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Introduction

The advent of quantum information theory and the -@vaeasing experimental possibilities to irapl
ment this theory on real physical systems has created great demand for a theory on the comtntliof qu
systems[1-12]. Since qubits (i.e., twtevel quantum systems) make up the hardware (HW) for quantum
information processing one important question is how to optimally control or engineer their states. Many
problems of quantum computation and nanotestbgies can be formulated in terms of quantum optimal
control of untary or decohering gat¢8-18]. Most previous work on the optimal control of qubit states uses
an open loop strategy with a variational calculus approach to optimiZaie2?]. However in order to
apply controls one must nsider the qubit as an open guantum system which gives the possibility fer time
continuous nofdemolition measurements and thus a closed (feedback) loop strategy would be more adva
tageous. A fedback strategy we engyed using dynamic programming which is a globally optimal solution
to the control prblem and thus extends the previous locally optimal variational approfchek3]

Related worksFeedback control was introduced into quantum dynamics in the e&lQ s |, but it
not unt il the 19906s that it began to be studied
control in quantum systems was introduced by Belavkin, who obtained a quantum version of the Stratono-
vich equation, which is the clssical equation to describe the continuous measurement of a system. The
KalmanBucy filter is the special case of the Stratonovich equation for linear systems, in which #e mea
urement iis restricted to | inear sfivarkipeceventedritdromovh t he
ing an impact in the physics community, and the quantum version of the Stratonovich equation, referred to as
the Stochastic Master EquatiofSME), was obtained independently by Wiseman and Milburn building on
the work by Carmicael. Srinivas and Davies, Gisin, and Diosi also presented stochastic equations for meas-
ured systems in this time period. In 1994, Wiseman and Milburn showed thakeva master equation
could be derived to describe continuous feedback in quantum systaitedMarkovian feedbackif the
feedback was given by a particularly simple function of the stream of measurement results. In 1998, Yani-
gasawa and Kimura and Doherty and Jacobs introduced the notion of performing feedback insitgsest
obtained fromthe SME, in the control literature and physics literature, atiséy. Both sets of authors
showed that for linear systems this class of feedback protocols waslequte modern classical feedback
control, so that standard results for optimal contaalld be transferred to quantunstgms. This method
was in fact that proposed by Belavkin in 1983 in analogy to that used in classical control theory. In quantum
control, using estimates obtained from the SME is often referred to as Bayesian feedtliatikgiaish it
from Mar kovian feedback. I n the for mer the measu
estimate of properties of the current state, whereas in the latter the measurement stream is fedtlhyack direc
[11].

Remark Wiseman showek that feedback mediated by continuous measurements can in fact be impl
mented without measuremeriis]. To see how this works, let us consider twoaial mirrors between
which a single mode of the electromagnetic field is trapped (the two mirrore &reerr r ed t o0 as a
cavityo). The | i gone of thdrairrors lcam dekdstected) and thehimfoomatiph is used to
manipulate the optical mode. Alternatively, the output light can be directed to a mirror of another optical
cavity, andthus forms an input for this cavity. If we then connect an output from the second cavity back to
the first we have a loop, and light can be made to travel only one way around the loou$y tfieptical
circulators. For describing this situation the euiam inputoutput theory developed by Collet and Gardiner
is invaluable. The process of connecting quantum systems together vipdiee onavay travelingwave
fields was first considered by Gamdr andCarmichael wher e t he formeonwcadctieadn
Wiseman showed that cascade connections can implement the same feedback control processes as Markovi-
an meaurementbased feedback and can perform tabks the latter cannot

A second notion of feedback control without explicit measuremeastsimiroduced by Lloyd in 2000.
He suggested that a unitary interaction between two quantum systems could be used to implement feedback
control. This can be achieved, for example, by choosing the interaction so as to correlate tlsemsy sy
i.e., the catrolled system and the controller, whereby the state of the controller is dependent on the state of
the system. One then chooses a second interaction in which the evolution of the system depends on the state
of the controller. This partidar process is quivalent to a measurement followed by a unitary feedback
operation that depends upon the sueament result, although coherent feedback processes are not restricted

3
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to this form. Bot H rleiedd sf e@fd b m& a s u rh eameetonseaddi tllat e d b
which uses unitary interactions are nosferred to ascoherent feedback contr@CFC), and the latter is
often cal |l ed-feBdback. Allcdntdol irvaving exm@iait measurements is usually catiees-
urementbasedfeedback controlor justmeasurement feedback cont(MFC) [1-27].

In the 200006s James and his coll aboratorsnstudi
nected by onavay fields , and Gough and James built on inputput theory to construct a compact and
convenient formalism to handle arbitrarily complex networks. More recently a number of authors have
considered the use of nonlinear coheffestiback networks for various control tasks. In 2009, Nurdin,
James, and Peterson showed that linear coherent tdedbtvorks could ogperform linear mesurement
based feedback, suggesting that measurebsged feedback was limited by the need to reduce the info
mation about a system to classical numbers. It is also shown quite recently that coherent feedback can
achieve more for generating quantum nonlinearity and cooling compared with the measthaseghteg-
back. The relationship between measuentbased and coherent feedback is a topic of current research.

Feedback control theory of open quantum systems

Thereare not only fundamental differences between measurdmased and coherent feedback, Hut a
so important practical differences. Making measurements on gquantum systems, often possessing only a few
guanta, usually requires a tremendous amplification ofirek This is because the measurement results,
by definition, are weldefined classical numbers. To robustly store and manipulate such numbers requires
states with energies much greater than a single quantum. Amplifying signals at theysamgien sca
without swamping them with noise is a great challenge, and is one major practical disadvantage ef measur
mentbased feedback. A second disadvantage is the timescale required to obtain and then process the mea
urement results (usually on a digital device)

On the other hand, measurembated feedback has the advantage that the processing of the info
mation is essentily noisefree. By contrast, if a quanturaystem is used as a controller it will likely be
subject to noise processes frigienvironmentlt may also be less clear how to use the quantum system to
process the information to achieve a control objective. i s i mportant to note th
feedbacko, in which t he tfeedback fofrof eed Inesarénéntbased ou s e d ,
coherent feedbacthat we are concerned with in thieview. Adaptivefeedbackis a method for obtaining
control protocols, not a class of protocols for controlling a system. Imtbikod, one chooses an arbitrary
control protocol, trie it out on the system, and based on the result make a ratidifito the protocol and
tries it again. In this way one can use one of many search algorithms to look for @r@oodl. Researchers
who refer to adaptive feedback as a feedback methoaglisgh the feedback control we consitiere by
cal |l i ngmeiotrlindyfr e@adback control 0.

Remark It is also important to note that we do not discuss here all the ways in which feedback can be
realized. One could, for example, perform a serie§iafi 3 dilo¢ 06 measur ements with
outcomes, and prm a unitary action on the system for each outcome. While there are certainly a range of
interesting and notrivial questions regarding such feedback, such asrodimg thermal dynamis and
guantum error correctionthe mathematical machinery required to analyze it does not require sitocha
differential equations. This is also true of coherent feedback implemented via unitary interactions. This latter
topic has only recently begunle explored in earnest, and there are certainly many opetiomqsekiower-
er in this review we focus on continuetisie feedback control, both measuremeased and cohent. Both
of these require the use of stochastic (Ito) calculus, something thas iiediar to many esearchers in
guantum theory. While measuremduatsed feedback requires only the usual Ito stochastic calculusg-casca
ed quantum feedback requires a quantum version of litalaa developed by Gardiner and Collett as part of
thdr input-output theory This quantum stochastic calculus was also developed independentlydsgrHu
and Parthasarathy in a more riges measuréheoretic way A readily accessible introduction to Ito aalles
can be found iMppendicesl, 2 and 3and the quanta version is described i28-31].

To distinguish between experiments that realize quantum feedback control rather than classical control,
we apply the crérion that an experiment involves the former if guantum measurement theory is required to
carrectly explain its results. This is certainly the case if the control process realizes a signature of quantum

4
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behavior that is not manifest classically. For linear systems, the only distinction between quantumiand class
cal motion is that the joimincertainty & posi ti on and momentum is | imit
principle. A measwament introduces noise because a reduction in the uncertainty of one canonical variable
tends to increase the uncertainty of the conjugate variable. Feedback control nfusngo@rmonic oscil-

tor can thus be considered quantum mechanictl i f
must be taken into account in understanding the behavior, or (ii) alteyaine of the canonical variables
has its uncertaintyeduced below that of the vacuum statedse | | ed fisqueezed stateso

Remark Experiments implementing measurembased feedback in the quantum regime were realized
initially in quantum optics, where it first became possible to measure individual miprosbegrees of
freedom with suiftient fidelity. These were followed by experiments involving trapped atoms and ions, and
very recently it has become possible to realize measurdrasetl feedback control in mesoscopic supe
conducting aicuits. Experimentsnvolving continuous coherent feedback were performed prior to those
realizing contimous measuremeiased feedback, although at the time these experiments were not thought
of as involving feedback. An examplbévid thdebanpdi
method.

Advances in feedback control of quantum open systems

The importance of feedback control theory in the control of open quantum systems was first recognized
by V.P. Belavkin. As in the classical case with partially obsesystems, a feedback control strategy is
usually favorable to the open loop control (without feedback). Optimal feedback control strategies for the
open quantum oscillator appeared even earlier and a qguantum Bellman equation for optimal feedback control
wasintroduced for a general diffusive and a counting measurement process. An interest in optimal quantum
control and stability theory has recently emerged in the optics commEnitys a more formal perspective,
one could say that quantum mechanics is betlelo be a correct microscopic theory of (imefativistic)
physics but that the reduced dynamics of subsystems nearly always corresponds closely to models that fall
within the domain of classical mechanics. Hence stronglyatessical behavior can onlelobserved in a
subsystem on timescales that are short compared to those that characterize its couplings to its environment
(see, Figures 1 and 2).

A qguantum system is described by its corraesponc
tion for aquantum control system

WD gy 1) (91 (9 m(x)

where H,, is the free Hamiltonian (energy) of the systelh; is the interaction Hamiltonian of thessgm

while being coupled to the control apparatus & skemiclassical treatmery, (X, t) is the state of the sy

tem. Open loop quantum control system is considered as a single larger system in an augmented state space
ASystem + ElMAH..ohmenduant urmcsy aaitgemiitmt ea t her mal b

quantum system.
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Figure 1. Closed quantum system
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Figure 2. Open quantum system

Open quantum systems lose their coherence or superposition in the order of a few microsecdnds to mi
liseconds depending onehinteraction. An open guantum system can be described as follows (see, Figure 3).
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Figure 3. Structure of open quantum control system

Figure 4 show structure of quantum control systems for described cases.
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Figure 4. Structures of opdnop (a) and clsedloop (b) quantum control systems

Let us consider the example of another approach to quantum feedback design.

Coherent Quantum Feedback

As explained above, measurembased feedback involves using the results of measurements on a
guantum system to dict its motion. When we make a measurement on a guantum system, we obtain class
cal information. But we necessarily obtain only partial information about the dynamical variables, and in
general we disturb the state at the same time. It is therefore fintgriesconsider a feedback loop in which
classical information is not extracted. This concept, now referred totesent feedbackvas first intop-
duced by Lloyd in 2000, and it can be seen as the more general case ofoffiealllfeedback proposed
ealier, in 1994, in quantum optical systems by Wiseman and Milburn. The idea is that instead of having a
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classical controller that makes a measurement on the system, the controller is a quantum system, and the
control is achieved simply by having the tws®ms interacfsee, Fig. 5)

(@) quantum Giiiom (b) quantum Quantum
input Output Input Output
:> Quantum P Quantum i

n] dynamical \| dynamical
Classical system —l system
sic
input Feasuremen ¢ Not measured
device Quantum
) ,4.J Classical controller
Classical Output
controller
Full quantum loop

Figure 5: (Color online) Comparison of (a) measureméased feedback and (b) coherent feedback. In
measuremerbased feedback in (a), the system (in blue) is controlled by a classical feedback loop (in pink);
while in coheent feedback (b) the system is coherently controlled by a fully quantum feedback loop.

To understand this better, it is worth examining the Watt governor, which has a very simple feedback
mechanism. The purpose of the Watt governor is to control the speedengine. To do this, the engine is
connected to a simple mechanical device so that it spins the device. The device is designed so that the ce
trifugal force from the spinning causes it to expand, so that the faster the engine spins, the mordst expan
This expansion is then used to reduce the fuel supply to the engine, thus stabilizing the engine ai-some ch
sen speed. The nice thing about this simple feedbatémys that we can think of it as a loop in which the
control device obtains informatidnrom the engine, and uses this to control it. It is also clear that the engine
and controller are merely two coupled mechanical systems. In the Hamiltonian description of thesjoint sy
tem, there is therefore no loop, but merely an ictéra between théwo systems. A guantum controller can
therefore act in the same way, performing feedback control even though the description of the system may
not involve an explicit loop.

In fact, there is a way to make the loop explicit for a quantum controller in \tfieéch are no mease
ments.This is done by coupling the system to a travellivaye electrical (optical) field that propagates in
one direction from the system to the controller. We then use a second trawelliedield that propagates
from the controkér tothe system, thus closing the loop. To do this, the two travelling fields must continue
propagating after they interagith the systems, and this introduces an irreversible element to the dynamics.
However, since control systems argually intendedo introduce some kind of damping to the system, this
irreversibility need not be détnental. Inwhat follows, we discuss feedback control that employs a unitary
(Hamiltonian) interaction between the system aadtroller, often referred to afirect coheent feedback
where the interaction is mediated by travelimgve fields often referred to aield-mediatedeedback.

The separation principle in open quantum control systems

In the case of any macroscopic object, such as an ordinary mechanical pertthelte are so many
such couplings (e.g. via mechanical coupling to its support and to air molecules) that these timescales are
inaccas i bl'y short. From an even more abstract per sp
meant to applytotheni ver se as a whole (whose 6éinternald de
while physical experiments deal only with embedded subsystems. Unless great care is taken to suppress the
emvironmental couplings of an experimental system, the overwhgltendency is for its behavior to appear
classical, or at least imperfectly quantum.

As was show, since we never have complete observability of quantum systems, the problem of quantum
feedback control must involve a filtering procedure in order to measareontrol the system optimally.

8
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Figure6 show the separation principle of open quantum control system.

Quantum Stochastic Diﬂ'ere}ltial Equation
dU(t) = {LdB"(t) - L'dB(t) - (EL*LHH)dt}U(r)
dX = (—iX,H|+ %,(X))dt +dB*[X L]+ [L", X]dB

dY =(L+L")dt+d(B+B")

quantum expectation

Master Equation

dp s 17
L i pl+4(p)

classical

expectation

| dp = (-ilH.p]+Z(p))dr

quantum condifional expectation

Quantum Filter (Quantum Trajectories)

+(Lp+pL" —tr[(L+L")p|p)(dY —tr[(L+L")pdr)

Figure 6. The separation principle in open quantum control systems

Measurement for a quantum system cannot be performed without probabilistiadiack In general,
the alteration of the system caused by the measurement is too drastic and instantaneous, and it prevents real
time feedback control. A possible way to avoid this difficulty is measuring the target quantum system ind
rectly in continuos time. This is the essential idea of continuous quantum measurement. lizedrég
keeping the target quantum system interacting with another quantum system called probe systers-and mea
uring the probe system in continuous time. As the result, wenotitssical signal containing infoation of
the target quantum system. We can use the signal to calculate the state of the target quantum system and
utilize the calculated state to determine the control input. This is the basic idea of theemeatheied
guantum feedback control and it is illustrated in Fig.

Actuator

Classical Signal
(Control Input)

Target

Quantum Signal

Interaction
A

Quantum System

Probe System

Quantum Signal

Detector

Filter + Controller -
Classical Signal

(Observation Process)

Figure 7. Conceptual diagram of the measurembased quantum feedback control

This situation is analogous to that of the feedback control of partially observable classical stochastic
systemsAs in the classical casfiltering theory for quantum system<s., quantum filtering theory provides
a basis for feedback control of quantum systems under such a situation.
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We can separate these two problems and consider first the probdgrandéim ficering.

Advances in quantum filtering

In quantum fitering theory pioneered by Belavkin, the quantum filtering equation for the system with a
chosen continuous natemolition measurement (NDM) has to be derived. A system observed through its
interactionwith the electromagnetic field by continuous measurement of some field observables, needs to be
updates continualy in time to incorporate the information gained by the measurement. That is we have to
condition the quatum state of the system on the oh&l measurement results continuously in time. The
guantum filtering equation is a stochastic differential equation for the conditioned state in which tlae innov
tion process, repsenting the information gain, is one of the driving terms. In the quantunos dperature,
some particular forms of the filtering equation were introduced in the 1990s as stochastic master equations
(although without any refence to the original derivation). As in the optics literature, we take the filtering
equation as our stiémg point; however, the driving Wiener process is not treated as the noise, but as an
innovation process. For more background on the derivation of this stochastic equation as a general filtering
eqguation in an open quantum system conditioned with regpaatonrdemoliion observation

Once the quantum filtering equation is obtained, we are left with a classical control problem. i partic
lar, if the state of a qubit is parameterized by its polarization vector in the Bloch sphere, i.e., a vector in the
threedimensional unit ball providing sufficient coordinates for the system, the filtering equation provides
stochastic dynamics for the polarization vector. The control is present in the dynamics through Rabi oscill
tions, which perform rotations of the polzation vector in the Bloch sphere caused by a laser driving the
gubit. The phase and intensity of the laser are the parameters that can be controlled.

The main aim of thigrticle is to demonstrate the relevance of classical control and quantum dilterin
when controlling quantum systems. This is shown by the example of optimal control efevélvquantum
system. A cost function, which is a measure of optimality of the contral, is introduced and the corresponding
Bellman equations are derived for teigstem. From these equations, we produce an optimal control strategy
which depends on the solutions to the corresponding HarditioobiBellman equation. In general these
solutions are very difficult to find, even nurielly, so we resort to a physicalhyotivated simplification of
the dynamics by considering a qubit in a strongly driven, heavily damped, optical cavity. This enables us to
present an exact solution to the control problem.

Quantum probability

Though they are both probabilistic theories,lgadaility theory and quantum mechanics have historically
developed along very different lines. Nonetheless the two theories are remarkably close, and indeed a rigo
ous development of quantum probability contains classical probability theory as a special cas

Figure8is demonstrated the definitions and differences in classical and quantum probabilities.

(2, F,P) Q (A,P)
sample / I probability / \state
space events  distribution A events P
v A P(4) =prob.ofevent A (projections) - B(P) =prob.of event P
E(X) =expected value random variables ~ E(X) =expected valug
of random variable X (operators) X of random variable X

(a) (b)
Figure 8. Classical (a) and quantum (b) probability definitions

Classical physics is built on foundations of classical logic, which is closely related to classicallprobabi
ity. We may think of quantum mechanics as the description of physical systems usingannuutative
10
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probability theory (quantum probability). In quantum probability theory states may be defined using states
lv') or density operators as E[X]={y | X| y) or E[X]=Tr[r X]. AlgebrasA of events describe
information in both classical and quantum probability.

The simple example in Fige 9 depicts that when vectors are used to implement both events amd dens
ties the probability in the vector spasethe squared inner product between the vectors, that is, the squared

size of the projection ofA) onto |/ ).

R
Py o g .

3 15 |
Y P
e Nlg

N T

Figure 9. The correspondence between classical probability and quantum probability

The embeddin@f classical into quantum probability has a natural interpretation that is central to the
idea of a quantum measurement: any satoofimutingquantum observables can be represented as random
variables on some probability space, and conversely any sshadm variables can be encoded as commu
ing doservables in a quantum model.

Thus in the classical probabilistic model, events (e.g., word occurrences, category memberships, rel
vance, location, task, genre) are represented as sets and the probabilityerisehased on a set measure,
e.g., set cardinality. In contrast, in quantum probability, events are represented as orthonormal vectors and
the prolability measure is the trace of the product between a density matrix and the matrix representing an
event & summarized in Table 1.

Table 1. The correspondence between classical probability and quantum probability

Notion Classical (Quantum

Event space 2 Hilbert vector space 'H
Random event Set, Orthonormal basis {|B), |B}}
Probability Measure|Set measure State vector i)

The quantum probability model then describes the statistics of any set of measurements that-we are a
lowed to make, whereas the sets of randorialsées obtained from commuting observables described-mea
urements that can be performed in a single realization of an experiment. As we are not allowed to make
noncommuting observations in a single realization, any quantum measurement yields evelipie prihc
partial information about the system.

Quantum control with learning loop
The situation in quantum feedback control is thus very close to classical stochastic control with partial

obsenations. A typical general (with learning loop) quantum cdrga@nario, representative of experiments
in quantum optics, is shown in Figuté.

11
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Figure 10. A closedloop process for teaching a laser to control quantum sysfehesloop is entered with
either an initial design estimate or even a random fieldbimes cases. A crent laser control field design is
created with a pulse shaper and then applied to the sample. The action of the control is assessed, and the
results are fed to a learning algorithm to suggest an improved field design for repeated exscarsiord
the loop until the objective is satisfactorily achieved]

The components of a learnihgop can look very different depending on the specific applicationbdn a
stract terms a learniAigop consists of an action under external control which acéssystem and produces
there a systenmesponse. Due to the natural correlation between action and response an algorithm can be used
to learn how to change the action to control the response in a desired fashion.

Remark In the coherent control experimeiats already pointed out the controlled action are the tailored
femtosecond (fs) laser pulses. The external control knobs are all integrated in a single pulse shaping device.
The system response is the feedback signal retrieved from experiment. It is ifeioddee optimization
algorithm that accordingly steers the pulse shaper to improve the laser pulse shape. The time for the learning
loop to provide an optimal pulse is given by the total number of iterations multiplied by the time it takes to
perform oneiteration. This time is given by the response time of each of the elements that constitute a
closedloop experiment: laser repetition rate, pulse shaper, learning algorithm and feedback signal retrieved
from experiment. Hence it is not possible to be djmeao the total optimization time can range between a
few minutes and several hours. In the following a more detailed description of a tailored pulse, its character
zation and the feedback algorithm is discussed. This article concludes with a praugluatian of the
leaming-loop approach: the compression ofdser pulses to their bandwidth limit.

Remark A mentioned above, no quantum measurement can give full information on the state mf a qua
tum system; hence any quantum feedback control prolsdlamacessarily one will partial observations, and
can generally be conved into a completely observed control problem for an appropriate quantum filter as
in classical stochastic control theory. Here we study the properties of controlled quantuny fdtgrations
as classical stochastic differential equatisee above mentioned Figure Be then discuss methods, using
a canbination of geometric control and classical probabilistic techniques, for global feedback stabilization of
a class of quatum filters around a particular eigenstate of the measurement operator.

We wish to control the state of a cloud of atoms, e.g., we could be interested in controlling their colle
tive angular momentum. To observe the atoms, we scatter a laser probe field tdhitheaad measure the
scattered light using a homodyne detector (a cavity can be used to increase the interaction strength between
the light and the atoms). The observation process isifedicontroller which cam febdck a control signal
to the atoms thught some actuator, e.g., a tivarying magnetic field. The entire setup can bscdbed by
a Schr°dinger equation for the atoms and the pro
di fferenti al equati ond ér,rhowaverMaly Ha® aciess ho thie bimions of T h e

12



Cdzj Cltetsdzdz’ 2 Y bktedzOdz cudMmlsj dgdzr 2 OdzOd&zdL o I 2@ Iz § 20d8LESBHE O L 15 9

the probe. The laser probe itself contributes quantum fluctuations to the observations, hence the observation
process can be considered as a noisyrebsen of an atomic variable.

As in classical stoastic control we can use the properties of the conditional expectation to convert the
output feedback control problem into one with complete observations. The conditional equqtéﬁ@)w

of an observableX given the observation{sYS :0¢s ¢§ is the least mean square estimateXqf (the
observableX at timet) givenY,,,. One can obtain a quantuitidring equation that propaga;eg(X), or

alternatively the conditional density matrrx defined by the relatiom, (X) =Tr[ (X] . This is the quia

tum counterpart of the classical Kushi&tratonwich equation (due to Belavkin) and plays an equivalent
role in quantum stochastic control. In particular,lﬁEXt] =E, (X) we can control the expectations of

observables by designing a state feedback control law based on the filter.

Remark Note that as the observation procés is measured in a single experimental realization, it is

equivalent to a classical stochastic process (i.e. the observgbtsmmute with each other at different

times). But as the filter depends only on the observations, it is thus equivalent to a classical stochastic equ
tion; in fact, the filter can bexpressed as a classical (Ito) stochastic differential equation for the conditional

density matrix", . Hence ultimately any quantum control problem of this form is reduced to a classical
stochastic control problem for the filter.

Problem Case study will consider a class of quantum control problems of the following form. Rather
than specifing a cost function to minimize, as in optimal control theory, we desire to asymptotically prepare

a particular quantum state’, in the sense thaIE[Xt]- Trgr X ast- o for all X. As

E[Xt]- Ept (X) this comes down to finding a feedback control that will ensure the convergence

r.- £ of the conditional density, . In addition to this convergence, we will show thattrollers also

render the filter stochastida stable around the target state, which suggests some degree of robustness to
perturbations. We will discuss the preparation of states in a cloud of atoms whereothponent of the
angular momentum has pevariance, whereas we will discuss the preparation oBlated states of two

spins. Despite their relatively simple description the creation of such states is not simple.

Quantum feedback control may provide a desirable method to reliably preparstateshin practice
(though other issues, e.g. the reduction of quantum filters for efficientimelimplementation, must be
resolved before such schemes can be realized experimentally; we refer ford-thtedmt experimental
demonstation of a reléaed quantum control scenario.)

Thought we have attempted to indicate the origin of the control problems studied here, a dettiled trea
ment of éher the physical or mathematical considerations behind our models is beyond the scope of this
section; for aigorous introduction to quantum probiitly and filtering we refer 11, 23-27]. Instead we will
consider the quantum filtering equation as our starting point, and investigate the classical stochastic control
problem of feedback stabilization of this equeti We first introduce some tools from stochastic stability
theory and stochastic analysis that we will use in our proofs. We introduce the quantum filtering equation
and study issues such as existence and uniqueness of solutions, continuity of thetqailis, pose the
problem of stabilizing as angular momentum eigenstate and prove global stability under a particular control
law. It is our expectation that these methods are sufficiently flexible to be applied to a wide class of quantum
state pregration scenarios. As an example, we use the techniques developed above to stabilize particular
entangled states of two spins.

Therefore when engineers set about to control a classical system with incomplete data, they can evoke
the celebrted separationtheorem vhich allows them to treat the problem of estimating the states of the
system (based on typically partial observations) from the problem of how to optimally control the system
(though feedback of these observations into the system dynamics). Remarkakdyptttiach may also be

13
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carried over to the quantum world which cannotrberinciple completely observer: this was first pointed
out by Belavkin.

Quantum measurement, by its very nature, leads always to partial information about a system in the
sense thlasome quantities always remain uncertain, and due to this the measurement typically alters the prior
to a posterior state in the process. The Belavkind®nolition principle states that this state reduction can
be effectively treated within a nafemoltion scheme when measuring the system over time. Hence we may
apply a quantum filter for either discrete or themntinuous nosdemolition state estimation, and themeo
sider feedback control based on the results of thigifile The general theory of ntnuoustime non
demolition estimation derives for quantum posterior states a stochastic filtering evolution equation not only
for diffusive but also for counting measurement; however we will consider here the special case of a
Belavkin quantum state féting equation based on a diffusion model described by a single white noise
innovation.

We should also emphasize that the continttoue filtering equation can be obtaith as the limit of a
discretetime state reduction based on von Neumann measurerhemteyer this timecontinuous limit goes
beyond the standard von Neumann projection postulate, replacing it with a quantum filtering equation as a
stochastic master egiion. Once the filtered dynamics is known, the optimal feedback control of the system
may then be formulated as a distinct problem. Modern experimental physics has opened up unprecedented
opportunities to manipulate the quantum world, and feedback control has already been succesgtilly impl
mented for real physical systems. Currently, thesiwies have attracted interest in related mathematical
issues such as stability and observability.

The separation of the classical world from the quantum world is, of course, the most notoriausly tro
blesome task faced in modern physics. At the veagrthof this issue are the very different meanings we
attach to the wordtate What we want to exploit is the fact that the separation of the control from the filte
ing problem gives us just the required separation of classical form quantum featurles.gByntum state
we mean the von Neumann density matrix which yields all the (stochastic) information available about the
system at the current tiniethis we also take to be state in the sense used in control engineering. All the
guantum features are caitted in this state, and the filtering equation it satisfies may then be understood as a
classical stochgiic differential equation which just happens to have solutions that are von Neumann-density
matrix-valued stochastic processes. The ensuing probletatefmining optiral control may then be viewed
as a classical problem, albeit on the unfamiliar state space of von Neumann density matrices rather than the
Euclidean spaces to which weearsually accustomed. Once we gecustomed to this setting, theblem
of dynami ¢ a | programmi ng, B e | |. can lve dosmulatgd tinimoncdn thé darpe spirit asn ¢ i
before.

We shall consider optimization for cost functions that arelimaar functions of the state. Traditionally
guantum control has beenstdcted to linear functions wheiiegiven the physical meaning attached to a
guantum staté the cost functions are therefore expectations of certain observables. In this situation, which
we consider as a special case, we see that the distinction betlassical and quantum features may be
blurred: that is, the classical information about the measurement observations can be incorporated as add
tional randomness into the quantum state. This is the likely reason that the separation does not seem to have
been taken up before.

This basic fact of nature that at small scdlest the level of atoms and photoh®bservations areni
herently prbabilistic, as described by the theory of quantum mechanics. The traditional formulation of
guantum mechanics is veryffégrent, however, from the way stochastic processes are modeled. The theory of
guantum measurement is notoriously strange in that it does not allow all quantum observables & be mea
ured simultaneously. As such there is yet much progress to be madeskighgion of control theory, pa
ticularly feedback control, to the quantum domain.

One approach to quantum feedback control is to circumvent measurement entirely by directly feeding
back the physical output from the system. For example, in quantum aphiese the system is observed by
coupling it to a mode of the electromagnetic field, this corresponds-taptdal feedback. Though this is in
many ways an attractive option it is clear that performing a measurement allows greater flexibility in the
contol design, enabling the use of sophisticatetbop signal processing and roptical feedback actu
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tors. Moreover, it is known that some quantum states obtained by measurementeagiygirepared in
other ways.

We take a different route to quantdeadback control, where measurements play a central role. The key
to this approach is that quantum theory, despite its entirely different appearance, is in fact very closely rela
ed to Kol mogorovds <classical t hm theosy obsdrvabtes reeddandst i | i t
commut e, which precludes their simultaneous meas:!
with such object: One can always obtain a joint probability distribution for random variables on a probability
space, implyig that the can be measured simuttarsly. Formalizing these ideas leads naturally to the rich
field of noncommutativer quantum probability Classical probabty is obtained as a special case if we
consider only commuting observables.

Stochastic quantum control theory

Let us briefly recall the setting stochastic control theoryThe system dynamics and the observation
process are usually described by stochastic differential equations of the Ito type. A generic approach to
stochatic control separateché problem into two parts. First one constructs a filter which propagates our
knowledge of the system state given all observations up to the current time. Then one finds a state feedback
law to control the filtering equation. Stochastic control theorytheditionally focused on linear systems,
where the optimal [linear quadratic Gaussian (LQG)] contrabiem can be solved explicitly.

A theory d quantum feedback control with measurement can now be developed simply by replacing
each ingredient of stocktic control theory by its noncommutative counterpart. In this framework, the sy
tem and observations are describedgbgntum stochastic differentiauation. The next step is to obtain
guantum filtering equations. Remallly, the filter is a classicatd equation due to the fact that the output
signal of a laboratory measuring device is a classical stochastic process. The remaining control problem now
reduces to a problem of classical stochastic nonlinear control. As in the classical case, the opiiolal c
problem can be solved explicitly for quantum systems with linear dyndsges-igure 5)

The field of quantum stochastic control was pioneered by V.P. Belavkin in a remarkably sedes of p
pers in which the quantum counterparts of nonlinear filleand LQG control were developed. Tha a
vantage of the quantumoshastic approach is that the details of quantum probability and measurement are
hidden in a quantum filtering equation and we can concentrate our efforts on the classical control problem
as®ciated with this equation. Recently the quantum filtering problem was reconsidered by &altemd
guantum optimal control has received dome attention in the physics literature.

The goal of thisarticleis twofold. We review the basic ingredientsgofantum stochastic control: Qua
tum probability, filtering, and the associated geometric structures. We then demonstrate the use of this
framework in anonlinearcontrol problem. To this end, we study in detain an example directly related to any
expeimentl apparatus. As this is not a linear system, the optimal control problem is intractable and we must
resort to methods aftochastic nonlinear controltaghastic Lyapunov techniques to design stabilizing co
trollers us used, demonstrating the fediibof such an approach.

Many results are motivated in studying the quantum control problem by recent developmentiin exper
mental quatum optics. Technology has now matured to the point that-stdleart experiments can
monitor and manipulate atomic angdtical systems in real timat the quantum limjti.e., the sources of
extraneous noise are sufficiently suppressed that essentially all the noise is fundamental in naturer-The expe
imental implementation of quantum control systems is thus within reacbhrodnt experiments, withmi-
portant applietions in, e.g., precision metrology and quantum computing. Further development of quantum
control theory is an egntial step in this direction.

Extension of control theory to the quantum domain has been a ¢tdigmne researchers since the mid
1970a. The main motivation there was tied to the fact that measurements of any physical quantity inevitable
disturbs the state of the quantum system The formulation of feedback control under this circumstance
seemed to ba great challenge for control theorists. On the other hand, variational principle used in the
optimal control manifests itself more explicitly in quantum mechanics, because its fundamental governing
eguation is energy preserving. This is perhaps anatason why quantum theory attracts control theorists.
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Remark In the early 1980a, more realistic pictures were brought forward in the field by a group of
chemists who tried to control chemical reactions by properly arranging electromagnetic fields. Plosg pur
was to increase the probability of favorable chemical reaction by means of adjusting the phase difference
between two electromagnetic fields created by laser beams. Theoretical, as well as experiment, verific
tions of the possibility of materializgnthese attempts have been reported extensively in the literature of
photochemistry. In these papers by chemists, control is ascribed to the selection of Hamiltonian due to the
met h oidversefprobiiem 0 and is therefore e asGmdniaraRiceproge f e e c
ly described. The chemical experiments on the reaction between the electromagnetic field and two or three
level atomic sgtems led t one possible generalization of control theoretical notions, such as controllability.
Since the eolution of a quantum system is given by the unitary operators with continuous parameters, the
generalization is based on the unitary representation of Lie groups. This technique has ttesqlyaatiim
problem. The first theoretical work on feedback fprantum systems appeared in quantum optics, which
treated the fluctuations of the photocurrend i n a
tion was first intoduced in the early 1990s. This formulation enables one to control quantum sy&ems
measurements, in which the quantum system is driven by interactions conditioned by the measurement
outcomes. A definite class of states, referred to as Gaussian, is of particular interest is not only classical but
also in quantum case. As a resuledback control for the state via measurement was studied.

Recent progress in quantum electronics has opened up the possibility of quantum informatioa-technol
gies, which are expected to eliminate the bottlenecks of modern communication and computagi@ane The
based on the notion ehtanglementvhich is thought of as a quantum information resource. Entanglement is
a quantum mechanical coragbn which is produced only by nonlocal guantum mechanical interactions. In
theoretical works, it is assumed tha¢ wan specify the quantum state at our disposal whenever we need it,
no matter how the environment of the system would be. In other words, it is presumed that the quantum state
can be controlled for the use of communication and coatipat This presumptio is far from trivial taking
into account the fact that the quantum systems sometimes entangle with undesirable systems, which results
in a noisy information resource, and consequently, it has been necessary to consider the productien of enta
glement in tle light of quantum control accordingly. Feedback is a method wherelpetfemanceand
robustnes®f the system can be improved considerably, even if the system includes some uncertainty in its
environment to which the system is highly structured. attisle is devoted to the formulation of quantum
mechanical feedback, in order to introduce the concepts and tools of control theory to quantum theory for
understanding quantum systems and developing quantum control.

For a system placed among a large nunabelegrees of freedom interacting with one another, one may
ignore the detailed dynamics of the external degrees of freedom by treating them statistically. If the system is
weakly coupled to the external field is characterized by the singular corraddtibe field. This singularity
constitutes the description of the system though the stochastic differentiadbecuathe forward Fokker
PlankKolmogorov equation. In the qom case, in order to deal with quantum systems properly, physical
variables bould be guantized through the canonical commutation relation, which is essentially singular. An
analogy between the singularities of the classical correlation function and the quantized commugation rel
tion leads to a generalization of the stochastiediffitial equation subject to the qguantum mechanical law.

There is a dual relationship in the description of quantum dynamics analogous tdoeonaecore-
spondence éween the FokkePlanck Kolmogorov equation and the stochastic differential equatiom. T
former describes the evolution of probability distribution of the system which interacts with the external
field. The influence of the external filed is not explicitly represented in this description because the info
mation of the external field is awaged out. The latter is a dual description in the sense that it represents the
evolution of physical variables, and the single path of the system along with the external filed is explicitly
presented. Both are basically equivalent, however the latterdesotiie inpubutput relation of the system
by which we can consider various connections of systems. If quantum systems are connected in a complex
way, it is sometimes hard to derive the Hamiltonian which describes the behavior of the entire system b
causethe connected systems are entangled with each other through the inputs/outputs, and tignseguen
total Hamiltonian is not given by the sum of local Hamiltonians describing each component system.

Furthermore, the noncommutativity of quantum variaklesiplicated the difficulty of the description
of the filed, after having interaad with the system at some tintteen interacts with it again at some later
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time through a closed loop. This is why there has been little work on using nonclassical figidttaoto

large quantum systems including closed loops. &hile proposed a systematic procedure to obtain the
Hamiltonian and the quantum stochastic differential equation that lead to a natural extension of control
theory and some applications of quanteontrol. We will derive general dynamics of quantum feedback
systems, based on the framework of quantum feedback systems, the application of quantum feedback to
some of the most important problems in quantum theory are described.

We start with review wich is a brief review of fundamental notions of quantum theory for introducing
control treoretical viewpoints to quantum systems. In particular, it focuses on introducing the interaction
between a system and environments in a quantum mechanical manaasebggstem control is essentially
based on the plamontroller interaction. We introduce a quantum stochastic process as a noncommutative
analog of Wiener process, in which the quantized electromagnetic field traveling in free space is the non-
commutativeinput sourcgsee, Appendices 1.2 and 2)n optical system is treated in terms of an el
class of Hailtonians describing a linear coupling of a localized system to the noncommutative input. The
system then obeys the quantum stochastic differesiahtion which arises due to the stochastic nature of
the nonconmutative input operators. Then we deal with the quantum mechanical feedback in the proper
context of quantum feedback system. The feedback connection of quantum systems has a wide range of
applications that enables us to derive Hamiltonians for the applications for deriving the evolution of quantum
systems connected in a complex way.

Quantum systems are in some ways closely analogous to classical ones, and in other ways quite distinct.
An esential difference between them is that canonical observables are represented by noncommutative
opemtors in quantum mechanics, whereas the corresponding classical variables are represented by scalar.
The noncommutativity of obseales leads to a significa departure from classical mechanics, kn@as the
uncertainty principle which states that no action can be done without introducing inevitable disturbances to
guantum systems. Although certain uncertainties of physical variables could be also folasgigalcsg-
tems, it is remarkable in combination with another significant properttanglementThese features cast
light on the possibility of quantum information technologies and broaden the applications of engineering. In
guantum cryptography, for armple, spatially separated systems utilize entanglement for sharing keys, and
the uncertainty principle guarantees that they can detect other observers trying to eavesdrop on the quantum
key distribution.

Quantum control is recognized as an indispendablenology to provide the cannel resource needed for
the canmunication between sender and receiver. The concepts and tools of control theory contribute not
only to the understaling of dynamics of complex quantum networks, but also to the designing ®fdteen
for any purpose. An extensidncontrol theory to the quantum domain enables us to deal with complex
guantum systems in a systematic way.

A feedback system is, in general, supposed to consist of processes of obtaining information about the
plant, pocessing it through a controller and changing the behavior of the system according to the output of
the controller. The performance of the feedback system depends on the structure of the additional; degrees of
freedom resulting from these processes. Orssipte method of constructing the auxiliary degrees @&-fre
dom is to utilize a measurement for obtaining the information about the plant and to process the- measur
ment outcomes with a classical dynamics is that ialeldtchanges occur when the informatioom the
measurements is read in macroscopic ways. This leads to a limitation on the performance of qudntum fee
back. The feedback process, however, need not necessarily be macroscopic and classical in practice.

An alternative method for quantum feedbadntrol can be constructed in a completely quantuen m
chanical way, in which the entire processes of feedback is implemented by quantum systems. We discussed
the d/namics of a cavity coupling to the electromagnetic filed traveling in free space. A cabiopiht of
as a firstorder quantum system driven by a stochastic field, sent through a quantum channel that entangles
with the state of the system and produces the output. This characteristic allows us to have access to the
system through the output sia in order to get the infmation about the system and to alter its behavior.

It has introduced the symmetric operatodering scheme (SOS) for defining the Hamiltonian ofnrgua
tum neéworks, in which spatially separated systems interact with eachtbthagh the feedback and cascade
connections. In this case, the dynamics of the system cannot be derived from the local Hamiltonian of each
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system in general, because of entanglement that is generated through the external field. According to SOS,
we can oldin the Hamiltonian which explicitly shows the interaction between the component systems, and
derive the evolution. In particular, when the input and the output of the system are of interest, it is described
by a transfer function, which enables us to deisth complex quantum systems in a simple way. lteis r

ceived wisdom that, in order to control the system, it is necessary to argument degrees of freedom of the
system by connecting additional systethsough the inputoutput. The quantum stochastic diiatial

eqguation is available for the construction of the auxiliary degrees of freedom with the tools of cobtrol pro
lems of quantum theory are reduced to conventional problems of control theory based of the developed
formalism.

Models of quantum feedback control

In presenissuewe are discussed different models of quantum feedback control. Let us briefly describe
here the applications of feedback control in quantum sysiétasexplain how feedback in quantum systems
differs from that in traditional classal systems, and how in certain cases the results from modern optimal
control theory can be applied directly to quantum systems. In addition to noise reduction aizdtstabian
important application of feedback in quantum systems is adaptive measyramewe discuss the various
applications of adaptive measurements. We finish by describing specific examples of thati@piic
feedback control to cooling and stgeeparation in nanelectremechanical systems (NEMS) and single
trapped atoms.

We dudy Quantum Control (QC) methods and its interrelations with advanced contraftitalpg, we
are describing methods to control quantum systems in the arena of quantum and atomic optics, and quantum
nanomechanicsl he objective of QC is to determine ieh final (ortargef states of a quantum system are
dynamically reachable from a given initial state. This is operationally achieved by applying to the system a
sequence of simple control pulses.

Lately, various aspects of QC have been discussed irtéhatlire, including the question of contesll
bility of systems with continuous spectra, wave function controllability for bilinear systems, controllability
of distributed systems, of molecular systems, of spin systems, of quantum evolution in NMR sp@gtrosc
and QC on compact Lie groups etc.

QC (same as quantum tomography) can be viewed as reciprocal aspects of the analysis of the states of a
system. Both are connected to the problem of extracting the maximum amount of information from that
system. In geeral, for quantum systems possessing a certain group of dynamiggpeisymmetry, it has
been shown, that the degree of controllability depends on the structure of a given Lie group.

Let us consider briefly the main idea of QC.

Some basic concepts of quantum control

A quantum system is said to be completely controllable if, given any two $yajeg v,) (we will re-
stricted ourselves to pure states) there exists a Tinre 0 and a set of admissible control tions
gf.(t),.... fy (t) defined for0¢t T, so thatU (0)]y,) 3 yandU(T)|y,) 3 3. whereU(t)
is the evolution operator of the system.

Thus the objectives of quantum control are to find ways to ro@igthe time evolution of a quantum
system such as to

o Drive an initial given state to a préetermined final state, the target state
or

0 Optimize the expectation value of a target observable
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When a quantum system is invariant under the action of ayhe) group of dynamical symmetry, the
contr ol functions are wusually chosen so that the
mentaryo group transformations, each representin
whetheror not the control parameters lead to an evolution operator thajeseaaicelement of the group.

When this is the case, it has been shown that the system is completely controllable.

If, on the other hand, the evolution operatanas a genericelementof the group but is an element of a
subgroup of the dynamical symmetry group, the system is mentiyally controllable The problem then

consists in classifying families of states of the foﬁm:(t)) U(t)| ). ie. families of states invarian

under the action of the evolution operator. In other words, the problem consists in classifying the orbits of a
subgroup, formed by all admissible evolution operators, in the Hilbert space of a given quantum system.

Example As a simple example, let utagt by reviewing how the controllability of a single tlevel &-
om can be implemented by means of applying pulses of an external field. This is the simplest system, with

SU(Z) as the group of dynamical symmetry. In the rotating &athe Hamiltonian for such a system

D . .
reduces toH, , =5 s g( .s 3 whereD = w - is the external field frequency argl,. are the

Pauli matices @ is chosen real for simplicity). The frequency of théeemal field w; is an adjustable
parameter, so that two types of pulses can be applied to the atom: a resonant pulse, fdd wilicheads
to an evolution of the fornR(q), where R(q) is given below, and a dispersive pulse, for whidhl g
and which poduces an evolution of the for®(y ), where D(y ) is described also below. An evolution

can therbe obtained by patching together dispersive and resonant pulses to obtain tpardunester trag
formation:

U(y.a ¥ B{ )R()DPG@),

at f 9t iag(e? | e’ agosq 1 sing
whereq =Tgt,, vy . D ,D(y) =d|ag(e € >) R M g?sinq cosq

Heret,, j =1,2,%, denotes the length of the intervals during which the appropriate pulse is applied.

The evolution operatol) (y, g )f has a form of a generic element 8U(2), the orbits of which

form a threedimensional spive. The spaceSU(2)/U(1) CP of all physically distinguishable states of
a twolevel atom contains a single orbit, so we immediately arrive at the conclusion that a sintgeetwo
atoms is completely contrebile, i.e. for arbitraryy , ) and‘ y(T)>there existdJ (y, g )f so that

y (M) U ( ). (8). (W) o
wherel =t, €, t3.

We study the feedback methods of advanced control and rather than controlling, say, a jet engine, we
can use fedback to cotrol an object as small as a single atom. Feedback has many interesting and useful
properties. It makes it possible to design precise systems from imprecise components and to make physical
variables in a system change in a prescribed fashion. An unsyasbdenscan be stabilized usimggative
feedbackand the effects of external disturbances can be reduced. Feedback also offers new degeees of fre
dom to a dsigner by exploiting sensing, actuation and computation. A consequence of the nice properties of
feadback is that it has had major impact on maade systems. Drastic improvements have been achieved
when feeback has been applied to an area where it has not been used before.
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The dfferent stochastic equations correspond fieeent ways in which the sysn can be continuously
monitored.

Quantum jumps

Consider the master equation
. . 1 s * * *
F=i[H, 4 era(ZCm ¢, ¢, rCT) @)
m
A stochastic equation that unravels this master equation, and that is driven by a point process, is

a 0

. 1.. . . y C 0
iH #3 (<cmc)(t) c-;,;) y,) dt %—,; 1[2%) dN (2)
27 P '"g <CmC,,>(t) Q

Here, foreache, the incrementdN,, is an increment of a point process, and takes only two valitker 8

dly.)=

or 1. The value 1 corresponds to an instantaneous event, andNhuis equal to 1 only at a set of discrete
points. The rest of the timelN,, = 0. The events occur randomly and independently, and thelgliopper
unit time that an event occurs for the process Iabelledib;(cjnc ,>(t) . This means that the probability for
an eent in the time riterval [t +dt] is <c;,,c ,>(t) The pointprocess increments satisfy the relations:
EgdN,(1) g(c.e) ), dNgN =d\o

Since Eqg. (2) is a stochastic equation for the state vector, it is usually caledr@sticS c hr © di nge
eguation. We can alternatively write down atochastic master equatiofior the density matrix

r.=| y){ ¥, whichis
R e. . 1., @
dr, =8 Ggc, gdN,(f) He iH E-ac“,g D/t 3)
m é m l:l

The superoperator§] Ggc,, /4 andH [c]| 7, are defined as

or ¢ -4 H[d e rscAc &)+ (4)

. __ord
"3‘,7 &n B Treer.c g ¢

The point process (quantum jump) stochaStic h r © @dquation€3SSE) describes, for example, pn o
tical cavity in which the light that leaks out of the cavity is measured with a photorter. Inthis case
there is a single Lindblad operator= \/Ea, whereg and a are the damping rate and annihilation operator
for the cavity, respectively. The events at whidhl =1 correspond to the detection of a photon by the
photcdetector.

More generally, a continuous measurement of the quantum variAbI(eb= 1... ,m) can be expressed

as the stoctsic master equation

dro= A[H, dar & ( oG] a1 iH{@] aw) ©
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ard output equation

dy =(A) dt +—— dw 6)

V21G
where G and/, represent the measurement strengths and measurement efficiencies.

The stochastic master equation (5) and the equation for the streamsoifremeant results, Eq. (6), can
be derived from the quéaum filtering equationsThe quantum filtering equations give the etioin of the
system and the output field before any measurement is made on the output field. Making enmeeasur
the output fied turns the quantum filtering equations into a stochastic master equation.n\srree above,
we can simultaneously make more than one continuous measurement on a system, and we can smultaneou
ly measure observables that do not commute. Since the tigepdgnamics induced by the conibus
measurements of two different observables commute to first ordenire can think of the measments of
the two observables as being interleadedhe process alternates between infinitesimal measurements of
eachobservable.

Note that a von Neumann measurement cannot sineolialy project a system onto the eigenstates of
two nonrcommuting observables, but continuous measurements do nfiotnpeénstantaneous projections.
The effect of simultaneously measuring gesition and momentum of a single particle is to feed noise into
both observables. Measuring noncommuting olzdes therefore in general introduces more noise into a
system than is necessary to obtain a given amount afmaton. The optical measurentetechniques of
heterodyne detection and eigitrt homodyne detection are very similar to simultaneous measurements of
momentum and position.

Markovian quantum feedback

The continuous collapse of the quantum state in continuous quantum measuremerthatesaesan
execute realime quantum feedback control before the quantum state collapses to a completely classical
state. That is the starting point of continuous measurebas®d feedback control. This is the kind ofdfee
back protocols and are now raf to as Markovian feedback. The reason for this name is that for this kind
of feedback, if we average the evolution over all trajectories, the result is a Markovian master equation. This
is not usually true for feedback protocols.

Let us consider a quamh continuous measurement of the operétaith efficiencyd. From Egs. (5)
and (6), the measurement and output equations of this measurement can be expressed as

dro= d[H, f]dt +mA dt [+HEHA dw )

and

dy=( A dt +—— dw @)

J2hG,

These two equatiorean also be expressed equivalently by

ro=AlH, ] A o JHB] @) 9)

and

Ia(t) =(A) +—=x(t) (10)

21



Czj Clstotsczdz’ 2 NktdzOdz cudmisj dsdzr 2 OdzOdzdL o | €z§ bz f 2048 KEsHE OL 5 0
where x(t) is the white noise satisfyingE(X(t))=0, E( xt) (Xi)) = (tdt). Formally, we can
convert Egs.7) and @) into Eqs.(9) and (L0) by settingx(t) = dW/ dt.

The main object of measuremdrdsed quantum feedback is to use the output silg;’(al) to engineer

the system dynamics given by E§).(The most general form of the system dynammodified based on the
output signall , (t), can be expressed as

Fo=fF&{1.( )| fot]} g (11)

where F g,{IA(Z‘)‘ i [O,t]} is the superoperator depending on the output sigp@tl) for all past times.

In this general form of the response of the feedback control loop, the control induces both unitary dynamics
and dissipation effects on the controlled system. However, for most of the existing studies, quatum fee
back control is introduced coherently bgrying the parameters in the system Hamiltonian, which leads to
the following modified closedbop stochastic master equation

Fo= i e ({1a (0 qot]}). g pB] HE (). (12)
As discussed above, in Markovian quantum feedback a term in the Hamiltonian is made proportiona

the output signal. Denoting this term by, , we setH, =1,(t)F for some Hermitian operatdf . Then,

by averaging over the noise term and using the Ito rule of the Whitexl()tée we can derive the folleing
WisemanMilburn master equation from Eq. (12):

F=i[H, t +MA] ri[F,A rA]-If%D[F] : (13)

The effects induced by the feedback loop are clearer in this form: (i) the first feedback term
-1 [F,Ar + A] plays a positive role to steer the system dynamics to achieve the desired effects; and (ii)

1
the second feedback teri/q?qD[F] r represents the decoherence effects induced by feedback, which tends

to play a negtive role for purposes of cormtt
The master equation (13) can be reexpressed as the traditional Lindblaasfimitowing:

;= +2H LF;FA), rSD{A iF} r%lzh [F] . (14)
e u

Although the Markovian quantum feedback given by Eq. (13) is the simplest measubasexhtgua:
tum feedback approach, it che used to solve various problems by choogirand F appropriately. Mar-
kovian quantum feedback has been used to stabilize arbitrasgublitequantum states, manipulate ofusn
entanglement, generate and pro®at h r °© dat stages, land induce opticalechanical, and spin squee

ing.
Bayesian quantum feedback

To make full use of the information provided by the measurement, we must process the measurement
results using the SME (Eq. (5)) to abtain the conditional density matrix. Since this density ahaigxyvith

the knowledge of the dynamics of the system, determines the probabilities of the results ofsangmezd
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on the system at any time in the future, any optimal strategy for controlling the system carelyltimat
specified as a rule for chdag the Hamiltonian at timeas a function of the density matrix at that time and

possibly the time itselfH (t) = f (rC (t),t) . Feedback control in which the feedback protocol is specified

in this way is someti meskor eofecraruesce ttdh ea sS MEB d yse stihaer
processing the measur eement record using Bayesod th

As we have mentioned above, the SME, since it requires simulating the full dynamics of the system,
may be impractical to solve in re@iine. Sometimestiis possible to approximately, or even exactly, reduce

the computational overhead by choosing an ansatz fothat contains only a small number of parameters.

The SME then reduces to a stochastic differential equation for taeameters. There is one class a-sy

tems in which an ansatz with a small number of parameters providesaatsolution to the SME, that of

linear systems. A quantum system is referred to as linear if its Hamiltonian is no more than quadratic in the
postion and momentum operators, any Lindblad operators that describe the noise driving the system are
linear in the position and momentum operators, and anguregaents are (i) driven by Wiener noise, and

(i) of operators that are linear in the position amoimentum.

The noise that drives linear systems reduces all initial states to Gaussian states (states that are Gaussiar
in the position and momentum bases, and thus have Gaussian Wigner functions), and Gaussian states remain
Gaussian under the evolution. lgooof of the first of these statements exists, but experience leads us to
believe it. The second statement is not difficult to show, and implies immediately that if the state of a linear
system is Gausasn, the SME reduces to a stochastic differentiahign for the means and @aariances of
the position and mmentum. What is more, the dynamics of these variables are exactly reproduced by those
of a classical linear stem driven by Gaussian noise, and subjected to continuous measurements of the same
observables. To correctly ragtuce the quantum dynamics, for each continuous measurement made on the
system a noise source must be added to the cl assi

Example Consider a linear qguantum system whttdegrees of freedom, and write tNeposition and
momentum operators, denoted respectivelyghyand p_, in the vector

T
x=(q, Pr---, Gy A) (15)
We scale these operators so t[‘m, pn] =i. If X, is the m" element of the vectax, then we have
[ ]=i S, whereS g0 1
Xos X =1 S 21 0

For linear quantum systems, the system Hamiltorttnand the dissipation opator L can be written
as

HSZ%XTGX x' M, L 1%, (16)

where G is a real and symmetric matrix, abdl are real and complex vectors, respectively. Tduosd
term in Hg, including the timedependentunctionu (t), describes the force applied by the feedback cbntro

ler (see Figll).

This feedback Hamiltonian must be linear in the conditional mean values of the position and momentum
operators, in order to ensure that the system remains linear.|3mimeaans that there is a linear map from

the measurement outpl, to u (t), and thus a linear inpautput relation for the controlled system. The

dynamics of the controlled system can be expressed as the following linear qstothatic differential
eguation:

dx = Axdt budt ifg gSIE I' 6B | (17)
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where the matrixA = %G Hn (I*I T) . The output equation (17) can be written as

dy,, = Fxdt +i(d3n €8), =Tl (18)

out \/5

dBj, Controlled system

[ I yout
g dX =£(u, X)dt + y¥dBjy[LT, X] + yF[X, L]dBy,' ! >

Measurement device

) aw

dr(X) = n(X))dt + y¥{m(LX + XL)—nm(L + LV (X) }dw \l_/

u=u({m(X)})

Controller _
Filter

Figure 11: (Color online) Diagram for statdased quanturfeedback. The controlled system (top branch, in
blue) is described by a quantum stochastic differential equation driven by the quantum WiendBpoise

Part of the quantum output field , from the controkd system is converted into a clas$ signal dW by a

measurement device (shown in yellow) and then fed into the filter. The dynamics of the filtemmddtey
the quantum filtering equation driven by the classical Wiener noise, i.e., the innqwattass dW. The

estimaed quantum stat%}p(X)} is fed into a classical controller to obtain a control signal u, which is then

fed back to steer the dynamics of the controlled system. The filter and controller which form tbal class
control loop (in pink) can be realized by a classical Digital Signal Processor (DSP)

After quantum measurement, the dynamics of this linear quantum system can be fully described by the
conditional means (x) and varianced/ar, = P( R|Y), where P, is the covariance matrix of the position

and momentum variables with ti{g, j ) -element beingP, :%( B D % D(), andDx = p(x%).

J

The conditional mean Waes” (x) obey the filtenhg equation

dpo(x)= A fx)dt +Budt gvarF  Hng ) gad¥ F(x) dt (19)

and the conditional covariance matrix satisfies the deterministic Riccati differential equation
Vai = Avay VaA D gvarF  Tim$) geFvar Im(T} (20)

where D = SRe(I*IT) ¢ Thus, the filtering equation is equivalentthe closed set of filtering equations

(19) for the firstorder quadrature and the Riccati differential equation (20), whidhits-Blimensional and
thus simulated with relative ease. The quantum filter given by Egs. (19) and (20) is cplbeatiam Klman
filter.

For linear qguantum feedback control systems, many objectives, such as cooling and squeezing, can be
reduced to the optimization of the following quadratic cost function of the systert skate

1 17,
J, :ExIS<T R &, &, dRu, (21)
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To obtain a @dsedform control problem, we should first take the expectation value over the-cond
tioned state and then average over all the stochastic trajectories to define a new quadratic cost function

J :< ( | out)> where (Q) is the average taken over the classical Wiener ri§eFrom Eq.(21) we

have

<2r380 ) QAx ) Ar(Qvar) W Ru gﬂ>z; <% ()" S(xH —;ﬂ(r SV,a)>C (22)

Here the controly, = u(p(x,),Var) is a function of the conditional means and varianeés, ) and

Var . The optimization of the quadratic cost function (22) subject to the quantum filtering equations (19) and

(20) is a standard classical LindauadraticGaussian (LQG) control problem which can be solved by the
Kalman filtering theory well deveped in the field of classical control.

Networks of quantum systems

The configuration of the feedback system in Fig. 5 has a unidirectional connection from the system to
controller, which replaces the measurement in measurdmset feedback, but does mge a unidirectio-
al caupling for the feedback part of the loop. We can, however, use a cascade connection for both, in which
case we have a complete unidirectional loop. What we now need to know is how to describe these cascade
connections matimatically. To do this, we use the inpatut put , or figuantum noi se
and Gardiner (CG), also known as the HudBamthasarathy (HP) model, as the latter independently derived
the same formalism in a more rigorous, measeeretic way. The fornigm uses Heisenberg egjions of
motion for the operators of the systems, with input operators that drive these equations in a similar way to
that in which Wiener noise drives classical stochastic equations. The formalism also contains oudput oper
tors, and systems are then easily connected together by setting the input of one system equal to the output of
another. In the CHBIP formalism, each system is described by a Hamiltonian, along with the operators
through which it is coupled to the inpotitput fidds. Further, the fields can be coupled to each other using
beamsplitters, which take two inputs and produce two outputs that are linear combinations of the inputs.

By describing a si ngl e Hfawectortobinpa souphng epaoasd,, aad aHa mi |
linear transformation between inputs and outputs codified by a n&tdough and James elucidated a set
of rules that covered the ways in which these units, or network elements, could be combined into networks.
We now describe briefly the@HP formalism, and the Gouglames rules for combining circuit elements.

A single Markov component is parameterized by a t(il&, H) consisting of:
T the System HamiltoniaHli;

i Coupling operatorsl. = ng between the system and tiedd;

I Scattering operatorss = g\ﬁk , unitary.

The inputoutput component is sketched in F1Q.

Plant (S,L,H)

output input

Figure 12. Input-Output device with system parameterized%y., H)
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The dynamics of a system coupled to input fields is given bgubhatum Langevin egtions.
As meanttioned above, we describe each unit by a tuple

G=(S,L,H) (23)

whereH is the internal Hamiltonian of the syste@ijs an 1 n unitary matrix with operator entries and is
called a scattering matrix;, = (L1 Ln)T is a vector of operators through which the system couples to the

inputs, with one for each input. We denote the inputs to the systeop (&) = & () .....b, (t) g in which

each of theh (t), (i=1...,n), are separate jut fields, all initially in the vacuum state. The atin

given in Eqg. 23) can be used to describe a wide range of dynamical and static systems. A singlenqua
inputoutput system can be written &Sy =(1,L,H), and a quantum beam sf®it is given by

Ggs =(S,0,0.

Remark Each inpuioutput component in a photonic circuit is described by a t{ilel, H) , whereS

is the scattering matrix of the compondnis the coupling vector of the component, &hi the Hamiltoir

an of the component &s Sis requieed to &d a uditarg matrie, and dsfmatfierele e d o r
ments can in gener al be operators on the Hitt bert
hough they are usually jusomplex numbers). The elementsLofan also be operators, in which case they
describe the way that external fields ¢playpthe t o
usual role of determining the (autonomous) time evolution of the camnpan 6 s i nt er nall degr
The dimesion ofL is equal to the number of inpoutput portsn that the component has (every port must

be both an input and an output); the dimensio&iefn3 n; the HamiltoniarH is scalar (se, Fig. B).

internal energy

interface

S

G:SLZiﬂ I

/'u \ H

direct connections

YVYVY
vYVvVY

indirect field connections

Figure 13. (S,L,H) -model

We now present the Langevin equations describing ioptgut systems in more generality. To begin,
we introduce a vector of goam Wiener processéXt) and a matrix of quantum Poisson prcx:h.c(t) as

aB o Ba - B,
B(t)=oi ¢ W) =i% "~ i (24)
&8, ¢ B - B,

These noise processes are integrals of the input fields:

B()=fk(t)ds B() =, A()b()c. (29)
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The increments of these gauge proce&{€s L (t) satisfy the quantum athastic calculus relations
given in Table2.

Table2: Quantum Ito Rule for quantum stochastic calculus

dX/dY | dB dA dB' dt
dB | 0 dB dt 0
dA | 0 dA dB' 0
af |0 0 0 0
dt 0 0 0 0

Let V (t) be the unitary evolution operator of the total system composed of the controlled system and the
input field, then the evolution equationtbe total system can be written as

dv(t):iéTrgs -)d L gdBL L$B %L-LAdt intB/(p (26)
| y
with initial conditionV (0) = I .

In the Heisenberg picture, the system operaXoft) =V (t) XV*( {) satisfies the following quantum
stochatic differential equéon

ax (1) ={L.y 8X(9 gi X9, H() | oig @BA(QS’“(T) X( JL( 9

: (27)
t) gt)d Bo)+Tr Ko x(9) &) -X() d gl O}
where the Liouville superoperatd)r (()) is defined by
L) =5UIX L] S i g a f,Lex L gy WX b @9

which is of the standardindblad form. Slmljar the output fields correqundlng to the inpB(¥) andPois-
son procesd. (t) are given byB,,, (t) =V*(t)B(t)V(t), L. (t)=V{t)L(t)V(t), from which we
obtain the following inpubutput relation

dBout( ) S( )dB( ) ( )dt

dlo, () S ()d S (1) s()dB(9) L() LLYdB(§S() L () at

It can be verified that the incremerd8_,, dL . of the ouput processes also satisfy the rules ofngua
tum stochastic calculus shown in Table 1.

(29)

For linear quantum systems, the quantum Langevin equations can be solved directly. In order to perform
calculations for nonlinear quantum systems, one must transforHeilenberg equations of the inpmitput
formalism to master equations. The corresponding master equations are

= i[H' ’} agl», L’? ELiti &'Lilfr (30
Y 2 2
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Although the scattering matri® does not appear in the master equation (8), it affects the oot
relaion of the system as shown in Eq. (7) and thus will affect the dynamics of more complex quantum input
output systems, such as the quantum cascade systems which will be specified below.

To connect the outputs of one unit to the inputs of another, so asniah arbitrary network, we need
only two rules. The first is merely a rule that says how to represent a universe that contains more than one

separate unit, none of which are connected. If we have the two @its(S,L ,H,) and

G, = (S2 ,L,,H 2) , the unit that escribes both these units with no connections between them is

&S 0 o6lLd 06
G, ( Gzz% f_jLa-Z"H@'*Hz (3D
gg % - f; -
Gough and James refer to this rule asctirecatenation product
The second rule for combing circuit elements tells us hodetermine the unit that describes a network
in which the outputs of a unii, are connected to the inputs of a u@if . This rule is

G,<G,=385 L +SLH, M, 2{ t:SL, Ush) ©
¢

and is called theeries productThe concatenation and series products can also be used to decompose a
given system into subsystems, and are thus fundamental to feedforward and feedback control.

Quantum transfer function model

The ColletGardiner/Hudso#Parthasarathy cascade connections amded to model essentially any
network. However, for linear systems, tidelays and quantum amplifiers can be modeled more easily in
frequency space. If we specialize the network formalism of Gough and James so that all the systems are
linear, and transim the equations of motion to frequency space, then we have the method of quantum
transfer functions.

A general linear quantum network described by the tu)le (H) satisfies the following conditions : (i)
the entries of the scattering mat®are salars; (i) the dissipation operatotg are linear combinations of
the a, and alf and (iii) the system Hamiltonia# is a quadratic function of the, and alf To eluédate the

transfer function method further, we consider a useful special case, in which each systemmisréc ha
oscillator, and the field coupling operators are linear combinations of only the annihilatiatogpedn this
case, the Langevin equations for the annihilation operators are not coupled to those for the creation oper

tors. The annihilation opators for then oscillators,{aj D=1, ,n} , satisfy the commutation relations

@16f g, ng =&A, Qé €. The total Hamiltonian iH = § i V%a‘\q and the coupling

operatorsL; = a " Cy & » and so we can simplify the SLH formalism, writing the tuple

G=(S.C, W (33
Where
gecu Cp, 8 Wge SR 74
C = &: . ’Q W - :w . .
é%nl Cnn 9 M% o VKn
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If we now introduce an operator vector, which we will call the state vector of the system,
a:(ai,... ,a])T, then from Egs. (5) and (7), we can obtain the following Langevin equation and input
output relation:

a(t)=Aalt) C'sh (1) . b, =Sp(t) CHa) (39
where A= CC/2 .

We can now transform these equations to frequency space by taking either the Laplace transform or the
Fourier transform. Using the Fourier transform, defined as

R(n)= ij exp( 4 A)R(1) dt, (35)
the Langevin equations can be reaged to obtain
a(n)= {i n, Ay'C'sh()n b.()nsh() @) (36)

From Egs. (14), we can obtain the injputtput relation of the whole system or network

by (7) = Xi b, () (37

whereX(in) is thetransfer functiorof the linear quantum stem which can be calculated by

X(in) 5 €(i b, AY'Cs (39)

The inputoutput relation (15) show the linear map between the input and output of the linear quantum
system given by Egs. (12).

The quantum transfer function approach is useful for a nuofomasons. While the timgomain ne
work formalism can describe essentially any network, it cannot be used to incorporate static models of non
conservative elements, such as quantum amplifiers, and such components must be treated as dynamical
systems. Ifrequency space, a static model of a quantum amplifier is simply a Bogoliubov transformation.
Time delays are also much simpler to include in frequency space, and of course frequency space has the
advantage that the transfer function of two cascadedmsystemerely the product of the transferdiions
of each.

Quantum filters: Physical motivation

As above mentioned the theory of quantfiltering was developed by V. Belavkin [L1], and repe-
sents the continuation of the work of Kalman, StratonoWalshner, Zakai, etc.

To better understand quantum filtering, let us consider an indirect quantum measurement, which is
achieved by interacting the measured system with a bath via a system obgeathrthen making a mea
urement on the bath. The bath isantinuum of harmonic oscillators of different frequencies. The bath also
describes a field, such as the electromagnetic field, in which the oscillators are the modes of the field. The
Hamiltonian of the total system composed of the measured systeneavathhs given by

H=H, H, B, H, fnﬁdW"bA( W)( )W Hy DZE 3"( )b’% ) Lwhe-,
where H is the free Hamiltonian of the measured systbﬁ(,w) and b(W) are thecreationandannihila-

tion operators of the bath mode witlequencyw, and satisfygh(1), o (W g ¢ w).The bath mode
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with frequencyw interacts with the system via the system operbafonvhere k(W) is the coresponding

coupling stength. Hereafter we sét =1. The total HamiltoniarH can be reexpressed in the intest@on
picture as

He =exp(iHyt) (H, #H,) exd iH ) H= ifye wg (de™o'( m hc-

We now introduce the Markovian assumptib(nW) = /% , which allows the Hamiltoniard , to be

expressed ad,, =H, +/g@", ()L LB, (t) , whereb, (1) :%ﬁ dwe™ b v is the Fourier
p Ay

transform of the bath modes. The operaig(t) is, in fact, the timevarying field that is incident on, and

thus the input to, the system, and satisgis (t), 1, (1) ga(t -f). We now define a new bath operator

B, (t)= ﬁlqn (¢)d & which is called @uantum Wiener procesi we assume that the bath is initially in a

vacuum state, the incrementtbe quantum Wiener procestB and its conjugat@lBAin satisfy the follov-

ing algebraic conditionsdB, dB}, = dt dB: dB =dB* dB* =dB dB 0. These are the quantum

version oflto rule. With the above notation, in the Heiserdp@icture, an arbitrary system operaoit)
satisfies the following quantum stochastitf eliential equation

dX =4[ X, H,] dt %{ A% g x g dt Jof aB 1§ x [g+d dB}. (39
It is then possible to define an output filbg,t(t) which describes the field leavinge system after it

has nteracted with it, and we can similarly define its Ito incremBy, (t) = fj‘bout(l‘)d . The celebrated

input-output relation for the system can then be written as

dBout = dBn -l-\/al‘

If homodyne detection is performheon the output fieldBout (t), then the operator corresponding to the
1

Jo

measured output idY,, = ( dB,, +dl§out) , and satisfies the following equation

dy,, =(L +) (dg de}).

1
dt +—
Ja
With the above preparation, we can now present the main resujtedafim filtering theory The pu-
pose of quantum filtering is to provide an estim,azt(eX) of the value of the system observalfe, at time

t, given the stream of measurement results up until that time. Weefiillecthis estimate as the expectation
value ofX given the measurement results.

To obtain p(X) we first define,,, ={ X: =f(Y,,), f:R -G, which is the smallest commaut

out —

tive algebra generated by the observation pro¥gssand denoteé® as the probability meare onY, . The

out”

estimatep (X ) is then the conditional expectationXbn Y, ,:
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p(X)=P(X|Y,)- (40)

From the definition ofp(X) given in Eq. 40), it can be proved that we can obtain the following d

namical equation fop (X ) and the corresponding output etian from dX and dB,, as following:

ap(x)= 4 (X) g g (Bx %) {10 Uk (Qogw

=p( L +I_A) dt dw,

NE

whereL (X) is the Liouville superoperator of the system defined as

41
dy (41)

out

L (X)= 4[X,H] FUAXL %-L’Lx %XLﬁ.
¢

The proces®V (t) in Egs. 41) is called thénnovationproces of quantum filtering, and has been shown
to be a classical Wiener process. The incrementoft) satisfies the following classical Ito adbns

E(dw) =0, (dV\)2 =d, whereE () is the ensemble of the stochastic process inducedyThe

dynamtcal equation41) of p(X) is called thequantum filtering equatianThe filtering equation41) and
the output equatiort() are the main results of quantum filtering theory.

Additionally, we can convert the filtering equatictl) from theHeisenberg picture totigec hr ° di ng e
picture, and thus obtain a stochastic equation for the evolution of the density matrix. To show this, we use
the fact that the density operatoy satisfiesTrgo(X) ¢ gTr(X, .}, wherer, is the initial density

operator of the system and, is the correspondingystem observable in tf&ec h r © gictureg Substitts

ing Eg. @1) into the above relation, the system density operator evolves according to the following
stochastic master egqtion:

dr.= i[H, f]dt %(ZL £t s pB)a {Ly L AT L) v @2

From Eq. (1), we have_ = P( 1Y,

out

). That is, r . is the conditional expectation of the dign®pera-

tor r which is defined byTr[XrO] = Tr( X, /) The stochstic master equatior@) is also often referred
to asquantum filtering equatian

Thus, the quantum stochasti¢fdrential equation4Q) and the output e@tion @1) give the dynamics
of the operators that describe the measured quantum system. These equations are driven hiythe qua
Wiener noisedB,, and are thus defined on a quantum probability space. As a comparison, the quantum
filtering equation 41) (or the stochastic master equatid)j and the output equatiodl) give the obser
ers statef-knowledge of the measured quantum system based on the information extracted by the quantum
measuement. These equations are driventhg classical Wiener noisdW and thus defined on a classical
probabiity space. Therefore in quantum filtering theory we use a classical stochastic system to mimic the
dynamics of a quantum stochastic model, which is why we refeuantum filtering as a bridge between a
guantum prohbility model and a classical probability model.

Example Partial information about state of higD cavity modes is obtained by measuring Rydbérg a
oms that passed otte-onethrough the cavity (see Figuid).
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Qubits (Rydberg atoms) are passed through a cavity one by one. At any one time there will be at most
one qubit inside the cavity, and we measure the outgoing qubHsyemee. The measurement by}, is sent
into a filter which estimates the state of the cavity mode, and then an instruction is sent tostbe scias
to control the mode. The measurement results can be used to apply a feedback action on the cavity mode.

We consider a qguantumeachanical system which is probed by atemel atom (qubit).

Incoming qubit

!
b
'

Actuator

Detector

Figure 14. A schematic of the LKB photon experiment

The qubit is in input statb®> initially. The unitary interaction between the cavity mode and the probe
gubit leaddo a change of state intlsec h r © gictureg e r

VIAlG 8]y [A

We take the interaction timé to be very small and assume that the unitary has the form
U=exp{ViL As Y AbH 1,01 Ve ¢ Ak ¢ %lua*ilﬂ Sly -
g -
We now measure the spisi, of the qubit and record the eigenvaluess 1 corresponding to eige

vectors|+) =\/1—§(‘ >®‘ -&)—' | ) —-\/1—50=> ‘ >§ The probabilities for detecting = 1 are

p=3 (L | y

After measurementhe system state becomes (up to normalization)
’ °l * . 6
WRE] Yy ASEEL iH R -y
o) 19 Wy gL e )

This is interpreted as a discrétme quantum Kalman filter2[7].
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For a continuous time limit we have (due to a central limit efféctp dt, </ ¢ v dY(1), where

Y(t) , the continuous time measurement readout, will be diffusion process. The limit equation is

_ al.. .. 0
d|c)=L| gdY gej“‘ iH |9t):d|(t), (43)

and we refer to this as the Belavkifekai equation as it plays the same role as the Zakai equation in
Belavkdbs t heory of Iggerenalicy isndt notnaliead,ibat @ is easy to obtéie eqa-

tion for the normalized stalgr, ) =| ¢)/|| , we find theStochasticS ¢ h r ° @quatigne r

dly,)=iH]|y)dt _;(L 't/)*(L ot (L)) di), (44)

where/ U { y|L+L| », di(t)0dy - dt

Mathematically | (t) has the statistics of a Wiener process, and its increi{tt) is the difference

between what we obsena (t), and what we wuld expect to ge(y, |L+L | ). It is convenient to
frame this in the Heisenberg picture.

Information-theoretical bounds and physical limits on quantum control

We discuss an informatietheoretic framework for analyzing control systemsedagn the close ral
tionship of controllers to communication channels. A communication channel takes an input statesand tran
forms it into an output state. A controller, similarly, takes the initial state of a system, to be controlled and
transforms it inb a target state. In thus sense, a controller can be thought of as an actuation channel that acts
on inputs to produce desired outputs. In this transformation process, two different control strategies can be
adopted: (i) the controlled (opdoop control);or (ii) the controller enacts an actuation dynamics that is
based on some information about the state of the controlled system {dogeaxbntrol). Using this comm
nication channel model of control, we provide necessary and sufficient conditionsyftem $o be perfée
ly controllable and perfectly observable in terms of information and enf8dg$8].

New derivations of the advantage afforded by cldseg control and proposing an informatibased
optimality criterion for control systems are déised. In addition, we discuss a quantitative traudt be-
tween the amount of information gathered by a cldeed controller and its relative performance advantage
over an opethoop controller in stabilizing a system.

Information control system theory: Introduction

It is common in studying controllers to describe the interplay betweesetitmraused to estimate the
state of a system, intended to be controlled, and the actuators used to actually modify the dynamics of the
controlled system, as a transfdrinformation involving three steps: estimation, decision, and actuation. In
the first step sensors are used to gather information from the controlled system in the form of data relative to
its state (estimation step). This information is then processmatding to some plan or control strategy in
order to determine which control dynamics is to be applied (decision step), to be finally transferred to the
actuators which feed the processed information back to the controlled system to modify its dygpimics, t
cally with the goal to decreasing the uncertainty

Whether or not the estimation step is present in this sequence is optional, and determines which type of
control strategy is used. In-salledclosedloop or feedbackcontrol techniques, actuators rely explicitly on
the information provided by sensors to apply the actuation dynamics, whemzenioop control there is
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no estimation step preceding the actuation step. In other words, atoopeantroller distinguishes itself
fromaclosed oop controller in that it does not need a
like a throttle or a hand brake, it implements a control action independ#rithg state of the controlled

systen. In this respect, opdoop control techniques represent a subclass of clasgdcontrols that neglect

the information made available by estimation.

Since control is fundamentally about information (getting it, processing it, and applying it)erhepp
surprising to note that few efforts have been made to develop a quantitative theory of controllers focused on
a clear and rigorous definition of information. Indeed, although controllers have been described by numerous
authors as information gattieg and using systems, and despite many results related to this problem, there
exists at present no general informattbroretic formalism characterizing the exchange of information
between a controlled system and a controller, and more importantly, allogls for the assignation of a
definite value of information in control processes. To address this deficiency, we present in this section with
a quantitative study of the role of information in control. The basis of the results was first elabofa4gd in
and draws upon the work of several of the papers cited above by bringing together some aspeats of dyna
ical systems, information theory, in addition to probabilistic networks to construct control models in the
context of which quantities analogous tarepy can be defined.

Central to this approach is the notion of a communication channel, and its extension to theddea of
trol channels. As originally proposed by Shannon, a (memoryless) communication channel can be-represen

ed mathematically by a prability transition matrix, say)(y| x) , relating the two random variabl®sandY

which are interpreted, respectively, as the input and the output of the channel. We adapt this conanon prob
bilistic picture of communication engirréeg to describe the operation of a basic control setup, composed of
a sensor linked to an actuator, in terms of twonob#s: one coupling the initial state of the system to be
controlled and the state of the sensor (sensor channel), and another one deberistiag tevolution of the
controlled system as influenced by the serssart uat or 6aionshanmd)es (act u

We use this model in conjunction with the properties of entfi@yquantities to exhibit fundamental
results pertaining to control systems. &dirst of these results, we show that the classical definitionref co
trollability, a concept welknown to the field of control theory, can be rephrased in an informttenretic
fashion. This definition is used, in turn, to show that a system isctigrtmntrollable upon the application
of controls if, and only if, the target state of that system is statistically independent of any other external
systems playing the role of noise sources. A similar informdltiearetic result is also derived for tbeam-
plementary concept of observability. Moreover, we provide bounds on the amount of information a feedback
controller must gather in order $tabilizethe state of a system.

More precisely, we prove that the amount of information gathered by the lmntnoist be bounded
below by the differenceDH - B2, whereDH ., is the closedoop entropy reduction that results

closed oper’ close

max
open

from utilizing information in the control process, afiH is the maximundecrease of entropy attainable

when restricted to opdoop control techniques. This last result, as we will see, can be used to define an
informationbased optimally criterion for control systems.

Remark.The idea of reducing the entropy a system usifaymation gather from estimating its state is
not novel by itself. Indeed, as he wondered about the validity of the second law if thermodynamics, the
physicist James Clerk Maxwell was probably the fi
later called) whose task is to reduce the entropy of a gas using information about the positions and velocities
of the particles forming the gas. In the more specific context of control theory, the problem of reducing the
entropy of a dynamical system hakso been investigates notably by Poplavskii and by Weidmann. Pop-
lavckidi analyzed the information gathered bey sens:c
rived a series of physical limits to control. His study focuses on the sensor pantmfilers, leaving aside
the actuation process which, as will be shown, can be also treated in an infoittnadiatic fashion. In a
similar way, Weidmann performed an informatioased analysis of a class of linear controllers having
measure presergrsensors.
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We build on these studies and go further by presenting results which apply equally to linear @d nonli
ear systems, and can be generalized with the aid of a few modifications to encompass cesgat®us
systems as well as contimustime dynanics. To illustrate this scope of applications, we study specific
examples of control systems. Among these, we consider two variants of proportional controllers, which play
a predominant role in the design to presday controllers, on addition to commebur numerical investag
tion of noiseperturbed chaotic controllers. In addition, we discuss a quantitative-dgfatetween the
amount of information gathered by a clodedp controller and its relative performance advantage over an
openrloop controlle in stabilizing a system. Finally, we remark on the relationship of frameworks with
thermodynamics and optimal control the{@$, 36]

Control and thermodynamics

The reader familiar with thermodynamics may have note a strong simiéwedn the functning of a
controller, when viewed as a device aimed at reducing the entropy of a system, and the thought experiment

of Maxwel I known a the Maxwell 6s demon paradox. S
section of this work. In the caseldfa x wel | 6 s de mon, the system to be c
gas; the entropy to be reduced is the equilibrium thermodynamiopentr o f t he gas; and

information gathered by the controller (the demon) are the velocities ofdims ar molecules constituting

the gas. When applied to this scheme, our result on elospdoptimality can be translated into an absolute
limit to the ability of the demon, or any control devices, to convert heat to work. Indeed, consider a feedback
contoller operating in a cyclic fashion on a system in contact with a heat reservoir at temperatoed-

ing to Clausius law of thermodynamic, the amount of 1&@, .., extracted by the controller upon reducing
the entropy of the cordlled system by a concomitant amoudit ..., must be such that

IIgclosed :( k BTIn 2) BC|OSE(' (45)

In the above equatiork; is the Boltzmann constant which provides the necessary conversion between

units of eergy (Joule) and units if temperature (Kelvin); the constar arises because physicists usually
prefer to express logarithms in basé&rom the closetbop optimality theorem, we then write

DQ,oeed a(kBTlnz)g B, 146X,0) = Q% (k. TIn2) I(X;Q), (46)

where DQ™ =(kBTIn 2) B, This limit should be compared with analogous results found lsr ot

open oper*

authors on the subject of thermodynamics demons.

|t should be remarked that t he ¢ on nteeomodymamicsp et we
and control is effective only to the extent that Clausius law provides a link between entropy and thé physica
ly measurable quantity that is energy. But, of course, the notion of entropy is a more general notion than
what isimplied by Clawius law; it carbe defined in relation to several situation which have no diregt rel
tionship whatsoever with physics (e.g., coding theory, rate distortion theory, decision theory). This versatility
of entropy is implicit here. Our results do not relytbarmodynamic principles, or even physical principles
for that matter, to be true. They constitute valid results derived in the context of a general model of control
processes whose precise nature is yet to be specified.

Entropy and optimal control theory

Consideration of entropy as a measure of dispersion and uncertainty led us to choose this quantity as a
control function of interest, but other informationOtheorretic quantities may well have been chosen instead if
different control applications require.s~=rom the point of view of optimal control theory, all that is required
is to minimize a desired performance criterion (a cost or a Lyapunov function), such as the distance to a
target point or the energy consumption, while achieving some desired dypenfoianance stability) using a
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set of permissible controls. For example, one may be interested in maxirbleigg,, instead of mining-

ing this quantity if destabilization (artbntrol) mixing is an issue. As other examples, let ustioe the
minimization of the relative entropy distance between the distribution of the state of a controlled system and
some target distribution, the problem of coding, as vehe minimization of ratéike functions on decision

or game theory.

The purpose of quantum control in general case is defined as intelligent process of a reduction-of the e
tropy of the control syste@, e.g., quantum Maxwell demon, quantum baagg control, and quantum

error correction code. Fundamehtimits on the controllability of quantum mechanical system can e di
cussed in the light of quantum information theory: The amount of entropy reduction that can be extracted
from a quantum system by feedback controller is upper bounded by a sum etiibase of entropy ackie

able in operoop control and the mutual information between the quantum system and the controller. This
upper bound sets a fundamental limit on the performance of any quantum controllers whose designs are
based on the possibilisgo attain low entropy statesn application of this approach pertaining to quantum

error correction is also discussed.

Remark The rapid development of quantum information technology suggests that quantum centrol th
ory might profitably be reexaminedoim the perspective of quantum information theory. In this section we
address explicitly the role of quantum information and entropy in quantum control processes. Specifically,
based on classical theories, we prove several limiting results relating tbikhe & a control device to

reduce the von Neumann entrof®~ Tr( R log Qr) of an arbitrary quantum systen® in the cases where

(i) a controller independently acts to the state of the system-{opprcontrol) and {j the control action is
influenced by some information gathered from the system (feedback control).

When a quantum systefQ initially prepared in a pure state, interacts with an environment repr

sented i the density operator(E”) , the systemQ and environment evolve according to the joint unitary
evolution operator U,.,. Then the density operator for the syste@ and environment is

r =UQEn( ¢ A (?))UAQEH. After performing a partial trace over environment variables, the marginal

density matrix of the syster® is represented by a completely positive and trace preservingemayhich
takes the forms © =E( 5) A E OEA, where the Kraus operatdts6 s s ati sfy thertrace

ty, i.e., a EiAE = |. This equation is known as operat@ued represeation of the quantum operatién
i

Unitary evolution of the quantum system is a special case in which there is only emeradarm in
the operator sum; if there are two or more terms, the pure initial state becomes a mixethestefier. e the

von Neumann entropy of the systeghincreases, i.e. S S(r ) >$ 5 because of the interaction

with environment. In this case the purpose of quantum control is defined as a reduction of the erntipy of t
systemQ. We will consider the fundamental limits on the control of quantum mechanical systems from the

viewpoint of quantum information inequalities.

Information-theoretic analysis of open-loop and closed-loop (feedback) quan-
tum control systems

We addressxplicitly the role of quantum information and entropy in quantum control process of a QA
evolution. Specitally, we consider several limiting results, based on classical theories, relating to the ability

of a control objecto reduce the von Neumann entrofp= Tr(fQ log P) of an arbitrary systenr © in

the cases where (i) controller independently acts to the state of the systerogpeantrol); and (ii) the
control action is influencetly some information gathered from the system (feedback control). The info
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mationttheoretic analysis of opdoop and closedbop (feedback) control gives the fundamental limits on
the cantrol of quantum mechanical system as QA from the viewpoint of qoaintiormation theory37-42].

A. Quantum opeitoop control We will consider a joint unitary evolution (a control unitary operation)
of quantum systen) and controlleC . Let the quantum systei® and the controlleiC be disentangled

before the control unitary operation. We also assume that the state of $Ystamd C are respectively
given by r°=E( §) = E  E'andr® =3 p|i).(i|. Herel|i), is an orthonormal basis of systefh

and § p, =1. Therefore, the state of the joint syst¢@C) is given by

r= R AT @&p I0.(| r¥=E J{=4)
j

In order to reduce the entropy of the sys€@ma control unitary transformatiohjop is applied to joint

system(QC) . Thenthe system(QC) undergoes the evolution:

Qc A
rec- u,, PUL.

We shall consider two types of control unitary operation: (i) global unitary operation; and (ii) local
guantum operation and classical communication (LOCC).

Figures 15a,b shown these types of contjfa¥, 38]

a) c)
@ —C] g [Dcﬁl; [C.u]
@—iL'!M o (v ) —fo.]
. r

Figure 15: Quantum Control Schemes
Remark In Figurel5 (a) quantum opetoop control using global unitary transformations; (b) quantum

openloop control using LOCC; (c) quantum feedback control usirapa]l unitary transformations; (d)
guantum feedback control using LOCC

Al. Global unitary operation In former case, the entropy of the total system becomes:
S(QRO=9 Q. G) ¢$ Q) +6 &), where we have used the subaddivity of the entropy.

From this inequaty, we finally obtain the entropy reductiddS™" as:

DS = Q € Q) €& 6 47)
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with the equality iff : 7 @uCou = ot A G,

Therefore, the entropy reduction is upper bounded by the maximum amount of the entrepyeirut
the contréler C.

A2. LOCCoperation In the case of LOCGtrategy the control unitary operation is given by
=8 U, Ai)_(i|. Therefore, the state after the opgeap control becomes

rQoutcout :Uop a p|U PU | > < |
1]

Then, the marginal density operator@f, is given by:

rQu =TI’C( P"“‘C"“‘) :a pY, Q'UiA'

Now using the concavity of the von Neumann entrop;‘s%_ n’, g a P 7). we see that:
¢ F

%@ Uy Gapgr Y 61 49

Thereforefor openloop control the LOC&trategy finally: D™ 40. This means that we can never
reduce the entropy of syste@ in contrast with the case of the global unitary operation strategy.

B. Quantum feedback cant. In this case, the controll€ performs measurements on the syst@m
and feeds back the results of these measurements by applying operations that are the functionsof the mea
urement results. Ahough both the syster® and the controllelC are quantum mechanical in principle, the

feedback operations we consider here involve feeding back classical information. To analyze quantum
feedback control, waeed to consider quantum measurement processes. We consider (for simplicity) a
POVM measurement in which the entropy of the syst@ndoes not decrease, e.g., the conventional von

Neumann measurement model.

As in the case of opdoop control, we shall investigate two types of control strategies (see Fijures
c,d).

B1. Global unitary operationFigurel5 c shows a basic quantum feedback control using a global co
trol unitary operation. The entropy of the controlgy;, is calculated as

S( q)ut): q Qu Qut) ) $ th) +(| Qi (c;u)

ZS(Q, C)i-S( Q:t) +( Qut: gut) (49)
S(Q) 'g th) '|$ Q Q'Qn: gn) (l'Qi ():

Herel (A:B)=S( A +§ B -$ A [is the quantum mutual information of systefgndB .

Therefore, the entropy reduction for quantumdfsek using the global unitary operation is given by
the following:
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D™ = Q ¥ Q) €RF B0 (R L
=5(Gu) 4G HQi9 ifQ: G (50)

Entropy defect of controller Mutual informatn loss

¢ max ™ HQi:C)i

Here rrLaxD%’pe” is the maximum entropy reduction attained by restricting the control model te open
loop system.

The equality holds ifr © = A" and

S( Q)ut)' 5( G:) - (Qut: Cr;ut) muax @en' (51

Therefore, the maximum improvement that closed loop can give overlagemrtontrol is limited by
the quantum mutual information obtained by the contr@ller

Now we shall consider quantum feedback control using the LOCC.

B2. LOCG-operation Figurél5 d show the quantum feedback control scheme using the LOCC. In this
case the entropy reduction is upper bounded by the quantum mutual information between interoaediate g
tum statedQj of control object and controlle€i, i.e.,

DS ¢1(Qi: C). (52

In this strategy, one performs a measurement (on therstatdescribed by positivep@rators{ R} ,

and feeds back the results by applying a unitary transforméltiomhen thei th outcome is found. Then the
state change of the subsysté€ncan be written as

ro- F=8R ® - %r =&up °PA "¢ ).

From the inequality of the entropy excharﬁg(r , E) for a quantum operation as

S(E(r))- ) +s( E) o

it follow that
S(Qu)- 4Q +8(r°.0) e

Thus we inequality for the entropydwction,

D =4 Q % Q) & C). (53)

The entropy exchange is not greater than the Shannon entropy for the probabilities
p'=Tr(URr°PY).

Thus,SeX(fQ,C) ¢ H( p“) , where equality holds iff the operatok P, is a canonical decomposition of

C respect tor ©. Therefore we have:

DSlgeedback ¢H( pj =a_ polog pc (54)
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Remark The joint state after measurement is given by

SEE LR URURE-U AT N}

RreR*

where r; = .
B

. Therefore the entropy of the systeﬁ@iC ) is given by

s(@.c)r s b Akl 6H o) &0¢N HH =

R —
0

where in the second equality the joint entropy theorem is used. The marginal density operabsyste#res
Qi and Ci are respectively given byr% =3 p,q|i>Q<i| and r=3 p'li).(i| so we have:

s(Q)=g 9i=H p).

Therefore the mutual information between subsyst€@hand Cj is

1Qi:C)FS(Q) 449 $Q ¢ il (56)

While in the case of the quantum feedback using Ldﬂ:(jplq) =1 (Qi: C), the entropy reduction is
given by

DS ¢1(Qi: C)i H( pd. (57)

This implies that the maximum amousftentropy reduction is exactly equal to the maximum mutual i
formation between subsyster@ andCi, i.e.,I (Qi:C).

Remark The quantum mutual informaticbl(A: B) is related to the correlation between subsystéins

and B: If joint system A and B is a product state, theh(A:B)=0; however, | (A:B)>0 if the

subsystemsA and B are (classically or quantum mechanically) correlated. In the case of the quantum
feedback (see, Figurds c,d) the quantum measurement germinates not quantticiassical correlation
[42] betweenQ andC.

Therefore, we can conclude that the classical correlation bet@¢eand Cj can increase the amount
the entopy reduction in compared with the case of the quantum-lgogncontrol.

These results are the background for information analysis of successful solution searching from QAs
evdution.

We give an introduction to the topic Quantum Feedback Contratxdaining what its objectives are,
and describing some of its physical resources, limitations and information bounds. Reader that not familiar
with classical feedback and stochastic control can find the necessary information ndiéppe

Conclusions

In presentarticlewe are concentrate our attention on the description of efficient quantum feedhack co
trol models, its physical limits and information bounds and tradeoffs betpedormance stability and
robugness We are considered separating the probéérdesigning Hamiltonian quantum feedback control
algorithm into a measurement (estimation) strategy and a feedback (control) strategy, and we coiRsider opt
mizing desirable properties of each under the minimal constraint that the available strengthsolirnaitd.
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These motivate concepts of information extraction and disturbance that are distinct from those usually co
sidered in quatum information theory. Mathematical background is describ¢8%42].

We are focuses on the design of control fieldst thchieve given state transfers with the minimum
amount of engy expenditure. Besides their inherent mathematical interest, such optimal designs are closely
tied to the dynamics of the underlying system and reveal much about the interplay of dynamimstihd
We consider energgptimal transfers in a general isolated quantum system, for example an atom er a mol
cule. By examining the larg@me limit of these optimal transfer problems, we uncover the general structure
of the optimal controls. Moreovewe reduce the computational complexity of the problem significantly.

While feedback control of the system Hamiltonian is sufficient to cover the full classical contvel pro
lem, it is not sufficient in the quantum case. This is because, in general atht@rumeasurement process
disturbs and changes the dynamics of the system. Consequently the formulation of the full quantum feedback
control problem must also allow for the possibility that the measurement process is also changed as a result
of the observéons.

We examine similar problems for open quantum systems, that is, quantum systems that interact with
their enviraiment. This interaction creates dissipative effects in the system. Although one usually wants to
resist these effects, there are instanseich as the cooling of internal molecular motion, that one can effe
tively use dissipation mechanisms to oneds advant
i solated systems to design Acooibns.Wegwilllook atthetfarmi-c (| a
lation of quantum feedback control theory for continuously observed open quantum systems in a manner that
highlights both the similarities and differences between classical and quantum control theory. We will i
volve a discusion of special topics in the field and is meant to provide a casual overview of curreit exper
ments in quantum control.

This reviewwasassembled from various lecture notes, (conference and meeting) presentatiaes and r
search papers of many authors, andv& apologize for the inevitable inconsistencies that resulted. Neils
Bohr 8lever speak more thanyouthink | n Ref erences we are introc
publications according to Neils Bohr recommendation.

Appendix 1. Boson and Fermion Fields

We may think of observables gaantum random variableand the key distinction with classical pro
ability is that quantum random variables do not in general commute. Inde(swlﬁ,P) is a classical
probability space then clsisal bounded realalued random variables ih’ (VV,F ,P) have an interprat

tion as multiplication operators that map the Hilbert sph?c(aW,F ,P) to itself. Since all such operators

commute with one another, bounded claatirealvalued random variables are thus isomorphic to (and can
be viewed as) commuting observableslS{W,F ,P).

In quantum field theory, a one dimensional quantum field (with param)etensists of a collection of
systems each witannihilation a(t) and creation operatora’ (t) used to describe the annihilation and

creation of quanta or particles at index location or pd)jrm(t) anda’ (t) arereferred to adield operators

the annihilation and creationfield operators, respectively. The indexnay represent a range of variables,
including position, frequency and time, and we assume her¢ libatin a continuous intervdlin [J . Basic
considerations lead to the postulate that the annihilation and creation operators must satisfy either the co
mutation relations

ga(t).a (t) go(t t) (AL1)

or the anticommutation relations
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{a(t).a (1)} =a(t t) (AL2)
for all t,til T, whered(t) denotes the Dirac delta distribution.

Fields that satisfy the commutation relationd () are calledbosonfields (e.g. photons), while fields
that satisfy the anticommutation relatigi#sl.2) are calledermionfields (e.g. electrons). We will take the

parametet to be time andl' =[0, 9. In this casea(t) has the interpretation afnihilationof a proton

(in the case of a bosonic field) oretron (in the case of fermionic field) at timjevhereasa’ (t) has the

interpretation of creationa photon (in the case of basons) or electron (in the case of fermions) at time t. One
can imagine these fields as a continuous catlacor stream of distinct quantum systems (one quantum
system for eact) hence, informally, quantum fields can be defined on some continuous tensor product

Hilbert spaceH = ,50[0’ 9 H,, whereH, is a Hilbert space foeacht (of the quantum system arriving at

timet). Although such an object can be rigorously defined and constructed, from a mathematical viewpoint it
is such easier not to work directly with the field operatafs) and a (t) but with their integrated ve

sions, the s@alled smeared quantum field operators, as will be discussed below. Smeared quantum field
operators can be constructed on Hilbert spaces known as Fock spaces (symmetric FoE-gymﬁacbos-

ons and amsymmetric Fock spacé&

antisym
product Hilbert space. Modulo the specification of the statistics of the field, a quantum field has the character
of a quantum version of white noise, while its integrated version can be viewed as a quantum independent
increment process. Thus, exploiting the properties of smeared guantum fields, Hudson and Parthasarathy
were able to develop a quantum stochastic tadowhich is essentially a quantum version of the Ito s®cha

tic calailus.

for Fermions) which have the character of a continuous tensor

The model we use to describe the system shown in Fgudeemploys boson and fermion fields(t)

and a(t), respectively, parametrizday time t =[O, c) which accounts for the time evolution of fields

interacting with the system (e.g. an atom or quantum dot) at a fixed spatial location. In tmeleemithis
section we describe the quantum stochastic calculus tsabéden deveped to facilitate modeling and
calculations involving these fields.

inputs system outputs
= B(t)
E o - -
=
N0
— 1 L h--
k=
=
= Aplt
5 (t) . .

Figure AL.1. Schematic representation of a system coupled to boson B and felynignfields

Some basic aspects of quantum stochastic integralshargltum Ito rule are discussed in Appendix
Al2.
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The boson field chann@ in Figure AlL.1 is defined on a symmetric Fock spd%;gn. The commutation

relations for the boson field agh(t),b (ti) gad/(t -t), from (AL.1). For aboson channel in a Gaussian
state, the following singular expectations may be assumed:

(0" (t)b(ti)) = Na/(t -t)i (b()b(t)) iEN D+dt t);
(b(t)b(t)))=Ma(t -t)i (b()b(t)) i® gt t}, |

Here <X> is a standard notation used to denote the quantum expectation of a system opérator

(A13)

<X> = E[ X], N 20 is the average number of bosons, witlledescribes the amount of squeezing in the

field state. We have the idétyt|M|* ¢ N (1 4N). For a thermal statéyl =0 and
N=——"—"— (A14)

1 . . . : . :
where b = —— is the inverse temperaturk is the energy, anglis the chemical potential.
B

We will assumeN =M =0, which corresponds to the case of a boson field in the vacuum (ground)
state. The veuum boson field is a natural quantum extension of white noise, and may be described using the

guantum Ito calculus. In this calculus, the integrated field proceﬁs(ets): f’jb( s) ds (annihilation),

B (t)= r’jb ('9) ds (creatdn) andL (t) :fjb* (s) b( 9 d: (conservatiopare used. The nerero ltoprod-

ucts for the vacuum boson field are

du(t)dL() = (1), d (DaB() d(},
dB(tf)dL (1) =dB(), df) dB(} =t

We now specify the fermion channely and A in Figure AL.1. We assume the followings singular

(A15)

expectations for a fermion fiel, defined on an antisymmetric Fock spaeg;,

(@ (Ya(t))=Na(t-t)i (afa(y) i N gt 19
(a(t)a(t))=Ma(t -t)i (d()a(t))im gt t} i

In general we haveD¢ N ¢ along with the identit |M|2 ¢ N(l -N). For a thermal state we
haveM =0, and

(A1.6)

_ 1

In what follows we take the zero temperature lihit 0. For fermion channel 1 we assume therene
gy is sich that E < /7. and so in the zero temperature limit this channel is fully occupied,1, and the Ito

rule dA (t) dA (1) = dt(A1) applies for the corresponding integrated procesidg) = I”Jt‘al(s) ds and
A (t)= r’jai( s) d. For fermion channel 0 we fiE > /7, in which caseN =0, describing a reservoir
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which is unoccupied. The number procesg(t) =rjao(s) a( 9 d<is well defined for fernén chanel 0
(but not for channel 1), and the Ito table is

Lo()d (1) = oY, d o) dA(Y da(}),
dA (t)dL,(t) =dA(Y, dA() di() =dt

The fermion channels are defined on distinct antisymmetric Fock sﬁg,g% F

(A1.8)

antisyn*

System Coupled to Boson and Fermion Fields

The systenSill ustrated in Figure Al.1 is defined on the Hilbert spce, and so the complete system
coupled to the boson and fermion fields is defined on the tensor product Hilbert space

~ (1 =~ (0)

Y: Y S ﬁFsym E antisym A antisy (A1.9)

Due to the presenadf fermion field channels, it is necessary to introduce a parity structure onlthe co
lection of operators on this tensor product space. We therefore have a padtgropen Y such that for

all operates X andY on Y we havet (XY)= {X) (¥) and f( ) = {X). Opestors X such that

t (X) = X are calleceven while those for whictf (X) = -X are callecbdd As examplefermion annifi

lation and creation operators are odd, while the fermion number operator is even. All pesaiors are
even. A system operator, i.e. an operatacting nontrivially onY ¢ only, that is even will cmmute with

all field operators, while an odd system operator will anticommute with odd fermion fieldtanserAll
boson field operators commute with all system operators and all fermion field operators.

TheS ¢ hr ° @duatigndor the complete system is

du(t)=gS -1)d () dB()L LSdlB)l = Fldt dAHt.L L4t

N I [N
m

|-S'on
©T
N
~—+

S-NdL() #A(Y L, kSdA(} S-Lhd iHatd( X (A10)

OBL o e

with initial condition U (O) =1 .The operatorsS, L, H, §, L. and L, are system opators, where
o S, L H, § are even (and thus also their adjoints), and

o L, andL, areodd (and thus also their adjoints).

The operatoH is called the Hamiltonian, and it describes the behavior of the system in the absence of
field coupling. The operatorS, L, H, §, |, and L, describe how the field channels couple to the sys&m (
and S, are required to be unitary). Note that often terms involving the creation and annihilation operators in

(A1.10) ensure a total energy conservinghange of energy between the system and the field channels; for
example, an electron may transfer from the field to a quantum dot, and vice versa. Consequences of the

specified parity of the above operators and the facthé@) =1 is even is that) (t) is even and hence

commutes with all the Ito differentials, and, by the quantum Ito rule, is a unitary process (we have
dA L, = L1,dA, dAlL =LdA anddB L= LdB,.
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Heisenberg Picture Dynamics

A sysem operator X at time t is given in the Heisenberg pictureXdfit) = j (X) 2J ()" XU(t)

and it follows from the quantum Ito calculus and the commutation and eantigtation relations arising
from the chosen parity that

di(X)=i(sSxs-X d} Bk 9 xP fe v xgs @t (+( )
() L (X)L LX) H(G ) X0) da(d ife ) ot
+i(sxs -9 dy() ea( Y f Se( Xk kX
(Lt (X) X5)s) dA(Y (Lol X)) dt ] X, H) at

(A1.11)

where

L(X)=LXL -%XL*L %LLX, L(X) 12(X IT*—; XLL*—;IT-ITX’
Lo(X) =Lt (X)L 2 Xy 2 L

and in the case of even operators we shall just write

. 1.,. 1 .
L(X) =L (X)L <X SEEX (i 07,
The boson and fermion output fields are defined by

B, (1)=U (0BU(Y,  Lu() 810 (MU, Aw() U)AU(Y,
Poun()ZU (AU, Loa(t) 87) o0U()

and satisfy the corresponding quantum stochastic diffiedeequations (QSDES)

dB,, ()= j(L)dt +,(S)dB(}, d () #LL)dt dB(} (S % dB)t d(9t
dA () = i (L)dt 0A(), dAL() 4(L)d KS) ol/a()t
AL g (1) =i (Lolo)dt @A(D) (L) K LS) dA(} arf )k

The State

Let us define a statE[.] on the von Neumann algebra of observables to be an expectation, that is, a
linear positive normalized map from the observables to the complmbers; positive meaning that
EgX* X ﬁOfor any observabl& and normalized meanin&[l] =1, where |l is the identity operator.

For technical reasons we require the state to be continuousnortinal topology. We shall assume that the
state is a product state with respect to the systevironment decompositiorE[ X A F] 1(X)_(F), for
system observabl€ and environment observalffe In particular we také@E to be the mean zero gaussian
state with covariance (A1.6) and the choicd\bf=1 (the Fermi vacuum).
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We say that the stateésenif we have

Eot =E, (A1.12)

where ¢ is the parity operatothat was introduced above. Specifically, this forces all odd oftslessto

have mean zero. In quantum theory, the observable quantities must-adjaelf operators, hower, it is

not necessarily true that all selfijoint operators are observablastlaere may exists smlled siperselection
sectors. In the present case, only the evenrasiiint operators are observables. We need to ignore states
which lead to unphysical correlations between component systems, this is referred to a supersatettion p

ple in the quantum physics literature. We need therefore to restrict our interest to even states only. More

specifically, we shall assume that the factor stéesand (Q). are separately even on thetsys and eni
ronment observables respectively.

The expected values of system operakoevolve in time as follows. Define

m(X)=Egj, (X) (A1.13)
Then by taking expectations of (A1.11) we find that for even observbles
m(X)= oL (X) +.(X) (X)), (AL14)

which is called thenaster equationand corresponds to the Kolmogorov equation. This maxjpegsed in
Sc hr ° dornmugirgrthe density operator (t) defined by /77(X)=Trg /t) X which exists by our
assumption of normal continuity of the state. The density operator is then an even positiciasaopea-
tor, normdized so thaflr @ (t) g1, satisfying the equation

FE)=L( A1) +.( @) =( (1) (A1.15)

where

Fermion Filter

We suppose that electrons in fermion channel 0, after interaction with the system, can be continuously
counted; that is, the observabllagyom(s),O ¢s ¢ are measured.hE problem is, given an even stdfe

as outlined above, to determine estimal%(st) of system operatorX given the measurementcaed. This is

a filtering problem involving a signal derived from a fermi@id. As mentioned above only the even aper
tors may be observable, and in fact the expectation and conditional expectation of all atif<op@ist
vanish identically. Mathematically, we wish to determine equations for the qguantum conditional expectation

X(t)=p,(X) Eai{ X9, (A1.16)
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Here, X is a system operatod, , is the algebra generated by the operatog;%ut(s),O ¢s ¢, a commua-

tive von Neumann algebra, am is the conditionabtate. In quantum mechanics, conditional exgtets
are not always well defined due to the general lack of commutativity. However, the conditiorchtsxpe
(A1.16) is well defined becausg (X) commutes with all operators in tiadggebrad , . This is called the

non-demolitionproperty, and is a consequence of the sysfietd model, where fermion field channel O
serves as a probe. The quantum conditional expectation (Al1.16) is characterizecepyitbmen that

Egi,(X)Z gE pgX)Z fogall Z iJ, (A1.17)

The quantum filter for the conditional expectation (A1.16) is giverpp(yX) =0 for odd obserables,
while for even observables satisfies the equation

ap,(X)= p{ [ H] E(X) L{X) LofX) f‘;t(LO:S) bX gjdV\()‘.(Al.lS)

[

where W (t) is aJ , martingale (innovations process) given by

W()=dY(}) »( L) d WO

Let r, be the initial even density matrix for the system, then irStleeh r © ghicturegne maydefine
the conditional density operatd{t) by p, (X)=TrgEt) X , and obtain the filtering equation

G0 =(U () 4. @R vl (D) f% ({)rfé@v(r).

Appendix 2. Quantum stochastic calculus

Let B ={ B (W)| wi }/Vt @, be onedimensional Bownian motion. Integration with respect &)
was defined by Ito. A basic result of the theory is that stochastic integral equations of the form

X, =X, §jb(s X) ds +{ s ¥ dF (A2.1)

can be viewed as stochastic differential equmstiof the form

dX, =b(t X)dt s (t X) dB (A2.2)

where differentials are handled with the use of |

(d§)°=dt dBdt=dtdB Edf O. (A2.3)

Hudson and Parthasarathy obtained a Fock space representation of Brownian motion and Beisson pr
cess.

TheBoson Fock spac& = (CE.Z (0 +,C)) over L*(C ,,C) is the Hilbert space completion of thedin

ar span of the exmential vectorsy (f)under the inner product<y(f),y(g)>=éf’g>, where
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f,gl *(D,,C) and(f,qg) :fj f(s) g( 9 d:where, here and in what followg, denotes the complex
conjugate ofzi [] .

The annihilation, creation and conservation operad(s ), A*( f), and L (F) respectively, aree

fined on the exponential vectoys(g) of G as follows.

w(9=Ralgas( 9 AX b=k basydi U i (9

The basic quantum stochastic differentiell, dA’, and dL, are defined as follows.

dA t+dt 'At‘; dAt #fjt A:A dt Ltd? Lt'
The fundamental result which connects classical with quantum stochastics is that the prigcessks
P, defined byB = A +A5' P = L\//_-I-( A A’)+ /1 are identified through their vacuum characteri

tic functions<y( ), €% )> t' < %0 ,&° ﬁ/()> =4 ith Brownian motion and Poisson
process of intensity respectively.

Hudson and Parthasdnmgitdefined stochastic integration with respect to the noise differentials of defin
tion and obtained the Ito multiplication Table

- | dAl dA, dA, dt
dAll o 0 o0 0
dA; | dA] dA, 0 0
dA, | dt dA, 0 0
dd | 0 0 0 0

Within the framework of HudseRarthasarathfiQuantum Stochastic Calcufyslassical quantum ea
chanical evolution equatisrtake the form

2 o

aa.
99
where, for eactt 2 O,U, is a unitary operator defined on the tensor proddch (iL2 (D +,C)) of a sy-

du, =

l\ﬂh—\

‘g‘ kHAA LdR (1+W)d, SJ:LLA ! (A2.4)

tem Hilbert spaceH and the noise (or reselivoFock space . Herdd,L,W are inB(H ) the space of

bounded linear operators dd , with W unitary andH self-adjoint. In all cases, denotes the appropriate
idenity operator. Here ahin what follows we identify timéndependent, bounded, system space operAtors

with their anpliation X A | to H A d‘LZ (D +,C)). All Hilbert space inner products are linear on the right.

The quantum stochastic differernteguation satisfied by thguantum flowj, (X) =U, XU, , where X
is a bounded system space operator, is
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Q_)o

d, (X)= j&[H,X] -—(LLX XL'L 24 XU

+i (8 x w)da (W x.0) da” 4(w xw X d,
jo(X)=X ,t I[ o
The commutation relations associated with the operator procé\sséé are the Canonical (or Heise
berg) Commutation Relations (CCR), namg&, AA gtl.

@O

t

O

Elements of quantum stochastic differential equations

In the previous sections, we derived equations of motion for single and cascaded comp@mnaotsgnt
with probe fields, which produce dynamics when integrated. It turns out, however, that proper integration is
far from trivial, not just because the dynamics are complex, but because they are inherently stochastic. In this
sectionwe will summarizehe use of b calculus to calculate these stochastic quantum dynamics.

So far, we have been fairly cavalier (nevertheless, accurate) about dealing with the broadband input
fields b, (t). The mathematical description of these fiellighly singular due to the canonical comaut

tion relations g, (t), b (t) ga(t -t). To sidestep such singularities, let us define the-titegrated

quantities B, (t) = an( s) ds and B,’;(t)=r§bn’&(s) ds, and consider increments irhese fields

tdt

dg,()=p) k(9 dsd B() 2; fjﬁ B( kb c. Note that the units of these increments dtéme , and

their commutation relations agdB, (t), dB () g ditfor t =ti and zero otherwise. These are quantum,

nortcomrmuting analogues of the classical Wiener process and are referreguardsm noise increments
guantum stochastic increments

Further, by using the above singular commutation relations we can compute the following vaeuum e
pectation values

(dB, (1) B, (1)) =0, (e (} dRf( ) =0
(dB? (1) dB, (1))=0, (dB () dB( )} =di

where <A> 1 Tr(rin A) and 7, is the initial state of the asymptotic input field, which is assumed to be the

vacuum state of all frequency modes. Tlaeuwum expectation values above are somewhat surprising b
cause they state that the average value of second order products of increments of the input fields can be

proportional to a firsbrder time incremen(dt) . This bears resemllae to stochastic Wiener increments in

for t =tj, and zero otherwise

classical stochastic theory, and motivates us to think more deeply about how to integrate over esuch incr
ments. Similar to classical stochastic increments, we define two types of integrals over the quantem stocha

tic incrementsdB, (t) :

(1) fo(9da (9=ima ¢ I&R(L) - () g

(9) Ao(sen($=lima d5(s +) 8B(L) B e

qT)L
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where the time interva[O,t) has been discretized intosegments, and is any operator in the system

subspace. These two definitions of integration, the firstho€thvis called an Ito integral and the second is
called a Stratonovich integral, are equivalent in standard calculus where the increments are regular. Howe
er, since the quantum stochastic increments can vary wildly eveniilY tBdimit, these two integradefini-

tions produce different results. As such, one must specify the type of integral a quantum stochastic differe
tial equation (QSDE).

In general, a QSDE derived from physical principles (e.g. Heisenberg equations of motion) corresponds
to the Stratoavich integral definition. To understand why this is, note that real physical noise is nevter exac
ly a white noise process. Instead, one uses (classical or quantum) white noise as an approximation of a real
physical process in some limit (e.g. white nagpg@roximates the Ornstelhlenbeck process in the valnis
ing correlation time limit). The Wongakai theorem, and its quantum generalization, state that the behavior
of a noisedriven physical system under this singular approximation of the real noisssprisccaptured by a
QSDE that is interpreted with respect to Stratonovich integration. This is consistent with the fact that Stra-
tonovich differentials are consistent with standard calculus rules, while Ito differentials obey a modified
chain rule:

d(X()Y(9)=ax() Y} +>(} d¥ )t +d)t dfr), (429
where X (t) and Y (t) are arbitrary functions of operator valued stochastic variablescBfit) and
dY( t) are specified in terms of [toSDEs. The first two terms arise from the usual-oommutative chain
rule and the third term is known as the Alto corr

Therefore, the QSDEs we derived in the previous section for system operators or unitary propagators
should be interpreted withgpect to the Stratonovich integral (or more succinctly, we will refer to QSDEs
being in Stratonovich or I1Tto Aform"). However , QS
Iytically and numerically. Fortunately, there is a straightforward praeetlu convert between QSDES in
Stratonovich and Ito forms.

In much of the following, an important mathematical object will be the unitary propagator forsthe sy
tem, which generates evolution of any system operator (in the Heisenberg piatey, U*(t) au(t).
For the dynamics described above, the propagator takes the form:

u(t)=T exp{fjds( dHy, (L (9 L s)))} with U §) L ©2.6

Here T denotes time orderind,¢. is shorthand for the identity operator on the system and fegjckds of
freedom (i.e. | ggenA |

monly referred to as an operator, it has unit$imfe *). One calculates the generator of this unital()(,t) ,

), and we introduce theoupling operatorL =\/5C (note that whilel is can-

fielc

as
U(t)=K(t)u(t) £iH,, (uh(t) Lb.(1) g(1). ©2) 7
Because it will le used heavily in later sections, we write the Ito form here
du(t)=5 S, %LAL & LeB* L&, @U(), with U0 I ®2) 8
€ C = u
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1, . . . :
where the term > L"Ldt arises from the conversion between Stratonovich and Ito forms (i.e. the lto-corre

tion).We will often write the ItgoropagatorU (t) asU, for convenience.

Remark [QSDE notation] By convention, QSDEs in Ito form are nearly always written in ternms of i
crements (e.g. an equation fdiJ (t) and notdU (t)/ dt). Stratonovich QSDES are also sometimes written
in terms of increments and in that case, it is customary to make explicit the Stratonovich interpretation by
writing the product of a (possibly operatalued) quantityg (t) and an incremenB(t) as: g(t)o dB(t).

Applications of quantum stochastic calculus to the control of quantum evolutions and Langewin equ
tions (quantum flows) can be found and the references withiroitwié v e r to the author
no work has been done in the direction of performing actual numerical computations, most likely with the
use of a computdi]. That would require the implementation of suitable algorithms whose reliab#ity d
pends a the existence of good norm estimates. It is that gap that this Appendix 2 aspires to close.

Appendix 3: Ito and Stratonovich calculus

Definitions of the Ito and Stratonovich multiplications for arbitrary stochastic operatpasnd Y, in
theS c h r ° depresgneation are giverespectively, by

X @Y X(dYs dY, (A3.1)
X & X X)Y (A3.2)
and
X o0 =2 (X +X)(Yur ), (33
BX oY= (K - X)5(Ya ), (3.9

From these relationwe have the connection formulae between the Ito and Stratonovich products in the
differential form as

X odY =X @Y ZrdX d¥ (A35)
dX oY = dX & —;+d>t( d. (A3.6)

Note that random average of the stochastic multiplication (A3.1) or (A3.2) tbthge is equal toex
ro.

Definitions of the Ito and Stratonovich multiplications for stochastic operaXoft) and Y (t) in the
Heisenberg representation are given in the same form by

x(av(y (et & ) (A3.7)
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dX()&r() ax(t o X3 & ) (A3.8)
and
X(t)odY(t)=%gX(t+dI) X} gt & ), (A3.9)
dX (1) (1) = g X( t +d -x()é Bt d Y, (A3.10)
where operatorsX (t) and Y (t) are introduced, respectively, through relations
X (1) =\E* (1) X L&), (A3.11)
dx ()= d(¥E* () X & J), (A3.12)

with \E (t) being a stochastic time evolution operato

From (A3.7) to (A3.10), we have the connection formulae between the Ito and Stratonovich products in
the differential form a

X(ed¥()= X3 @Y} raXX A (A3.13)
dX (1o Y(D = dX() &) %+d)()t a0 (A3.14)

Stochastic multiplications (A3.7) to (A3.10) are consistent with corresponding types of differetial ca
culus for products of stochastic operators, which for the case of the éac&jgulus and the Stratonovich
type calculus read, respectively, as

agx()¥() max() &) X )Y a) o)t oy (A1
and dgx (9 Y( 1) g axX(§o Y(} +( ) o )
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