the problem of coding, as well as the minimization of rate-like functions on decision 

or game theory.   

The purpose of quantum control in general case is defined as intelligent process of a reduction of the en-

tropy of the control systemQ , e.g., quantum Maxwell demon, quantum bang-bang control, and quantum 

error correction code. Fundamental limits on the controllability of quantum mechanical system can be dis-

cussed in the light of quantum information theory: The amount of entropy reduction that can be extracted 

from a quantum system by feedback controller is upper bounded by a sum of the decrease of entropy achiev-
able in open-loop control and the mutual information between the quantum system and the controller. This 

upper bound sets a fundamental limit on the performance of any quantum controllers whose designs are 

based on the possibilities to attain low entropy states. An application of this approach pertaining to quantum 
error correction is also discussed. 

Remark. The rapid development of quantum information technology suggests that quantum control the-

ory might profitably be reexamined from the perspective of quantum information theory. In this section we 
address explicitly the role of quantum information and entropy in quantum control processes. Specifically, 

based on classical theories, we prove several limiting results relating to the ability of a control device to 

reduce the von Neumann entropy ( )logQ QS Tr= r r of an arbitrary quantum system 
Qr  in the cases where 

(i) a controller independently acts to the state of the system (open-loop control) and (ii) the control action is 
influenced by some information gathered from the system (feedback control). 

When a quantum system Q  initially prepared in a pure state 
0rinteracts with an environment repre-

sented by the density operator 
( )En
r , the system Q  and environment evolve according to the joint unitary 

evolution operator 
QEnU . Then the density operator for the system Q  and environment is 

( )( ) À

0

En

QEn QEnU Ur r r= Ã . After performing a partial trace over environment variables, the marginal 

density matrix of the system Q  is represented by a completely positive and trace preserving map E , which 

takes the form ( ) À

0 0

Q

i i
i

E Er r r= =äE , where the Kraus operatorsiE ôs satisfy the trace preserving proper-

ty, i.e., 
À

i i
i

E E I=ä . This equation is known as operator-valued representation of the quantum operationE .  

Unitary evolution of the quantum system is a special case in which there is only one non-zero term in 

the operator sum; if there are two or more terms, the pure initial state becomes a mixed state. Therefore, the 

von Neumann entropy of the system Q  increases, i.e., () ( ) ( )0
QS Q S Sr r¹ > , because of the interaction 

with environment. In this case the purpose of quantum control is defined as a reduction of the entropy of the 

system Q . We will consider the fundamental limits on the control of quantum mechanical systems from the 

viewpoint of quantum information inequalities.  

Information-theoretic analysis of open-loop and closed-loop (feedback) quan-
tum control systems 

We address explicitly the role of quantum information and entropy in quantum control process of a QA-

evolution. Specifically, we consider several limiting results, based on classical theories, relating to the ability 

of a control object to reduce the von Neumann entropy ( )logQ QS Tr r r=  of an arbitrary system 
Qr  in 

the cases where (i) controller independently acts to the state of the system (open-loop control); and (ii) the 

control action is influenced by some information gathered from the system (feedback control). The infor-
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mation-theoretic analysis of open-loop and closed-loop (feedback) control gives the fundamental limits on 

the control of quantum mechanical system as QA from the viewpoint of quantum information theory [37-42].  

A. Quantum open-loop control. We will consider a joint unitary evolution (a control unitary operation) 

of quantum system Q  and controllerC . Let the quantum system Q  and the controller C  be disentangled 

before the control unitary operation. We also assume that the state of system Q  and C  are respectively 

given by ( ) À

0 0

Q

i i
i

E Er r r= =äE and
C

i C
i

p i ir =ä . Here 
C

i  is an orthonormal basis of system C  

and 1i

i

p =ä . Therefore, the state of the joint system ( )QC  is given by:  

,

QC Q C Q

i j C
i j

p i ir r r r= Ã =ä ,  
À

0

Q

j j jE Er r= . 

In order to reduce the entropy of the systemQ , a control unitary transformation 
opU is applied to joint 

system ( )QC . Then the system ( )QC  undergoes the evolution:  

ÀQC QC

op opU Ur r . 

We shall consider two types of control unitary operation: (i) global unitary operation; and (ii) local 

quantum operation and classical communication (LOCC).  

Figures 15 a,b shown these types of control [37, 38]. 

 

 

Figure 15: Quantum Control Schemes 

Remark. In Figure 15 (a) quantum open-loop control using global unitary transformations; (b) quantum 

open-loop control using LOCC; (c) quantum feedback control using global unitary transformations; (d) 

quantum feedback control using LOCC 

A1. Global unitary operation. In former case, the entropy of the total system becomes: 

( ) ( ) ( ) ( ), ,out out out outS Q C S Q C S Q S C= ¢ + , where we have used the subaddivity of the entropy.  

From this inequality, we finally obtain the entropy reduction 
open

QSD  as:  

 () ( ) ( ) ()open

Q out outS S Q S Q S C S CD = - ¢ - , (47) 
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with the equality iff : out out out outQ C Q Cr r r= Ã .  

Therefore, the entropy reduction is upper bounded by the maximum amount of the entropy increase of 

the controller C . 

A2. LOCC-operation. In the case of LOCC-strategy the control unitary operation is given by 

op i C
i

U U i i= Ãä . Therefore, the state after the open-loop control becomes  

À

,

out outQ C Q

op i i j i C
i j

U pU U i ir r= =ä . 

Then, the marginal density operator of outQ  is given by: 

( ) Àout out outQ Q C Q

C i i i

i

Tr pU Ur r r= =ä . 

Now using the concavity of the von Neumann entropy as ( )i i i i

i i

S p p Sr r
å õ

¢æ ö
ç ÷
ä ä , we see that:  

 ( ) ( ) ()À ÀQ Q

out i i i i i i

i i

S Q S pU U p S U U S Qr r
å õ

= ² =æ ö
ç ÷
ä ä .  (48) 

Therefore for open-loop control the LOCC-strategy finally: 0open

QSD ¢. This means that we can never 

reduce the entropy of system Q  in contrast with the case of the global unitary operation strategy. 

B. Quantum feedback control.  In this case, the controller C  performs measurements on the system Q  

and feeds back the results of these measurements by applying operations that are the functions of the meas-

urement results. Although both the system Q  and the controller C  are quantum mechanical in principle, the 

feedback operations we consider here involve feeding back classical information.  To analyze quantum 

feedback control, we need to consider quantum measurement processes. We consider (for simplicity) a 

POVM measurement in which the entropy of the system Q  does not decrease, e.g., the conventional von 

Neumann measurement model.  

As in the case of open-loop control, we shall investigate two types of control strategies (see Figures 15 

c,d).  

B1. Global unitary operation. Figure 15 c shows a basic quantum feedback control using a global con-

trol unitary operation. The entropy of the controller outC  is calculated as  

 

( ) ( ) ( ) ( )

( ) ( ) ( )

() ( ) ( ) ( ) ( )

, :

, :

: :

out out out out out out

out out out

out out out

Entropy defect of control object Mutual information loss

S C S Q C S Q I Q C

S Q C S Q I Q C

S Q S Q S C I Q C I Q C

= - +

¡ ¡= - +

¡ ¡ ¡¢ - + + -

  (49) 

Here ( ) () () ( ): ,I A B S A S B S A B= + -  is the quantum mutual information of systemsA  andB .   

Therefore, the entropy reduction for quantum feedback using the global unitary operation is given by 

the following: 
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() ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

, :

: :

max :

Feedback

Q out out out out

out out out

Entropy defect of controller Mutual information loss

Open

Q
U

S S Q S Q S Q C S Q I Q C

S C S C I Q C I Q C

S I Q C

¡ ¡D = - ¢ - +

¡ ¡ ¡= - + -

¡ ¡¢ D +

  (50) 

Here max Open

Q
U

SD  is the maximum entropy reduction attained by restricting the control model to open-

loop system.  

The equality holds iff
Q Qr r¡=  and  

 ( ) ( ) ( ): max Open

out out out Q
U

S C S C I Q C S¡- - = D . (51) 

Therefore, the maximum improvement that closed loop can give over open-loop control is limited by 

the quantum mutual information obtained by the controllerC .  

Now we shall consider quantum feedback control using the LOCC.  

B2. LOCC-operation. Figure15 d show the quantum feedback control scheme using the LOCC. In this 

case the entropy reduction is upper bounded by the quantum mutual information between intermediate quan-

tum states Q¡ of control object and controller C¡, i.e.,  

 ( ):Feedback

QS I Q C¡ ¡D ¢ . (52) 

In this strategy, one performs a measurement (on the state
Qr ) described by positive operators {}iP , 

and feeds back the results by applying a unitary transformation iU  when the i th outcome is found. Then the 

state change of the subsystem Q  can be written as  

( )À À ÀoutQQ Q Q Q Q

i i i i i i

i i

P P U P P Ur r r r r r¡
 =  = ¹ä ä C . 

From the inequality of the entropy exchange ( ),exS rE  for a quantum operation as  

()( ) () ( ), 0exS S Sr r r- + ²E E  

it follow that  

( ) () ( ), 0Q

out exS Q S Q S r- + ²C . 

Thus we inequality for the entropy reduction,  

 () ( ) ( ),Feedback Q

Q out exS S Q S Q S rD = - ¢ C . (53) 

The entropy exchange is not greater than the Shannon entropy for the probabilities 

( )À Àq Q

i i i i ip Tr U P P Ur= . 

Thus, ( ) ( ),Q q

ex iS H pr ¢C , where equality holds iff the operator i iU P  is a canonical decomposition of 

C respect to 
Qr . Therefore we have: 

 ( ) logFeedback q q q

Q i i i

i

S H p p pD ¢ =-ä . (54) 
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Remark.  The joint state after measurement is given by  

ÀQ C Q q

i i i iC C
i i

P P i i p i ir r r¡ ¡
= Ã = Ãä ä , 

where 

ÀQ

i i
i q

i

P P

p

r
r= . Therefore the entropy of the system ( )Q C¡ ¡is given by  

 ( ) ( ) ( ) ( )

0

, q q q q

i i i i i iC
i i

S Q C S p i i H p p S H pr r
å õ

¡ ¡= Ã = + =æ ö
ç ÷
ä ä   (55) 

where in the second equality the joint entropy theorem is used. The marginal density operators of subsystems 

Q¡ and C¡ are respectively given by 
Q q

i Q
i

p i ir¡
=ä  and 

C q

i C
i

p i ir¡
=ä  so we have: 

( ) ( ) ( )qiS Q S C H p¡ ¡= = . 

Therefore the mutual information between subsystems Q¡ and C¡ is  

 ( ) ( ) ( ) ( ) ( ): , q

iI Q C S Q S C S Q C H p¡ ¡ ¡ ¡ ¡ ¡= + - = .  (56) 

While in the case of the quantum feedback using LOCC,( ) ( ):q

iH p I Q C¡ ¡= , the entropy reduction is 

given by  

 ( ) ( ):Feedback q

Q iS I Q C H p¡ ¡D ¢ = .  (57) 

This implies that the maximum amount of entropy reduction is exactly equal to the maximum mutual in-

formation between subsystems Q¡ andC¡, i.e., ( ):I Q C¡ ¡.  

Remark. The quantum mutual information( ):I A B  is related to the correlation between subsystems A  

and B : If joint system A  and B  is a product state, then ( ): 0I A B = ; however, ( ): 0I A B >  if the 

subsystems A  and B  are (classically or quantum mechanically) correlated. In the case of the quantum 

feedback (see, Figures 15 c,d) the quantum measurement germinates not quantum but classical correlation 

[42] between Q  and C .  

Therefore, we can conclude that the classical correlation between Q¡ and C¡ can increase the amount 

the entropy reduction in compared with the case of the quantum open-loop control.  

These results are the background for information analysis of successful solution searching from QAs 

evolution. 

We give an introduction to the topic of Quantum Feedback Control, explaining what its objectives are, 

and describing some of its physical resources, limitations and information bounds. Reader that not familiar 
with classical feedback and stochastic control can find the necessary information in Appendices. 

Conclusions 

In present article we are concentrate our attention on the description of efficient quantum feedback con-

trol models, its physical limits and information bounds and tradeoffs between performance, stability and 
robustness. We are considered separating the problem of designing Hamiltonian quantum feedback control 

algorithm into a measurement (estimation) strategy and a feedback (control) strategy, and we consider opti-

mizing desirable properties of each under the minimal constraint that the available strength of both is limited. 
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These motivate concepts of information extraction and disturbance that are distinct from those usually con-

sidered in quantum information theory. Mathematical background is described in [39-42]. 

We are focuses on the design of control fields that achieve given state transfers with the minimum 

amount of energy expenditure. Besides their inherent mathematical interest, such optimal designs are closely 

tied to the dynamics of the underlying system and reveal much about the interplay of dynamics and control. 
We consider energy-optimal transfers in a general isolated quantum system, for example an atom or a mole-

cule. By examining the large-time limit of these optimal transfer problems, we uncover the general structure 

of the optimal controls. Moreover, we reduce the computational complexity of the problem significantly. 

While feedback control of the system Hamiltonian is sufficient to cover the full classical control prob-
lem, it is not sufficient in the quantum case. This is because, in general, the quantum measurement process 

disturbs and changes the dynamics of the system. Consequently the formulation of the full quantum feedback 

control problem must also allow for the possibility that the measurement process is also changed as a result 
of the observations.   

We examine similar problems for open quantum systems, that is, quantum systems that interact with 

their environment. This interaction creates dissipative effects in the system. Although one usually wants to 

resist these effects, there are instances, such as the cooling of internal molecular motion, that one can effec-
tively use dissipation mechanisms to oneôs advantage. We apply techniques similar to those developed for 

isolated systems to design ñcoolingò electric (laser) fields for molecular rotations. We will look at the formu-

lation of quantum feedback control theory for continuously observed open quantum systems in a manner that 
highlights both the similarities and differences between classical and quantum control theory. We will in-

volve a discussion of special topics in the field and is meant to provide a casual overview of current experi-

ments in quantum control. 

This review was assembled from various lecture notes, (conference and meeting) presentations and re-

search papers of many authors, and so we apologize for the inevitable inconsistencies that resulted. Neils 

Bohr says: ñNever speak more than you think.ò In References we are introduced the employment original 

publications according to Neils Bohr recommendation. 

Appendix 1. Boson and Fermion Fields 

We may think of observables as quantum random variables, and the key distinction with classical prob-

ability is that quantum random variables do not in general commute. Indeed, if ( ), ,PWF  is a classical 

probability space then classical bounded real-valued random variables in ( ), ,L P¤ WF  have an interpreta-

tion as multiplication operators that map the Hilbert space ( )2 , ,L PWF  to itself. Since all such operators 

commute with one another, bounded classical real-valued random variables are thus isomorphic to (and can 

be viewed as) commuting observables on ( )2 , ,L PWF .  

In quantum field theory, a one dimensional quantum field (with parameter t) consists of a collection of 

systems each with annihilation ()a t  and creation operators ()a t*
 used to describe the annihilation and 

creation of quanta or particles at index location or point t. ()a t  and ()a t*
 are referred to as field operators, 

the annihilation and creation field operators, respectively. The index t may represent a range of variables, 

including position, frequency and time, and we assume here that t lies in a continuous interval T in . Basic 

considerations lead to the postulate that the annihilation and creation operators must satisfy either the com-

mutation relations  

 () () ( ),a t a t t td* ¡ ¡è ø= -ê ú  (A1.1) 

or the anticommutation relations 
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 () (){ } ( ),a t a t t td* ¡ ¡= -  (A1.2) 

for all ,t t T¡Í , where ()td  denotes the Dirac delta distribution. 

Fields that satisfy the commutation relations (A1.1) are called boson fields (e.g. photons), while fields 

that satisfy the anticommutation relations (A1.2) are called fermion fields (e.g. electrons). We will take the 

parameter t to be time and [ )0,T= ¤. In this case ()a t  has the interpretation of annihilation of a photon  

(in the case of a bosonic field) or electron (in the case of fermionic field) at time t, whereas ()a t*
 has the 

interpretation of creation a photon (in the case of bosons) or electron (in the case of fermions) at time t. One 

can imagine these fields as a continuous collection or stream of distinct quantum systems (one quantum 
system for each t) hence, informally, quantum fields can be defined on some continuous tensor product  

Hilbert space [ )0, ttÍ ¤
=ÃH H , where 

tH  is a Hilbert space for each t (of the quantum system arriving at 

time t). Although such an object can be rigorously defined and constructed, from a mathematical viewpoint it 

is such easier not to work directly with the field operators ()a t  and ()a t*
 but with their integrated ver-

sions, the so-called smeared quantum field operators, as will be discussed below. Smeared quantum field 

operators can be constructed on Hilbert spaces known as Fock spaces (symmetric Fock space 
symF  for bos-

ons and antisymmetric Fock space 
antisymF  for Fermions) which have the character of a continuous tensor 

product Hilbert space. Modulo the specification of the statistics of the field, a quantum field has the character 
of a quantum version of white noise, while its integrated version can be viewed as a quantum independent 

increment process. Thus, exploiting the properties of smeared quantum fields, Hudson and Parthasarathy 

were able to develop a quantum stochastic calculus which is essentially a quantum version of the Ito stochas-
tic calculus. 

The model we use to describe the system shown in Figure A1.1 employs boson and fermion fields ()b t  

and ()a t , respectively, parametrized by time [ )0,t= ¤ which accounts for the time evolution of fields 

interacting with the system (e.g. an atom or quantum dot) at a fixed spatial location. In the remainder of this 
section we describe the quantum stochastic calculus that has been developed to facilitate modeling and 

calculations involving these fields.  

 

Figure A1.1. Schematic representation of a system coupled to boson B and fermion 
0 1,A A  fields 

Some basic aspects of quantum stochastic integrals and the quantum Ito rule are discussed in Appendix 

A1.2. 



ʕʣʝʢʪʨʦʥʥʳʡ ʞʫʨʥʘʣ çʉʠʩʪʝʤʥʳʡ ʘʥʘʣʠʟ ʚ ʥʘʫʢʝ ʠ ʦʙʨʘʟʦʚʘʥʠʠè                        ɺʳʧʫʩʢ ˉ1, 2018 ʛʦʜ 

43 
 

 

 

 

The boson field channel B in Figure A1.1 is defined on a symmetric Fock space 
symF . The commutation 

relations for the boson field are () () ( ),b t b t t td* ¡ ¡è ø= -ê ú , from (A1.1). For a boson channel in a Gaussian 

state, the following singular expectations may be assumed: 

 
()() ( ) () () ( )( )

()() ( ) () () ( )

,    1 ,

,    ,  

b t b t N t t b t b t N t t

b t b t M t t b t b t M t t

d d

d d

* *

* * *

¡ ¡ ¡ ¡= - = + -

¡ ¡ ¡ ¡= - = -
 (A1.3) 

Here X  is a standard notation used to denote the quantum expectation of a system operator X (i.e., 

[], 0X X N= ²E  is the average number of bosons, while M describes the amount of squeezing in the 

field state. We have the identity ( )
2

1M N N¢ + . For a thermal state, 0M =  and 

 
( )

1

1
E

N
e
b m-

=
-

 , (A1.4)  

where 
1

Bk T
b=  is the inverse temperature, E  is the energy, and ɛ is the chemical potential. 

We will assume 0N M= =, which corresponds to the case of a boson field in the vacuum (ground) 

state. The vacuum boson field is a natural quantum extension of white noise, and may be described using the 

quantum Ito calculus. In this calculus, the integrated field processes () ()
0

t

B t b s ds=ñ  (annihilation), 

() ()
0

t

B t b s ds* *=ñ  (creation) and () ()()
0

t

t b s b s ds*L =ñ  (conservation) are used. The non-zero Ito prod-

ucts for the vacuum boson field are 

 
() () () () () ()

() () () () ()

,    ,

,       

d t d t d t d t dB t dB t

dB t d t dB t dB t dB t dt

* *

*

L L = L L =

L = =
.  (A1.5) 

We now specify the fermion channels 
0A  and 1A  in Figure A1.1. We assume the followings singular 

expectations for a fermion field A, defined on an antisymmetric Fock space 
antisymF : 

 
()() ( ) () () ( )( )

()() ( ) () () ( )

,    1 ,

,     

a t a t N t t a t a t N t t

a t a t M t t a t a t M t t

d d

d d

* *

* * *

¡ ¡ ¡ ¡= - = - -

¡ ¡ ¡ ¡= - = -
. (A1.6) 

In general we have 0 1N¢ ¢ along with the identity ( )
2

1M N N¢ - . For a thermal state we 

have 0M = , and 

 
( )

1

1
E

N
e
b m-

=
+

  (A1.7) 

In what follows we take the zero temperature limit 0T . For fermion channel 1 we assume the ener-

gy is such that E m<  and so in the zero temperature limit this channel is fully occupied, 1N= , and the Ito 

rule () ()1 1dA t dA t dt* = (A1) applies for the corresponding integrated processes () ()1 1
0

t

A t a s ds=ñ  and 

() ()1 1
0

t

A t a s ds* *=ñ . For fermion channel 0 we fix E m> , in which case 0N= , describing a reservoir 
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which is unoccupied. The number process () () ()0 0 0
0

t

t a s a s ds*L =ñ  is well defined for fermion channel 0 

(but not for channel 1), and the Ito table is 

 
() () () () () ()

() () () () ()

0 0 0 0 0 0

0 0 0 0 0

,    ,

,       

d t d t d t d t dA t dA t

dA t d t dA t dA t dA t dt

* *

*

L L = L L =

L = =
  (A1.8) 

The fermion channels are defined on distinct antisymmetric Fock spaces 
() ()1 0

antisym antisymF ,F . 

System Coupled to Boson and Fermion Fields  

The system S ill ustrated in Figure A1.1 is defined on the Hilbert space 
SY , and so the complete system 

coupled to the boson and fermion fields is defined on the tensor product Hilbert space  

 
() ()1 0

S sym antisym antisym= Ã Ã ÃY Y F F F   (A1.9) 

Due to the presence of fermion field channels, it is necessary to introduce a parity structure on the col-

lection of operators on this tensor product space. We therefore have a parity operator ton Y  such that for 

all operators X and Y on Y  we have ( ) ( )()XY X Yt t t=  and ( ) ( )X Xt t
** = . Operators X such that 

( )X Xt =  are called even, while those for which ( )X Xt =-  are called odd. As example, fermion annihi-

lation and creation operators are odd, while the fermion number operator is even. All boson operators are 

even. A system operator, i.e. an operator X acting nontrivially on 
SY  only, that is even will commute with 

all field operators, while an odd system operator will anticommute with odd fermion field operators. All 
boson field operators commute with all system operators and all fermion field operators. 

The Schrºdinger equation for the complete system is 

() ( ) () () () () () ()

( ) () () () ()

1 1 1 1 1 1

0 0 0 0 0 0 0 0 0

1 1

2 2

1
                                      (A1.10)

2

dU t S I d t dB t L L SdB t L Ldt dA t L L dA t L L dt U t

S I d t dA t L L S dA t L L dt iHdt U t

* * * * * *

* * *

å õ
= - L + - - + - - +æ ö
ç ÷

å õ
- L + - - -æ ö

ç ÷

 

with initial condition ()0U I= . The operators 
0 1, , , ,S L H S L and 0L  are system operators, where 

o 
0, , ,S L H S  are even (and thus also their adjoints), and 

o 1L  and 0L  are odd (and thus also their adjoints). 

The operator H is called the Hamiltonian, and it describes the behavior of the system in the absence of 

field coupling. The operators 
0 1, , , ,S L H S L and 0L  describe how the field channels couple to the system (S 

and 0S  are required to be unitary). Note that often terms involving the creation and annihilation operators in 

(A1.10) ensure a total energy conserving exchange of energy between the system and the field channels; for 

example, an electron may transfer from the field to a quantum dot, and vice versa. Consequences of the 

specified parity of the above operators and the fact that ()0U I=  is even is that ()U t  is even and hence 

commutes with all the Ito differentials, and, by the quantum Ito rule, is a unitary process (we have 

0 0 0 0 1 1 1 1, ,dA L L dA dA L L dA* * * *=- =-  and ,dB L LdB* *= . 
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Heisenberg Picture Dynamics 

A system operator X at time t is given in the Heisenberg picture by () () () ()tX t j X U t XU t
*

= =  

and it follows from the quantum Ito calculus and the commutation and anticommutation relations arising 
from the chosen parity that 

 

( ) ( ) () () [ ]( ) ( ) () ( )( )

() ( )( ) ( )( ) () ( )( )

( ) () () ( )( )( )

( )( )( ) () ( )( ) [ ]( )

1 1 1 1 1 1 1

0 0 0 0 0 0 0

0 0 0 0 0

, ,

             

             

             ,

t t t t t

t t t

t t

t t t

dj X j S XS X d t dB t j S X L j L X S dB t j X dt

dA t j X L L X j L X XL dA t j X dt

j S XS X d t dA t j S X L L X

j L X XL S dA t j X dt i X H dt

t t

t

t

** * *

* * *

** *

* *

è ø= - L + + +ê ú

+ - + - +

+ - L + -

+ - + -

L

L

L

(A1.11) 

where 

( ) ( ) ( )

( ) ( )

1 1 1 1 1

0 0 0 0 0 0 0

1 1 1 1
,    ,

2 2 2 2

1 1
,

2 2

X L XL XL L L LX X L X L XL L L L X

X L X L XL L L L X

t

t

* * * * * *

* * *

= - - = - -

= - -

L L

L

 

and in the case of even operators we shall just write  

( ) ( ) ( )
1 1

,   0,1
2 2

i i i i i i iX L X L XL L L L X it* * *= - - =L . 

The boson and fermion output fields are defined by 

() ()() () () ()() () () () () ()

() () () () () () () ()

1, 1

0, 0 0, 0

,    ,   A ,

A ,  

out out out

out out

B t U t B t U t t U t t U t t U t A t U t

t U t A t U t t U t t U t

* * *

* *

= L = L =

= L = L
 

and satisfy the corresponding quantum stochastic differential equations (QSDEs) 

() () () () () ( ) () ( ) ( ) () ()

() ( ) () () ( ) ( ) ()

() ( ) () ( ) ( ) () ()

1, 1 1 0, 0 0 0

0, 0 0 0 0 0 0 0 0 0

,   ,

,   ,

out t t out t t t

out t out t t

out t t t

dB t j L dt j S dB t d t j LL dt dB t j S L j L S dB t d t

dA t j L dt dA t dA t j L dt j S dA t

d t j L L dt dA t j S L j L S dA t d t

* * * *

*

* * * *

= + L = + + + L

= + = +

L = + + + L

 

The State 

Let us define a state [].E  on the von Neumann algebra of observables to be an expectation, that is, a 

linear positive normalized map from the observables to the complex numbers; positive meaning that 

0X X*è ø²ê úE for any observable X and normalized meaning [] 1I =E , where I  is the identity operator. 

For technical reasons we require the state to be continuous in the normal topology. We shall assume that the 

state is a product state with respect to the system-environment decomposition: [ ]
S S

X F X FÃ ¹E , for 

system observable X and environment observable F. In particular we take 
E
Ö  to be the mean zero gaussian 

state with covariance (A1.6) and the choice of 1N=  (the Fermi vacuum). 
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We say that the state is even if we have 

 t=E E , (A1.12) 

where t is the parity operator that was introduced above. Specifically, this forces all odd observables to 

have mean zero. In quantum theory, the observable quantities must be self-adjoint operators, however, it is 

not necessarily true that all self-adjoint operators are observables as there may exists so-called superselection 
sectors. In the present case, only the even self-adjoint operators are observables. We need to ignore states 

which lead to unphysical correlations between component systems, this is referred to a superselection princi-

ple in the quantum physics literature. We need therefore to restrict our interest to even states only. More 

specifically, we shall assume that the factor states 
S
Ö  and 

E
Ö  are separately even on the system and envi-

ronment observables respectively. 

The expected values of system operators X evolve in time as follows. Define 

 () ()t tX j Xm = è øê úE  (A1.13) 

Then by taking expectations of (A1.11) we find that for even observables X  

 ( ) ( ) ( ) ( )( )1 0t tX X X Xm m= + +L L L ,  (A1.14) 

which is called the master equation, and corresponds to the Kolmogorov equation. This may be expressed in 

Schrºdinger form using the density operator ()tr  defined by () ()t X Tr t Xm r= è øê ú which exists by our 

assumption of normal continuity of the state. The density operator is then an even positive trace-class opera-

tor, normalized so that () 1Tr tr =è øê ú , satisfying the equation 

 () ()( ) ()( ) ()( )1 0t t t tr r r r* * *= + +L L L  (A1.15) 

where  

()
1 1

2 2
L L L L L Lr r r r* * * *= - -L ,  

()1 1 1 1 1 1 1

1 1

2 2
L L L L L Lr r r r* * * *= - -L , 

()0 0 0 0 0 0 0

1 1

2 2
L L L L L Lr r r r* * * *= - -L . 

Fermion Filter 

We suppose that electrons in fermion channel 0, after interaction with the system, can be continuously 

counted; that is, the observables ()0, ,0out s s tL ¢ ¢ are measured. The problem is, given an even state E  

as outlined above, to determine estimates ()ĔX t  of system operators X given the measurement record. This is 

a filtering problem involving a signal derived from a fermion field. As mentioned above only the even opera-

tors may be observable, and in fact the expectation and conditional expectation of all odd operators must 
vanish identically. Mathematically, we wish to determine equations for the quantum conditional expectations 

 () () ()Ĕ
t t tX t X j Xp= = è øê úE J    (A1.16) 
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Here, X is a system operator, tJ  is the algebra generated by the operators ()0, ,0out s s tL ¢ ¢, a commuta-

tive von Neumann algebra, and tp is the conditional state. In quantum mechanics, conditional expectations 

are not always well defined due to the general lack of commutativity. However, the conditional expectation 

(A1.16) is well defined because ( )tj X  commutes with all operators in the algebra tJ . This is called the 

non-demolition property, and is a consequence of the system-field model, where fermion field channel 0 

serves as a probe. The quantum conditional expectation (A1.16) is characterized by the requirement that  

 () ()   for all t t tj X Z X Z Zp= Íè ø è øê ú ê úE E J  (A1.17) 

The quantum filter for the conditional expectation (A1.16) is given by ( ) 0t Xp =  for odd observables, 

while for even observables satisfies the equation 

 ( ) [ ] ( ) ( ) ( )( )
( )
( )

( ) ()
0 0

1 0

0 0

,
t

t t t

t

L XL
d X i X H X X X dt X dW t

L L

p
p p p

p

*

*

ë ûî î
= - + + + + -ì ü

î îí ý

L L L  (A1.18) 

where ()W t  is a tJ  martingale (innovations process) given by 

() () ( ) ()0 0 ,   0 0tdW t dY t L L dt Wp *= - =. 

Let 
0r be the initial even density matrix for the system, then in the Schrºdinger picture we may define 

the conditional density operator ()Ĕtr  by () ()Ĕt X Tr t Xp r= è øê ú, and obtain the filtering equation 

() ()( ) ()( ) ()( )( )
()

()( )
() ()0 0

1 0

0 0

Ĕ
Ĕ Ĕ Ĕ Ĕ Ĕ

Ĕ

L t L
d t t t t dt t dW t

Tr L t L

r
r r r r r

r

*

* * *

*

ë ûî î
= + + + -ì ü

î îí ý

L L L . 

Appendix 2. Quantum stochastic calculus 

Let (){ }, 0t tB B tw w= ÍW ², be one-dimensional Brownian motion. Integration with respect to tB  

was defined by Ito. A basic result of the theory is that stochastic integral equations of the form 

 ( ) ( )0
0 0

, ,
t t

t s s sX X b s X ds s X dBs= + +ñ ñ   (A2.1) 

can be viewed as stochastic differential equations of the form 

 ( ) ( ), ,t t t tdX b t X dt t X dBs= +   (A2.2) 

where differentials are handled with the use of Itoôs formula 

 ( ) ()
2 2

,   0t t tdB dt dB dt dtdB dt= = = =. (A2.3) 

Hudson and Parthasarathy obtained a Fock space representation of Brownian motion and Poisson pro-

cess. 

The Boson Fock space ( )( )2 ,L +G=G C  over ( )2 ,L +C  is the Hilbert space completion of the line-

ar span of the exponential vectors ()fy under the inner product () () ,
,

f g
f g ey y = , where 
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( )2, ,f g L +Í C  and ()()
0

,f g f s g s ds
¤

=ñ  where, here and in what follows, z  denotes the complex 

conjugate of zÍ . 

The annihilation, creation and conservation operators () ()À,A f A f , and ()FL  respectively, are de-

fined on the exponential vectors ()gy  of G as follows. 

() () () () [ ]( ) () [ ]( )0,À

0,0
0 0

;  ;  t
t

t t tt
A g g s ds g A g g g e g

c
y y y y c y y

= =

µ µ
= = + L =

µ µñ
ʪ

ʪ ʪ

ʪ
ʪ ʪ

. 

The basic quantum stochastic differentials 
tdA , 

À

tdA  and 
tdL are defined as follows. 

À À À;  ;  t t dt t t t dt t t t dt tdA A A dA A A d+ + += - = - L =L -L. 

The fundamental result which connects classical with quantum stochastics is that the processes tB  and 

tP  defined by ( )À À;   t t t t t t tB A A P A A tl l= + =L + + + are identified through their vacuum characteris-

tic functions () () () ()
( )21

1
20 , 0 ;   0 , 0

is

t t
s t e tisB isP

e e e e
l

y y y y
- -

= =  with Brownian motion and Poisson 

process of intensity l respectively. 

Hudson and Parthasarathy defined stochastic integration with respect to the noise differentials of defini-
tion and obtained the Ito multiplication Table  

 

Within the framework of Hudson-Parthasarathy ñQuantum Stochastic Calculusò, classical quantum me-

chanical evolution equations take the form 

 ( )À

0

1
;  

2
t t t t tdU iH L L dt L HdA LdA I W d U U I* *å õå õ
= + + - + - L =æ öæ ö
ç ÷ç ÷

, (A2.4) 

where, for each 0, tt U²  is a unitary operator defined on the tensor product ( )( )2 ,L +ÃGH C  of a sys-

tem Hilbert space H  and the noise (or reservoir) Fock space . Here , ,H L W  are in ( )B H , the space of 

bounded linear operators on H , with W unitary and H self-adjoint. In all cases, I denotes the appropriate 

identity operator. Here and in what follows we identify time-independent, bounded, system space operators X 

with their ampliation X IÃ  to ( )( )2 ,L +ÃGH C . All Hilbert space inner products are linear on the right. 

The quantum stochastic differential equation satisfied by the quantum flow ( )t t tj X U XU*= , where X  

is a bounded system space operator, is 
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( ) [ ]( ) ( )

( ) [ ]0

1
, 2

2

              , , ,

                  ,   0,

tj t

t t t t t t

d X j i H X L LX XL L L XL dt

j L X W dA j W X L dA j W XW X d

j X X t T

* * *

* * * *

å õ
= - + -æ ö
ç ÷

è ø+ + + - Lê ú

= Í

 

The commutation relations associated with the operator processes 
À,t tA A  are the Canonical (or Heisen-

berg) Commutation Relations (CCR), namely 
À,t tA A tIè ø=ê ú . 

Elements of quantum stochastic differential equations 

In the previous sections, we derived equations of motion for single and cascaded components interacting 

with probe fields, which produce dynamics when integrated. It turns out, however, that proper integration is 
far from trivial, not just because the dynamics are complex, but because they are inherently stochastic. In this 

section we will summarize the use of Ito calculus to calculate these stochastic quantum dynamics. 

So far, we have been fairly cavalier (nevertheless, accurate) about dealing with the broadband input 

fields ()inb t . The mathematical description of these fields is highly singular due to the canonical commuta-

tion relations () () ( )À,in inb t b t t td¡ ¡è ø= -ê ú . To sidestep such singularities, let us define the time-integrated 

quantities () ()
0

t

in inB t b s ds=ñ  and () ()À À

0

t

in inB t b s ds=ñ , and consider increments in these fields 

() () () ()À À

0 0
,  d

t dt t dt

in in in indB t b s ds B t b s ds
+ +

= =ñ ñ . Note that the units of these increments are time , and 

their commutation relations are () ()À,in indB t dB t dt¡è ø=ê ú for t t¡=  and zero otherwise. These are quantum, 

non-commuting analogues of the classical Wiener process and are referred to as quantum noise increments or 
quantum stochastic increments. 

Further, by using the above singular commutation relations we can compute the following vacuum ex-

pectation values 

() () () ()

() () () ()

À À

À À

0,    0,

0,    ,

in in in in

in in in in

dB t dB t dB t dB t

dB t dB t dB t dB t dt

¡ ¡= =

¡ ¡= =
 for t t¡= , and zero otherwise, 

where ( )inA Tr Ar¹  and inr  is the initial state of the asymptotic input field, which is assumed to be the 

vacuum state of all frequency modes. The vacuum expectation values above are somewhat surprising be-

cause they state that the average value of second order products of increments of the input fields can be 

proportional to a first-order time increment ( )dt . This bears resemblance to stochastic Wiener increments in 

classical stochastic theory, and motivates us to think more deeply about how to integrate over such incre-

ments. Similar to classical stochastic increments, we define two types of integrals over the quantum stochas-

tic increments ()indB t : 

() () () () ( ) ()

() () () ( ) ( ) ()

1

1
0

0

1

1 1
0

0

I  lim ,

1
S  lim ,

2

nt

in i in i in i
n

i

nt

in i i in i in i
n

i

g s dB s g t B t B t

g s dB s g t t B t B t

-

+
¤

=

-

+ +
¤

=

= -è øê ú

å õ
= + -è øæ öê ú

ç ÷

äñ

äñ
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where the time interval [ )0,t  has been discretized into n segments, and g is any operator in the system 

subspace. These two definitions of integration, the first of which is called an Ito integral and the second is 

called a Stratonovich integral, are equivalent in standard calculus where the increments are regular. Howev-

er, since the quantum stochastic increments can vary wildly even in the nŸÐ limit, these two integral defini-
tions produce different results. As such, one must specify the type of integral a quantum stochastic differen-

tial equation (QSDE).  

In general, a QSDE derived from physical principles (e.g. Heisenberg equations of motion) corresponds 

to the Stratonovich integral definition. To understand why this is, note that real physical noise is never exact-
ly a white noise process. Instead, one uses (classical or quantum) white noise as an approximation of a real 

physical process in some limit (e.g. white noise approximates the Ornstein-Uhlenbeck process in the vanish-

ing correlation time limit). The Wong-Zakai theorem, and its quantum generalization, state that the behavior 
of a noise-driven physical system under this singular approximation of the real noise process is captured by a 

QSDE that is interpreted with respect to Stratonovich integration. This is consistent with the fact that Stra-

tonovich differentials are consistent with standard calculus rules, while Ito differentials obey a modified 
chain rule: 

 ()()( ) ()() () () () ()d X t Y t dX t Y t X t dY t dX t dY t= + + , (ɸ2.5) 

where ()X t  and ()Y t  are arbitrary functions of operator valued stochastic variables and ()dX t  and 

()dY t  are specified in terms of Ito QSDEs. The first two terms arise from the usual non-commutative chain 

rule and the third term is known as the ñIto correction". 

Therefore, the QSDEs we derived in the previous section for system operators or unitary propagators 

should be interpreted with respect to the Stratonovich integral (or more succinctly, we will refer to QSDEs 
being in Stratonovich or Ito ñform"). However, QSDEs in Ito form are often much easier to work with ana-

lytically and numerically. Fortunately, there is a straightforward procedure to convert between QSDEs in 

Stratonovich and Ito forms. 

In much of the following, an important mathematical object will be the unitary propagator for the sys-

tem, which generates evolution of any system operator (in the Heisenberg picture), () () ()Àa t U t aU t= . 

For the dynamics described above, the propagator takes the form: 

 () () ()( )( ){ } ()À À

0
0

exp ,   with  
t

sys in in SFU t ds iH Lb s L b s U t I= - + - =ñT . (ɸ2.6) 

Here T  denotes time ordering, 
SFI  is shorthand for the identity operator on the system and field degrees of 

freedom (i.e. 
system fieldI IÃ ), and we introduce the coupling operator L cg=  (note that while L is com-

monly referred to as an operator, it has units of time-½ ). One calculates the generator of this unitary, ()K t , 

as 

 () () () () ()( ) ()À À

sys in inU t K t U t iH Lb t L b t U tè ø= = - + -
ê ú

. (ɸ2.7) 

Because it will be used heavily in later sections, we write the Ito form here 

 () () ()À À À1
,   with 0

2
sys in in SFdU t iH L L dt LdB L dB dU t U I

è øå õ
= - + + - =æ öé ù
ç ÷ê ú

, (ɸ2.8) 
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where the term 
À1

2
L Ldt-  arises from the conversion between Stratonovich and Ito forms (i.e. the Ito correc-

tion).We will often write the Ito propagator ()U t  as 
tU  for convenience. 

Remark. [QSDE notation] By convention, QSDEs in Ito form are nearly always written in terms of in-

crements (e.g. an equation for ()dU t  and not ()/dU t dt). Stratonovich QSDEs are also sometimes written 

in terms of increments and in that case, it is customary to make explicit the Stratonovich interpretation by 

writing the product of a (possibly operator-valued) quantity ()g t  and an increment ()B t  as: () ()g t dB t . 

Applications of quantum stochastic calculus to the control of quantum evolutions and Langevin equa-
tions (quantum flows) can be found and the references within it. However, to the authorôs best knowledge, 

no work has been done in the direction of performing actual numerical computations, most likely with the 

use of a computer [8]. That would require the implementation of suitable algorithms whose reliability de-
pends on the existence of good norm estimates. It is that gap that this Appendix 2 aspires to close. 

Appendix 3: Ito and Stratonovich calculus 

Definitions of the Ito and Stratonovich multiplications for arbitrary stochastic operators tX and 
tY  in 

the Schrºdinger representation are given, respectively, by 

 ( ),t t t t dt tX dY X dY dY+Ö = -  (A3.1) 

 ( )t t t dt t tdX Y X X Y+Ö = -   (A3.2) 

and 

 ( )( )
1

,
2

t t t dt t t dt tX dY X X Y Y+ += + -  (A3.3) 

 ( )( )
1

2
t t t dt t t dt tdX Y X X Y Y+ += - + . (A3.4) 

From these relations we have the connection formulae between the Ito and Stratonovich products in the 

differential form as 

 
1

,
2

t t t t t tX dY X dY dX dY= Ö + Ö (A3.5) 

 
1

2
t t t t t tdX Y dX Y dX dY= Ö + Ö. (A3.6) 

Note that random average of the stochastic multiplication (A3.1) or (A3.2) of the Ito type is equal to ze-
ro. 

Definitions of the Ito and Stratonovich multiplications for stochastic operators ()X t  and ()Y t  in the 

Heisenberg representation are given in the same form by 

 () () () ( ) (),X t dY t X t Y t dt Y tÖ = + -è øê ú (A3.7) 
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 () () ( ) () (),dX t Y t X t dt X t Y tÖ = + -è øê ú  (A3.8) 

and 

 () () ( ) () ( ) ()
1

,
2

X t dY t X t dt X t Y t dt Y t= + + + -è øè øê úê ú (A3.9) 

 () () ( ) () ( ) ()
1

,
2

dX t Y t X t dt X t Y t dt Y t= + - + +è ø è øê ú ê ú (A3.10) 

where operators ()X t  and ()Y t  are introduced, respectively, through relations 

 () () ()1Ĕ Ĕ ,F t FX t V t X V t-=  (A3.11) 

 () () ()( )1Ĕ Ĕ ,F t FdX t d V t X V t-=  (A3.12) 

with ()Ĕ
FV t  being a stochastic time evolution operator. 

From (A3.7) to (A3.10), we have the connection formulae between the Ito and Stratonovich products in 

the differential form as 

 
1

( ) ( ) ( ) ( ) ( ) ( ),
2

X t dY t X t dY t dX t dY t= Ö + Ö  (A3.13) 

 
1

( ) ( ) ( ) ( ) ( ) ( )
2

dX t Y t dX t Y t dX t dY t= Ö + Ö . (A3.14) 

Stochastic multiplications (A3.7) to (A3.10) are consistent with corresponding types of differential cal-

culus for products of stochastic operators, which for the case of the Ito type calculus and the Stratonovich 

type calculus read, respectively, as 

 ()() () () () () () (),d X t Y t dX t Y t X t dY t dX t dY t= Ö + + Öè øê ú  (A3.15) 

and ()() () () () ().d X t Y t dX t Y t X t dY t= +è øê ú  
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