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Цель этой педагогической статьи - описать для ИТ-инженеров и магистрантов основные ма-

тематические операции с матрицами и линейными операторами, используемыми в квантовых вы-
числениях и квантовой теории информации. Эти операции определены в рамках линейной алгебры, и 
поэтому для их понимания нет необходимости вводить физические основы квантовой механики. 
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Introduction 

Matrices have been the subject of much study, and large bodies of results have been obtained about 

them. In this article we introduce main definitions of matrix theory and study the interplay between the 

theory of matrices and the theory of orthogonal polynomials in quantum computing [1-7]. Interesting results 

have been obtained for Krawtchouk polynomials and also for generalized Krawtchouk polynomials. More 

recently, it was obtained conditions for the existence of integral zeros of binary Krawtchouk polynomials. 

Also it was obtained properties for generalized Krawtchouk polynomials. Other generalizations of binary 

Krawtchouk polynomials have also been considered. Generalized some properties of binary Krawtchouk 

polynomials to q-Krawtchouk polynomials, derived orthogonality relations for quantum and q-Krawtchouk 

polynomials and showed that affine q-Krawtchouk polynomials are dual to quantum q-Krawtchouk polyno-

mials. In this paper, we define and study a generalization of Krawtchouk polynomials, namely, m-

polynomials [8-11]. Applications of Krawtchouk / Hadamard matrices in quantum algorithm’s design are 

considered.  

Krawtchouk matrices and quantum random walk 

In quantum probability, random variables are modelled by self-adjoint operators on Hilbert space and 

independence by tensor products. We can model a symmetric Bernoulli random walk as follows. Consider a 

2-dimensional Hilbert space 
2V  R  and two special 2 2  operators 

 

0 1

1 0
F

 
  
 

,      
1 0

0 1
G

 
  

 
 

satisfying 
2 2F G I  , the 2 2  identity. Recall the fundamental Krawtchouk/Hadamard matrix H  

(see, Part 1, Eqs (2) and (4)), which we shall now view as 

1 1

1 1
H F G
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One can readily check that 

    FH F F G F G G HG      (1) 

(use 
2 2F G I  ). This, of course, can be viewed as the spectral decomposition of F  and we can in-

terpret the Hadamard matrix as diagonalizing F . 

 

Remark. Note that the exponentiated operator  

 
cosh sinh

exp
sinh cosh

z z
zF

z z

 
  
 

 

has the expectation value in the state 
0e  equal 

 0 0,exp coshe zF e z  

which coincides with the moment generating function for the symmetric Bernoulli random variable tak-

ing values 1 . This shows that indeed we are dealing with the (quantum) generalization of the classical 

model. 

Remark. (Quantum computing interpretation). We can view  0 1span ,V e e as a Hilbert space repre-

senting a simple two-state quantum system, e.g., a particle with possible spin-up (
0e ) and spin-down (

1e ) 

states, respectively. In the context of “quantum computing”, these elementary states represent “qubits”. The 

operator F  represents a “spin flip” and G  a “phase change”, both are thus basic qubit operations. Geomet-

rically, they are reflections in V  through lines that form 45 degrees. The Hadamard matrix M  is essentially 

a “rotation by 45 degrees” (up to composition with reflection and scaling) and therefore ties them via (1). 

Now, to perform quantum computing, one needs an assembly of N  such independent systems – this consti-

tutes a simple quantum computer. The Hilbert space of computer states is represented by the N -th tensor 

product of the original space V , that is, by the 2N
-dimensional Hilbert space 

NV 
. This motivates our 

further considerations. 

Define the following simple operators (cf. Appendix 1) 

1f F I I     

 

2f I F I I      

 

  
 

Nf I I F     

each 
if  describing a “flip” at the i -th position. These are our quantum equivalents of the random walk 

variables. Performing them independently would result in “running” a classical TV-bit computer. We shall 

consider the superposition of these independent actions, setting 

1F NX f f   . 

Notation: For notational clarity, since N  is fixed throughout the discussion, we drop N  indices on 

X ’s. 

Analogously, we define: 

 

 

1g G I I     

 

2g I G I I      
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Ng I I G     

 

With 
1G NX g g   . We also extend H  to the N -fold tensor product, setting 

N

NH H  . (This 

is the same as 
 N

H  of the previous sections.) 

For illustration, consider a calculation for 3N  : 

  1 3f H F I I H H H      

 

   3 1H H H G I I H g       

where the relation FH HG  is used. This clearly generalizes to 
k N N kf H H g  and, by summing 

over k , yields an important relation: 

F N N GX H H X . 

Since products are preserved when reducing to the symmetric tensor space, we get 

F N N GX H H X  

the bars indicating the corresponding induced maps (see Appendix 2). We know how to calculate 
NH  

from the action of H  on polynomials in degree N . Note that for symmetric tensors we have the compo-

nents 
0 1

N k kx x
 in degree N  for 0 k N  . 

Proposition. For each 0N  , symmetric reduction of Hadamard matrices leads to 
 N

ij ijH Ф That is, 

NH  is the transpose of the Krawtchouk matrix 
 N

Ф . 

Proof: Writing  ,x y  for  0 1,x x , we have in degree N  for the k th component: 

   
N k k N l l

kl

l

x y x y H x y
    . 

Scaling out 
Nx  and replacing  /y x   yields the generating function for the Krawtchouk matrices 

with the coefficient of 
l  equal to 

 N

lkФ . Thus the result. 

Now consider the generating function for the elementary symmetric functions in the quantum variables 

jf . This is the N - fold tensor power 

   
N N

N Ft I tF I tX
       

noting that the coefficient of t is  
FX . Similarly, define  

   
N N

N Gt I tG I tX
       

From 
   I tF H H I tG  

 we have  

N N N NH H  and 
N N N NH H . 

The difficulty is to calculate the action on the symmetric tensors for operators, such as 
FX , that are not 

pure tensor powers. However, from  N t  and  N t  we can recover 
FX  and 

GX  via 

 

 
0

N

F

t

d
X I tF

dt





  ,      
0

N

G

t

d
X I tG

dt
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with corresponding relations for the barred operators. Calculating on polynomials yields the desired re-

sults as follows: 

1

1

t
I tF

t

 
   

 
,     

1 0

0 1

t
I tG

t

 
   

 
. 

In degree  N , using x  and y  as variables, we get the k th component for  
FX  and 

GX  via 

         1 11 1

0

N k k N k N kk k

t

d
x ty tx y N k x y kx y

dt

     



      

and since I tG  is diagonal, 

     
0

1 1 2
N k k N k k N k k

t

d
t t x y N k x y

dt

  



     

For example, calculation for 4N   result in 

 

0 4 0 0 0

1 0 3 0 0

0 2 0 2 0

0 0 3 0 1

0 0 0 4 0

FX

 
 
 
 
 
 
 
 

,        4

1 4 6 4 1

1 2 0 2 1

1 0 2 0 1

1 2 0 2 1

1 4 6 4 1

H

 
 

 
 
  
 

  
   

, 

 

4 0 0 0 0

0 2 0 0 0

0 0 0 0 0

0 0 0 2 0

0 0 0 0 4

GX

 
 
 
 
 

 
  

. 

 

We observe the spectrum of 
NX  is , 2, ,2 ,N N N N    , which coincides with the support of the 

classical random walk. 

We note that the top row of 
 

N
I tF




 is 
 w k

t  where 
 w k

 is the binary shuffling function of section 

3. This is seen by noting that each time one tensors with I tF , the original top row is reproduced then it is 

concatenated with a replica of itself modified in that each entry picks up a factor of t . Now, collapsing to the 

symmetric tensor space, the top row will have entries 

k
N

t
k

 
 
  . This follows as well by direct calculation of 

the 0th component matrix elements in degree N , namely by expanding  
 

N
x ty

. 

To find the distributions, we must calculate expectation values. In the present context, expectation val-

ues in two particular states are especially interesting. Namely, in the state 0e
 and the normalized trace – the 

uniform distribution on the spectrum. In the N -fold tensor product, we want to consider expectation values 

in the “ground state” 
000 0

 and normalized traces. Then we can go to the symmetric tensors. Since 

everything factors, one easily obtains the expectation value of 
 exp NzX

 in the ground state 
000 0

 to 
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be 
 cosh

N
z

. For the trace, tr 
 exp 2coshzF z

 implies 
   tr exp 2 cosh

NN

FzX z
and, after normal-

izing, this yields 
 cosh

N
z

. 

For the barred operators, we consider the symmetric trace. Here we can use the symmetric trace theo-

rem, detailed in Appendix 2. It tells us that the generating function for the symmetric traces of any operator 

A in the various degrees is  
 

1
det I tA




. Taking 
 expA zF

, we have 

    
11

det 1 1zF z zI te te te


    
 

 

 

  
1

21 2 cosht z t


   . 

The latter is the generating function for Chebyshev polynomials of the second kind, so that the normal-

ized symmetric trace is 

       
1

1 tr exp cosh / 1N

Sym NN zF U z N


   . 

This equals as well 
   

  

1 1

1

z N z N

z z

e e

e e N

  





 
 

and that completes this study. 

If A  is represented by a matrix, given the matrix form 
N

NA A
 computed as an N -fold Kronecker 

product, to reduce to NA
, we see that acting on polynomials, for a fixed row label in the full tensor space, 

the column entries corresponding to basic tensors equivalent under permutation are summed to a single 

column. Then the matrix elements are chosen, one row from each equivalence class of basic tensors. What if 

2?d   Then row and column labels are single indices so that NA
 is an 

   1 1N N  
 matrix with 

labels according to the exponent of 1x . That is, the basis for polynomials in degree N  is given by the mo-

nomials 0 1

N k kx x

, 0 k N  . The binary shuffling function and contraction operations are exactly the reduc-

tion to symmetric tensors and then induced matrix, (see Table 1 and 2) respectively. 

 

Table 1: Krawtchouk matrices 
   0

1Ф   

 

 1 1 1

1 1
Ф

 
  

              

 2

1 1 1

2 0 2

1 1 1

Ф

 
 

 
 
  

 

 

 3

1 1 1 1

3 1 1 3

3 1 1 3

1 1 1 1

Ф

 
 

 
 
  
 

  

 4

1 1 1 1 1

4 2 0 2 4

6 0 2 0 6

4 2 0 2 4

1 1 1 1 1

Ф
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 5

1 1 1 1 1 1

5 3 1 1 3 5

10 2 2 2 2 10

10 2 2 2 2 10

5 3 1 1 3 5

1 1 1 1 1 1

Ф

 
 

  
 
  

  
   

  
 

   

 

 

 6

1 1 1 1 1 1 1

6 4 2 0 2 4 6

15 5 1 3 1 5 15

20 0 4 0 4 0 20

15 5 1 3 1 5 15

6 4 2 0 2 4 6

1 1 1 1 1 1 1

Ф

 
 

  
 
   
 

   
    
 

   
    

 

 

Table 2: Symmetric Krawtchouk matrices 
   0

1S   

 

 1 1 1

1 1
S

 
  

 
 

 

 2

1 2 1

2 0 2

1 2 1

S

 
 

 
 
  

 

 

 3

1 3 3 1

3 3 3 3

3 3 3 3

1 3 3 1

S

 
 

 
 
  
 

  

 

 

 4

1 4 6 4 1

4 8 0 8 4

6 0 12 0 6

4 8 0 8 4

1 4 6 4 1

S

 
 

 
 
  
 

  
   

 

 

 5

1 5 10 10 5 1

5 15 10 10 15 5

10 10 20 20 10 10

10 10 20 20 10 10

5 15 10 10 15 5

1 5 10 10 5 1

S
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 6

1 6 15 20 15 6 1

6 24 30 0 30 24 6

15 30 15 60 15 30 15

20 0 60 0 60 0 20

15 30 15 60 15 30 15

6 24 30 0 30 24 6

1 6 15 20 15 6 1

S

 
 

  
 
   
 

   
    
 

   
    

 

 

Let us consider the relationship between the structure of Simon’s algorithm and Walsh transforms. 

Entropy and Hadamard matrices  

We will define the entropy of an orthogonal matrix. It provides a new interpretation of Hadamard matri-

ces as those that saturate the bound for entropy. This definition play important role in QAs simulation, while 

the Hadamard matrix is used for preparation of superposition states and in entanglement-free QAs. We 

define the entropy of orthogonal matrices and Hadamard matrices (appropriately normalized) saturate the 

bound for the maximum of the entropy. The maxima (and other saddle points0 of the entropy function have 

an intriguing structure and yield generalizations of Hadamard matrices. 

Consider n  random variables with a set of possible outcomes 1, ,i n having probabilities 
ip , 

1, ,i n . We have 
1

1
n

i
i

p


  and the Shannon entropy  
1

ln
n

Sh

i i i
i

S p p p


  . 

We now define entropy of an orthogonal matrix
i

jO , , 1, ,i j n . Here 
i

jO are real numbers with the 

constraint 
1

n
i i

j k j k
i

O O 


 . In particular, the j th row of the matrix is a normalized vector for each 

1, ,i n . We may associate probabilities 
   

2i i

j jp O  with the i -th row, as 
 

1

1
n

i

j
j

p


  for each i . We 

define the Shannon entropy for the orthogonal matrix as the sum of the entropies for each row:  

     
2 2

, 1

ln
n

Sh i i i

j j j
i j

S O O O


   . 

The minimum value zero is attained by the identity matrix 
i i

j jO   and related matrices obtained by in-

terchanging rows or changing the signs of the elements. The entropy of the i -th row can have the maximum 

value ln n , which is attained when each element of the row is 
1

n
 . This gives the bound, 

  lnSh i

jS O n n .  

In general, the entropy of an orthogonal matrix cannot attain this bound because of the orthogonality 

constraint 1

n
i i

j k j k
i

O O 



, which constraints 

 i
jp

 for different rows. In fact the bound is obtained only by 

the Hadamard matrices (rescaled by 

1

n ). Thus we have the criterion for the Hadamard matrices (appropri-

ately normalized): those orthogonal matrices which saturate the bound for entropy. 
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Remark. The entropy is large when each element is as close to 

1

n


 possible, i.e., to a main diagonal. 

Thus maximum entropy is similar to the maximum determinant condition of the Hadamard. The peaks of the 

entropy are isolated and sharp in contrast to the determinant.  

Example. Matrix that maximizing the entropy for 3n   is 

1 2 2

3 3 3

2 1 2

3 3 3

2 2 1

3 3 3

 
 
 
 
 
 
  
 

. 

For 5n  , the result is similar: the magnitudes of the elements in each row are 
2

5
 repeated 4 times and 

a diagonal element is a 
3

5
 . This set can be generalized for any n . The matrix with 

2n

n


  along the diag-

onal and each off-diagonal as 
2

n
 is orthogonal. Each row is normalized as a consequence of the identity: 

   
22 22 2 1n n n    .  

For each n , there are saddle points apart from maxima and minima.  

Example. For 3n   there is a saddle point and the corresponding matrix is 

1 1 1

2 22

1 1
0

2 2

1 1 1

2 22

 
 
 
 

 
 
 

 
 

. 

The entropy peaks quite sharply at all extrema. Thus the entropy has a rich set of sharp extrema.  

This result shows the important role of Hadamard operator in entanglement-free QA: with Hadamard 

transformation it is possible introduce maximal hidden information about classical basis independent states 

and superposition includes this maximal information. Thus, with superposition operator is possible created a 

new QA without entanglement while in any cases superposition includes information about the property of 

function f .  

General properties of Walsh-Hadamard transformation  , ,W a b q . (see Appen-

dix 3) 

Let us consider a function    : 2 1,1nW n      . The function satisfies the following 

conditions: 

       

       
1

0, , 1 , , , , , ,

, , , , , , , ,
q

ab
c o

W b q W a c b q W a b q W c b q

W a b q W b a q W a c q W c b q q
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where the operator   is a bitwise exclusive-OR (XOR). Moreover, we define the transform 
qW  as fol-

lows:  
1

0

1
, ,q

q
W

c

a W a c q c
q





  . When the a -th row and b -th column element of a matrix 
qWU  is 

 
1

, ,W a b q
q

(unless otherwise specified, the rows and columns will be indexed beginning with 0), the 

matrix is a unitary matrix because of the definition of  , ,W a b q . Thus, the Quantum Turing Machine 

(QTM) can execute the transform 
qW .  

Example. Let    , , 2 1
a bnW a b q


    where a b  is an inner product of a  and b , i.e., for 

1

0

2
n

i

i
i

a a




   and    
1 1

0 0

2 , 0,1 , mod 2
n n

i

i i i i i
i i

b b a b a b a b
 

 

     . Obviously, the function  , , 2nW a b  

satisfies the conditions above of  , ,W a b q . In fact, by using  , , 2nW a b , in the Simon algorithm 

 , , 2 1, 0nW s c s c   . 

Next, let us consider the case when  , ,W a b q  is a discrete Walsh function. We will show that the 

function  , , 2nW a b  is a kind of discrete Walsh function.  

First, we describe Walsh functions and discrete Walsh functions. We define a function 

    : 1,1r x   by  

1
1, 0

2

1
1, 1

2

x

r x

x


 

 
  


 

and    1r x r x  . Moreover, let  lr x be a function    2l

lr x r x , where ,x l  . Then, a 

Walsh function (more precisely, Walsh-Paley function)  lW x is defined by    
0

kl

l k
k

W x r x




  , where 

 
0

2 , 0,1k

k k
k

l l l




  .  

 

Remark. Every value of the function  lW x  is always a finite value because 0kl   for k  that is suffi-

ciently large (in fact, each value of the Walsh-Paley function is either 1 or 1 ). Moreover, when let 

,a b  , and q  , a discrete Walsh-Paley function is defined by a

b
W

q

 
 
 

.  

Example. Now, let  2nq n  . Then, the function a

b
W

q

 
 
 

 satisfies the following properties [so 

that this function satisfies the properties of  , ,W a b q ]: 

0

1

1 a c a c

q

a b a c ab
c o

b b b b
W W W W

q q q q

b a c b
W W W W q

q q q q
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Namely, a matrix 
qPU  whose the a -th row and b -th column element is 

1
a

b
W

qq

 
 
 

 is a unitary ma-

trix. The transform 
1

0

1
: q

q
P

q a
c

c
P a W c

qq





 
   

 
 correspond to the matrix 

qPU  and can be computed in 

polynomial time of n . 

Example. Let 
qH  be a q -dimensional Hadamard matrix  2nq  , that is, when 2

1 1

1 1
H

 
  

 
 then 

/ 2 / 2

2 / 2

/ 2 / 2

q q

q q

q q

H H
H H H

H H

 
    

 
. The QTM can execute the matrix 

1
qH

q
 in  O n  time. Further, 

when let 
k jH be the k -th row and j -th column element of 

qH  then  k j br k

j
H W

q

 
  

 
 where for 

    
1 1

1
0 0

2 0,1 , 2
n n

i i

i i n i
i i

k k k br k k
 

 
 

     (for a bit string, its reverse order is obtained). The QTM can 

also execute this procedure in  O n  time. Consequently, the QTM can execute the transform 
qP  in  O n  

time. 

Relationships among some Walsh transforms  

For the value 
1

0

2 ,
n

i

i
i

a a




   0,1 ,ia   let  

 0,1, , 1ig i n   = 
 

1 1

1 0 2

n n

i i i

a

a a i n

 






    

g

g
. 

Gray code  g a  of a  is defined by  
1

0

2
n

i

i
i

g a g




  . Now, when ,
b

W a
q

 
 
 

 and a

b
H

q

 
 
 

 are dis-

crete Walsh-Paley function and Walsh-Hadamard function, respectively, the relationships among Walsh 

functions are  
,

a

b b
W a W

q q

   
   

   
g  and  a br a

b b
H W

q q

   
   

   
. Moreover, we can describe them by 

 

 
  

, 1
br a bb

W a
q

 
  

 

g
  

 
1

br a b

a

b
W

q

 
  

 
  1

a b

a

b
H

q

 
  

 
 

Simon’s problem and algorithm  

Simon (1994, 1997) was the first to show a nice and simple problem with expected polynomial time QA 

but with no polynomial time randomized algorithm. 

The qualitative description of Simon’s problem  

A function    : 0,1 0,1
n n

f   is given as an oracle, with the promise that there exists an  0,1
n

s  

(known as the “hidden secret”) such that    f x f y  iff x y s  . Notice that if 0ns  , then f is a 

permutation, and otherwise f  is two-to-one function. The problem is to tell if 0ns  . 
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Simon’s algorithm works as follows. One starts with 2n  qubits, separated into two n -qubit registers. 

Originally one initializes the states to 
0 0 0n n  . Next, one applies the Hadamard operator to the first 

register and then the oracle operator  x y x y f x . The state becomes 

 1

1

2n
x

x f x   .  

Next, the second register is measured and discarded:  

o If 0ns  , then the measurement result is 2 x   for a random  0,1
n

x ; 

o If 0ns  , then the measurement is  2

1

2
x x s     for a random x  

Next, a Hadamard operator is applied to the first register. 

In the case 0ns  , the result is 3 y   for a random y ; in the case 0ns  , the result 3 y   for 

a random y  such that 0y s  .  

Finally, one measurement the first register and obtain y .  

Repeating the experiment  O n  times, one can solve for s  by using Gaussian elimination and distin-

guish the case 0ns   from the case 0ns  . 

Mathematical model of Simon’s problem: Simon’s XOR Problem  

Let    : 0,1 0,1
n n

f   be a function such that either f  is one-to-one and there exists a single non-

zero  0,1
n

s  such that     x x f x f x x x s        . The task is to determine of the above 

conditions for f  and, in the second case to determine also s . 

To solve the problem two registers are used, both with n  qubits and the initial states 0n
, and (ex-

pected)  O n  repetitions of the following version of the Hadamard-twice scheme: 

 

S

tep 

Computational algorithm 

1 Apply the Hadamard transformation on the first register, with the initial value 0n
, to produce the 

superposition 

 0,1

1
,0

2 n

n

n
x

x


  

2 
Apply 

fU  to compute    
 0,1

1
,

2 n
n

x

x f x


  

3 
Apply Hadamard transformation on the first register to get    

 , 0,1

1
1 ,

2 n

x y

n

x y

y f x




  

4 Observe the resulting state to get a pair   ,y f x  

 

Case 1: f  is one-to-one. After performing the first three steps of the above procedure all possible states 

 ,y f x  in the superposition are distinct and the absolute value of their amplitudes is the same, namely 
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1

2n
. Therefore, 1n   independent applications of the scheme Hadamard-twice produce 1n   pairs 

     1 1 1 1, , , ,n ny f x y f x 
, distributed uniformly and independently over all pairs   ,y f x . 

Case 2: There is some 0ns   such that     x x f x f x x x s        . In such a case for 

each y and x the states  ,y f x  and  ,y f x s  are identical. Their total amplitude  ,x y  has the 

value      
 1

, 1 1
2

x y x y

n
x y

      
 

. If 0mod2y s  , then   mod 2x y x s y     and therefore 

  1, 2 nx y   ; otherwise  , 0x y  . Therefore, n  independent applications of the scheme Hadamard-

twice yield 1n   independent pairs      1 1 1 1, , , ,n ny f x y f x 
 such that 0mod2iy s   for all 

1 1i n   . 

Remark. In both cases, after 1n   repetitions of the scheme Hadamard-twice, 1n   vectors 
iy , 

1 1i n   , are obtained. If these vectors are linearly independent, then the system of 1n   linear equa-

tions in 
2, 0iy s   can be solved to obtain s . In Case 2, if f  is two-to-one, s  obtained in such a way is 

the one to be found. In Case 1, s  obtained in such a way is a random string. To distinguish these two cases, 

it is enough to compute  0f  and  f s . If    0f f s , then f  is one-to-one. If the vector obtained by 

the scheme Hadamard-twice are not linearly independent, then the whole process has to be repeated. 

As shown in the next lemma, the vectors 
iy , 1 1i n   , obtained in this way are linearly independent 

with probability at least 
1

4
. The total expected computation time is therefore     O nt n g n , where 

 t n  is time needed to compute f  on inputs of length n  and  g n  is time needed to solve the system of 

n linear equations in 
2
. 

Lemma: If u is a non-zero binary vector of length n , then 1n   randomly chosen binary vectors of 

length n  such that 0 mod2u y   are linearly independent with probability at least 
1

4
. 

Let us consider the relationship between the structure of Simon’s algorithm and Walsh transforms. 

Walsh transforms and Simon’s Problem 

First, let us consider a function    : 2 1,1nW n      . This function satisfies the above 

mentioned conditions. For this case we consider solving Simon’s problem by using the transform 
qW .  

Simon’s Problem. Let f be a function      : 0,1 0,1
n m

f m n   such that (A) the function f  is a 

one-to-one function, or (B) there exists a non-trivial s  satisfying  

   x x f x f x x x s          . 

Then, the problem is to decide which condition the function f satisfies. Moreover, in the case of (B), 

find the value of s .  

Algorithm solution. Let 2nq  . In order to solve Simon’s problem, first, a QTM computes all of the 

values of f in quantum parallel computation: 

 
1 1

0 0

1 1
0 0 0

q q

a a

a a f a
q q

 

 

   . 
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When let a b , call a  (respectively, b ) the first register (respectively the second register).  

Remark. The original computation for the first register is the Fourier transform. However, the QTM can 

obtain the same result by using the transform 
qW . 

For the first register, the QTM executes the transform 
qW : 

     
1 1 1

0 0 0

1 1
, ,q

q q q
W

a a c

a f a W a c q c f a
qq

  

  

    
 

. 

If the function f satisfies the condition (B) [i.e.,    f a f a s  ], for each c , two configurations 

 c f a  and  c f a s  are equal and the probability amplitude  ,a c  corresponding to them is  

           
1 1

, , , , , , , 1 , ,a c W a c q W a s c q W a c q W s c q
q q

      . 

Therefore, the configuration corresponding to  , , 1W s c q    is erased. Then, for the given function 

 , ,W s c q , the QTM can obtain c  satisfying  , , 1W s c q  . Moreover, when the QTM repeats procedure 

above several times, it can obtain some different values of c  (although whether or not we can find s  de-

pends on the structure of the function W ). On the other hand, when the function f  satisfies condition (A), 

the QTM can decide whether the function f satisfies either (A) or (B).  

Remark. Moreover, if the QTM can execute both the computation of the transform 
qW  and the computa-

tion of the function f  in polynomial time of 
2log q , it can execute the total procedure in polynomial time 

of 
2log q . The algorithm above becomes Simon’s algorithm: when  , , 2 1, 0nW s c s c   . 

We describe a problem that is efficiently solved using one of the algorithms mentioned above.  

Generalized QA based on using of Walsh transform 

Let us consider the following problem: 

Let      : 0,1 0,1
n m

f m n   be a function such that there exists a nontrivial s  satisfying 

    x x f x f x x x s        . 

Then, the problem is to find a nontrivial b  satisfying 0s b  . 

Remark. This problem is an extended version of the Simon’s problem, that is, in the current Problem, 

the range of the function f  is extended from  
1

0,1
n

 to    0,1
m

m n . Simon shows that any PTM 

needs an exponential time of n  to solve it. In the following, we describe a QA to efficiently solve this Prob-

lem.  

Solution of the Problem. We define a Walsh-Hadamard transform 
qH by  

1

0

1
q

q
H

a

b

b
a H b

qq





 
  

 
 . 

Moreover, for a given  0,1
n

g , we define two functions 
1F  and 

2F :  

 

 
     

 
 

   
1 2

, 0,

, 1,

f a if f a f a g if f a f a g
F a F a

f a g otherwise otherwise

    
  

 
. 
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We then define 
1FU  and 

2FG  by 1

10
FU

a a F , and  
 22 1

FG F a
a a  . The function 

1F  can be computed in the following way: First, the QTM computes    f a f a g  . The QTM takes the 

value of  f a  if the value of    f a f a g   is plus, otherwise it takes the value of  f a g . There-

fore, the main procedure computing the function 
1F  is to compute a linear function whose inputs are values 

of f .  

Remark. We can construct transforms computing linear functions (in general, polynomial functions). 

Moreover, since the number of inputs in the linear function is constant, the complexity  fT n  is time com-

plexity of f  (we can evaluate the time complexity of 
2F  in a similar way).  

Algorithm of solution  

First, for an a , the QTM selects a  0g  , such that    f a f a g  , and computes the function 

1F  [if    f a f a g  , then s g , and we can easily find a nontrivial b  such that 0s b  ]: 

 2 1

2 1 2 1

1

0 0

1 1
0 0 0

2 2

n n

n F
H U

n n
a a

a a F a
 

 

   .  

Next, the QTM observes the second register (thus, in the following we omit the second register). By 

   1 1F a F a g  , and 
1

2
a a s a g a g s          . Moreover, the QTM executes the 

transform 
2FG . By  

 
 

 2 21 1
F a g F a

    ,  

 

 
 

 
 

 
 

 
 

 
 

2 2

2

2 2

2

1 11 1

2 2 1 1

1
1

2

F

F a F a s

G

F a g F a g s

F a

a a s
a a s a g a g s

a g a g s

a a s a g a g s



  

    
           
        

           

 

Finally, the QTM executes the Walsh-Hadamard transform 
2 nH : 

 

 
 

 
 

 
 

2 22

2

2 1

0

2 2

1 1
1 1

2 22 2

2

1
2 21

1
2 2

1
2

n

n

a a sn n

HF a F a

a g nn
b

a g s n

a sn n
F a

n

g n

b b
H H

a a s b
H b

a g a g s

b
H

b b
H H

b
H









 

     
     

     
       

        
            

   
   
     

    
    

    
 


 





2 1

0

n

b

b
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Then, we can find b  satisfying 1
2

s n

b
H

 
 

 
 and 1

2
g n

b
H

 
  

 
, that is, 0s b   and 1g b  , in 

polynomial time of n  and  fT n .  

Remark. Since any Walsh function satisfies the conditions of  , ,W a b q , the QTM can solve Simon’s 

problem in polynomial time of n  by using any Walsh function. Furthermore, if we suppose that all of the 

transforms corresponding to the Walsh functions can be executed in the same time (i.e., if we suppose that 

we can construct such quantum networks executable in the same time), we can obtain the required code most 

efficiently by using the function corresponding to the code. For example, when we use the function 

,
b

W a
q

 
 
 

, we can obtain   br g s  instead of s  because we obtain c  satisfying    0br g s c  . 

Deutsch-Jozsa QA and Walsh-Hadamard transformation 

Deutsch and Jozsa suggested that there exists a problem that a QTM may solve it exponentially faster 

than any DTM. Let us briefly repeat the discussion of this problem.  

Deutsch-Jozsa problem.  

Let us consider a function    2: 0,1Nf N   such that (A) the function is not constant (at 0 or 

1), or (B) the sequence of all of the values of f ,      0 , 1 , , 2 1f f f N   does not contain exactly N  

zeros. Then the problem is to decided which condition the function f  satisfies. 

First, we briefly describe an algorithm (Deutsch-Jozsa QA) to solve this problem on a QTM. Let 2S
 be 

a unitary matrix (a unitary transform) 
2

1 0

0 1
S

 
  

  . For one qubit, this matrix operates and transforms as 

follows: 
 2 1

aS
a a 

. Moreover, the function f  is computed as  

 fU
a b a b f a 

. 

We denote the initial configuration by a pair of an input (the first register) and an output register (the 

second register), 
0 0

. Then the QTM executes the following computations. 
 

 

 
 

 

 
 

2

2

2 1

0

2 1

0

2 1

0

2 1

0

1
0 0 0

2

1

2

1
1

2

1
1 0

2

N

f

f

N
W

a

N
U

a

N
f aS

a

N
f aU

a

a
N

action on

the second a f a
N

register

action on

the first a f a
N

register

action on

the second a
N

register
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For the final superposition of configurations (let   be the superposition), the probability  P   of 

observing the eigenvalue  that corresponds to 
2 1

0

1
0

2

N

a

a
N






   is  

   
 

2
2 1

2

0

1
1

2

N
f a

a

P
N

  




   . 

Therefore the probability of solution observable as   1P    if f is a constant function, and, 

  0P   , if exactly half the values of f are 0. Consequently, when we take the contrapositive, condition 

(A) is true if   is not obtained, and otherwise condition (B) is true.  

Remark. Thus, Deutsch-Jozsa algorithm gives a method of efficiently solving problems on QTMs by us-

ing observations effectively. On the other hand, as mentioned, Simon’s algorithm is a method of retaining 

only the required configurations by using interference a superposition of configurations is solved. Moreover, 

by a Fourier transform, Shor developed algorithms to factor integers and to find discrete logarithms efficient-

ly on QTMs by using interference (inspired by Simon’s algorithm). We show that Deutsch-Jozsa’s problem 

can also be efficient solved by using the Walsh-Paley transform 
qP  and by using interference (we can also 

show that it can be solved by other Walsh transforms).  

Example. For simplicity, let 2 2nN  . A QTM executes the same computations as above until the final 

superposition   of configurations. For the vector  , the QTM executes the Walsh-Paley transform: 

 

 
 

 
 

 
 

2

2 1

0

2 1 2 1

0 0

2 1

0

2 1

0

1
1 0

2

1
1 0

2 2

0

1
1

2 2

n

n n

n

n

n

f a

n
a

p f a

an n
a c

c

c

f a

c an n
c

a

action on
c

the first W c

register

result c

c
W











 

 









 

 
  

 



 
  

 









 

 

where 
c  is a value depending on the function f . Moreover, all of the values of the function 

2
a n

c
W

 
 
 

 are 

1 if 0c  , otherwise exactly half the values of the function are 1 (and half the remaining values of it are 

1 ). Then, if f  is a constant function, 
0c c    and the configuration after the computation becomes 

0 0 . On the hand, if exactly half the values of f  are 0, 
0 0   and the configuration after the compu-

tation becomes 
2 1

1

0

n

c

c

c




 . Here, when we observe the first register, the probability of observing 0  

(more precisely, the probability of observing the eigenvalues corresponding to it) is 1 if f  is a constant 

function, and the probability of observing 0  is 0 if exactly half the values of f  are 0. Consequently, under 

the same evaluation as above, when we take the contrapositive, condition (A) is true if 0  is not obtained, 

and otherwise condition (B) is true. 
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Remark. Deutsch-Jozsa’s problem is a type of decision-making problem of choosing between two 

things. Finally, we modify the problem to one that includes forms of search problems and derive more gen-

eral algorithms to solve them. 

Example. Let f  be a function such that      : 0,1 0,1
n m

f m n  . We denote two unitary 

transforms U
 and U   by  

2 1 2 1 2 1 2 1

0 0 0 0

n n n n

UU

ab ab bc ac ab ab bc ac

b b b b

a b b         
   

 

   

   
      

   
     

Moreover, 
we

 define a unitary transform G  by  G
a g a a  where  g a  is a function satisfy-

ing  
2

1g a   under some conditions described later (the function 
2S  is an instance of G ). 

Algorithm. First, for an initial configuration 0 0  of a QTM (although we do not necessarily select the 

initial configuration as 0 0 ), we form a superposition of all of the input values of the function f  by using 

the transform U  : 
2 1

0

0

0 0 0

n

U

a

a

a 




 . Next, the QTM executes the transforms , ,fU G  and 
fU , 

as following: 

 

    

  

2 1 2 1

0 0

0 0

2 1

0

0

2 1

0

0

0

0

n n

f

n

n

f

U

a a

a a

G

a

a

U

a

a

a a f a

result of
g f a a f a

G action

action on

the second g f a a

register

 





 

 
















 





 

Finally, the QTM executes the transform U
:  

     
2 1 2 1 2 1

0 0

0 0 0

0 0

n n n

U

a a ac

a a c

g f a a g f a c  
  

  

  . 

If we suppose that   0a bag f a p    (where, 
2

1p  ) the superposition of the configurations be-

comes 

  
2 1 2 1 2 1 2 1

0

0 0 0 0

2 1

0

0 0

0

0

n n n n

n

a ac ba ac

a c a c

bc

c

g f a c p c

p c

p b

   



   


   











 

  

 

and we can obtain a value b  uniquely. 

Remark. For a given f , the relationship between the function f  and the value b  is decided; however, 

as in the example mentioned below (Deutsch-Jozsa-type search problem), we can also assign the value b  to 

each function as identification number. 

Next, let us consider more general algorithm. 
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Example. Suppose that   0

b

a b ba

b S

g f a p  



  (where 
2

1
b

b

b S

p


 ) where for any two different el-

ements 
1 2, kb b  , the set 

bS  ( ,kb k  ) satisfies 
1 2b bS S   and 

20
n

k

b
b

S

   (consider that 

each condition of solving a problem corresponds to a number, i.e., an element of the set). Then, the 

superposition of configurations after the computation above becomes 

 

  
2 1 2 1 2 1 2 1

0

0 0 0 0

2 1

0

0 0

0

0

n n n n

b

n

b

b

a ac b ba ac

a c a c b S

b bc

b S c

b

b S

g f a c p c

p c

p b

   



   


    



 









 

 



 

 

and we can uniquely decide to which correction of properties the given function f  belongs. 

Example. For an error-bounded algorithm, we suppose that  

  
2 2

2 2 2

0

2
, 1,

3
b n b b n b b

a b ba b b a b b b

b S b S b S b S b S

g f a p p p p p   

  

       

         .  

(for 
1 2 2
, nb b  , we may select 

1 2b bS S  ). Then, the superposition of configurations after the 

computation above becomes 

 

  
2

2

2 1 2 1 2 1 2 1 2 1 2 1

0

0 0 0 0 0 0

0 0 0

0 0

n n n n n n

b n b

b n b

a ac b ba ac b b a ac

a c a c b S a c b S

b b

b S b S

g f a c p c p c

p b p b

     
     

 

 

        



  

 

 

   

 
 

and we can obtain an element in 
bS  with probability more than 

2

3
. 

Remark. The algorithms above reset the output value (the second register) to 0 in the course of computa-

tion; however, we can easily modify these algorithms to algorithms with classification by the output values, 

like Simon’s and Shor’s algorithms.  

Now, we show that even if we modify the Deutsch-Jozsa problem (decision-making problem) to the 

form of search problems, there also exists a problem that it solved efficiently. 

Example: Deutsch-Jozsa search problem. Let  2

1
,

2
nab

n
p a b  be the a -th row and b -th column 

element of a matrix corresponding to the Walsh-Paley transform. Moreover, we define 2 n
 functions 

 
1

2

ab
b

p
f a


  [more precisely, let  bf a be a function outputting such a value].  

Then, for a given function f among 2 n
 functions  bf a , the problem is to decide to which function 

the given function f  belongs, i.e., find b . In order to solve this problem, we investigate the general algo-

rithms above.  

Thus, when 
1

22
ab ab a

n

b
W 

 
  

 
 and     

 
1

f a
g f a   , then  
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1

2
0 0

1 1
1 1

22 2

abp
f a

a bann n

a
g f a W 


 

      
 

 

and it satisfies the condition above.  

Then, the final superposition of configurations is 0b  and we can obtain the value b  uniquely.  
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Appendix 1: Tensor products 

Let V  be a d-dimensional vector space over  R . We fix an orthonormal basis  0 , ,e e  with 

1d   . Denote tensor powers of V  by  
NV 

, so that 
2V V V   , etc. A basis for 

NV 
 is given by all 

N -fold tensor products of the basis vectors 
ie , 

1 21 2 NN n n nn n n e e e     

Note that we can label these 
Nd  basis elements by all numbers 0 to 

Nd  -1 and recover the tensor prod-

ucts by expressing these numbers in base d , putting leading zeros so that all extended labels are of length 

N . 

Now let  :1iA i N   be a set of N  linear operators on  V . On 
NV 

, the linear operator 

1 2 NA A A A     acts on a basis vector 1 2 Nn n n  by 

11 2 1 NN n N nA n n n Ae A e    

This needs to be expanded and terms regrouped using bilinearity. 

https://www.google.ru/search?hl=ru&tbo=p&tbm=bks&q=inauthor:%22Xin+Wang%22
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If A  and B  are two d d  matrices, the matrix corresponding to the operator A B  is the Kronecker 

product, 
2 2d d  matrix having the block form: 

00 0

10 1

0

a B a B

a B a B

a B a B





 

 
 
 
 
 
 

 

associating, from the left for higher-order tensor products. The rows and columns of the matrix of a lin-

ear operator acting on 
NV 

 are conveniently labelled by associating to each basic tensor 1 2 Nn n n  the 

corresponding integer label 
1

N
N k

k

k

n d 



 , which thus provides a canonical ordering. 

Appendix 2: Symmetric tensor spaces 

Here we review symmetric tensor spaces as spaces of polynomials in commuting variables. 

The space 
NV 

 can be mapped onto the space of symmetric tensors, S N
V


 by identifying basis vectors 

(in 
NV 

) that are equivalent under all permutations. Alternatively, one can identify the basic tensor 

1 2 Nn n n  with the monomial 
1 2 Nn n nx x x  in the commuting variables  

0, ,x x . Hence we have a linear 

map from tensor space into the space of polynomials, itself isomorphic to the space of symmetric ten-

sors:  0

0 0

, , S NN

N N

V R x x V



 

  . In the symmetric tensor space, tensor labels need to count only 

‘occupancy’, that is, the number of times a basis vector of V  occurs in a given basic tensor of 
NV 

. We 

indicate occupancy by a multi-index which is the exponent of the corresponding monomial. The dimension 

of S N
V


 is thus 

1
dim

1
S N

N d
V

d


  

  
 

 that is, the number of monomials homogeneous of degree N . 

Given an operator A  on V , let 
N

NA A . Then 
NA  induces an operator 

NA  on S N
V


 from the ac-

tion of A  on polynomials, which we call the symmetric representation of A  in degree N . For convenience 

we work dually with the tensor components rather with the action on the basis vectors. Denote the matrix 

elements of the action of 
NA  by 

mnA . If A  has matrix entries 
ijA  let 

j

i ij

j

y A x . 

Then the matrix elements of the symmetric representation are defined by the relation (expansion): 
0 0

0 0

m m n n

mn

n

y y A x x 

   

with multi-indices m  and n . 

Successive application of 
1A  then 

2A  shows that mapping to the symmetric representation is an algebra 

homomorphism, i.e., 

1 2 1 2A A A A . 

Explicitly, in basis notation 

     1 2 1 2mn mr rn
r

A A A A . 

Define the symmetric trace in degree N  of A  as the trace of the matrix elements of 
NA , i.e., the sum 

of the diagonal matrix elements: 
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trN

Sym mm

m N

A A


   

with m  denoting, as usual, the sum of the components of  m . Observe that if A  is upper-triangular, with 

eigenvalues  
1, , d  , then the trace of this action on the space of polynomials homogeneous of degree N  

is exactly  1, ,N dh   , the N th homogeneous symmetric function in the   's. 

We recall a useful theorem on calculating the symmetric trace. Since the mapping from A  to 
NA  is a 

homomorphism, a similarity transformation on A  extends to one on 
NA  thus preserving traces. Now, any 

matrix is similar to an upper-triangular one with the same eigenvalues, thus follows 

 

Theorem: Symmetric trace theorem Denoting by trN

Sym  the trace of the symmet-

ric representation on polynomials homogeneous of degree N , 

  0

1
tr

det

N N

Sym

N

t A
I tA








  

Proof: With  i  denoting the eigenvalues of A , 

 

1 1

det 1i iI tA t


 
  

  1 2

0

, ,N

N
N

t h  




  

0

trN N

Sym

N

t A




  

as stated above. 

 

Remark Note that this result is equivalent to MacMahon’s Master Theorem in combinatorics. 

Appendix 3: General properties of Walsh-Hadamard transformation  , ,W a b q  

Let us consider a function    : 2 1,1nW n      . The function satisfies the following 

conditions: 

       

       
1

0, , 1 , , , , , ,

, , , , , , , ,
q

ab
c o

W b q W a c b q W a b q W c b q

W a b q W b a q W a c q W c b q q




  

 

 

where the operator   is a bitwise exclusive-OR (XOR). Moreover, we define the transform 
qW  as follows: 

 
1

0

1
, ,q

q
W

c

a W a c q c
q





  . When the a -th row and b -th column element of a matrix 
qWU  is 

 
1

, ,W a b q
q

 (unless otherwise specified, the rows and columns will be indexed beginning with 0), the 

matrix is a unitary matrix because of the definition of  , ,W a b q . Thus, the Quantum Turing Machine 

(QTM) can execute the transform 
qW .  
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Example. Let    , , 2 1
a bnW a b q


    where a b  is an inner product of a  and b , i.e., for 

1

0

2
n

i

i
i

a a




   and    
1 1

0 0

2 , 0,1 , mod 2
n n

i

i i i i i
i i

b b a b a b a b
 

 

     . Obviously, the function  , , 2nW a b  

satisfies the conditions above of  , ,W a b q . In fact, by using  , , 2nW a b , in the Simon algorithm 

 , , 2 1, 0nW s c s c   . Next, let us consider the case when  , ,W a b q  is a discrete Walsh function. We 

will show that the function  , , 2nW a b  is a kind of discrete Walsh function.  

First, we describe Walsh functions and discrete Walsh functions. We define a function  

   : 1,1r x  
by  

1
1, 0

2

1
1, 1

2

x

r x

x


 

 
  


 

and    1r x r x  . Moreover, let  lr x be a function    2l

lr x r x  where ,x l  . Then, a 

Walsh function (more precisely, Walsh-Paley function)  lW x is defined by    
0

kl

l k
k

W x r x




  , where 

 
0

2 , 0,1k

k k
k

l l l




  .  

Remark. Every value of the function  lW x is always a finite value because 0kl   for k  that is suffi-

ciently large (in fact, each value of the Walsh-Paley function is either 1 or 1 ). Moreover, when let 

,a b  , and q  , a discrete Walsh-Paley function is defined by a

b
W

q

 
 
 

.  

Example. Now, let  2nq n  . Then, the function a

b
W

q

 
 
 

 satisfies the following properties [so 

that this function satisfies the properties of  , ,W a b q ]: 

0

1

1 a c a c

q

a b a c ab
c o

b b b b
W W W W

q q q q

b a c b
W W W W q

q q q q








       
        

       

       
        

       

. 

 

Namely, a matrix 
qPU whose the a -th row and b -th column element o is 

1
a

b
W

qq

 
 
 

 is a unitary ma-

trix. The transform 
1

0

1
: q

q
P

q a
c

c
P a W c

qq





 
   

 
 correspond to the matrix 

qPU  and can be computed in 

polynomial time of n . 

Example. Let 
qH  be a q -dimensional Hadamard matrix  2nq  , that is, when 2

1 1

1 1
H

 
  

 
 then 

/ 2 / 2

2 / 2

/ 2 / 2

q q

q q

q q

H H
H H H

H H

 
    

 
. The QTM can execute the matrix 

1
qH

q
 in  O n  time. Further, 
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when let 
kjH be the k -th row and j -th column element of 

qH  then  k j br k

j
H W

q

 
  

 
 where for 

    
1 1

1
0 0

2 0,1 , 2
n n

i i

i i n i
i i

k k k br k k
 

 
 

     (for a bit string, its reverse order is obtained). The QTM can 

also execute this procedure in  O n  time. Consequently, the QTM can execute the transform 
qP  in  O n  

time. 

Relationships among some Walsh transforms. For the value 
1

0

2 ,
n

i

i
i

a a




   0,1 ,ia   let  

 0,1, , 1ig i n   = 
 

1 1

1 0 2

n n

i i i

a

a a i n

 






    

g

g
. 

Gray code  g a  of a  is defined by  
1

0

2
n

i

i
i

g a g




  . Now, when ,
b

W a
q

 
 
 

 and a

b
H

q

 
 
 

 are dis-

crete Walsh-Paley function and Walsh-Hadamard function, respectively, the relationships among Walsh 

functions are  
,

a

b b
W a W

q q

   
   

   
g  and  a br a

b b
H W

q q

   
   

   
.  

Moreover, we can describe them by 

 

 
  

, 1
br a bb

W a
q

 
  

 

g
  

 
1

br a b

a

b
W

q

 
  

 
  1

a b

a

b
H

q

 
  

 
 

 


